
 
 

 

  
   Abstract—A novel neural network (NN) -based output 
feedback controller with magnitude constraints is designed to 
deliver a desired tracking performance for a class of multi-
input-multi-output (MIMO) discrete-time strict feedback 
nonlinear systems.  Reinforcement learning in discrete time is 
proposed for the output feedback controller, which uses three 
NNs: 1) a NN observer to estimate the system states with the 
input-output data; 2) a critic NN to approximate certain 
strategic utility function; and 3) an action NN to minimize 
both the strategic utility function and the unknown dynamics 
estimation errors. The magnitude constraints are manifested 
as saturation nonlinearities in the output feedback controller 
design. Using the Lyapunov approach, the uniformly ultimate 
boundedness (UUB) of the state estimation errors, the 
tracking errors and weight estimates is shown.    

I. INTRODUCTION 
HE output feedback controller schemes are necessary 
when certain states of the plant become unavailable for 

measurement. Moreover, the separation principle does not 
hold for nonlinear systems, even when an exponentially 
decaying state estimation error can lead to instability at 
finite escape time [1]. Consequently, the output feedback 
control design is quite difficult.  
   Several output feedback controller designs in discrete 
time are proposed for the signal-input-single-out (SISO) 
nonlinear systems [2-4]. In particular, a backstepping-based 
adaptive output feedback controller scheme is presented [2] 
for the control of a class of strict feedback nonlinear 
systems, where a rank condition is required to ensure the 
boundedness of all signals. In [3], a discrete-time NN 
output feedback controller is designed for a class of 
nonlinear systems expressed in input-output fashion, where 
the system is assumed to be minimum phase. A deadzone 
algorithm is used to develop a well-defined controller. In 
[4], two discrete output feedback control schemes are given 
based on a causal input-output representation and an 
adaptive NN observer, respectively. The semi-globally 
UUB of the closed-loop systems is shown. 
   In this paper, the output feedback design using adaptive 
critic neural network (NN) architecture is considered for an 
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unknown MIMO nonlinear discrete system. The 
reinforcement learning-based adaptive critic NN approach 
[5-9] has emerged as a promising tool to develop optimal 
NN controllers due to its potential to find approximate 
solutions to dynamic programming, where a strategic 
utility function, which is considered as the long-term 
system performance measure, can be optimized. The 
adaptive critic output feedback NN controller consists of: 
1) a NN observer to estimate the system states with the 
input-output data, 2) an action NN to drive the output to 
track the reference signal and to minimize both the strategic 
utility function and the unknown dynamics estimation 
errors, and 3) an adaptive critic NN to approximate certain 
strategic utility function and to tune the weights of the 
action NN.  With incomplete information of the system 
states and dynamics, an approximate optimization is 
accomplished using the proposed controller.  Further, the 
actuator constraints are manifested as saturation 
nonlinearities during the controller development in contrast 
to other works where no explicit magnitude constraints are 
treated [1-9]. 

1)    Besides optimization, contributions of this paper can be 
summarized as follows: 1) the demonstration of the UUB 
of the overall system is shown even in the presence of NN 
approximation errors and bounded unknown disturbances 
unlike in the existing adaptive critic works [6-9] where the 
convergence is given under ideal circumstances; 2) the NN 
weights are tuned online instead of offline training that is 
commonly employed in adaptive critic design [5]; and 3) 
the LIP assumption is overcome along with the persistent 
excitation (PE) condition requirement [4] both in NN 
observer and controller designs. 

II. BACKGROUND 

A. Nonlinear System Description 
Consider the following nonlinear system, to be 

controlled, given in the following form 
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with state ( ) ( ) ( ) ( )[ ] nmTT
n

TT Rkxkxkxkx ∈⋅⋅⋅= ,,, 21 , and each 

( ) m
i Rkx ∈ , ni ,,1L=  is the state at time instant 

k, ( )( ) mRkxf ∈ is the unknown nonlinear function vector, 
( )( ) mmRkxg ×∈  is a diagonal matrix of unknown nonlinear 

functions, ( ) mRku ∈ is the control input vector and 
( ) mRkd ∈'  is the unknown but bounded disturbance vector, 

whose bound is assumed to be a known constant, 
( ) ''

mdkd ≤ . The Frobenius norm [10] is used through this 

paper. It is assumed that the output, ( ) mRky ∈ , is known at 
the kth instant and the state vector ( ) m

i Rkx ∈ , ni ,,2 L=  is 
considered unavailable at kth step.  

Assumption 1: Let the diagonal matrix ( )( ) mmRkxg ×∈  be a 

positive definite matrix for each ( ) nmRkx ∈ , let Rg ∈min  
and Rg ∈max  be the minimum and maximum eigenvalues 
of the matrix ( )( ) mmRkxg ×∈  respectively, with 

maxmin0 gg << . 

III. NN OBSERVER DESIGN 

A. Observer Structure 
     For the system (1) & (2), we use the following state 
observer to estimate the state ( )kx . 

)1(ˆ)(ˆ 21 −= kxkx  

M                                         (3) 
( )( )1ˆ)1(ˆ))1(ˆ()1(ˆ)(ˆ 1111111 −−=−−= kzkwkzvkwkx TTT

n φφ  

where ( ) m
i Rkx ∈ˆ  is the estimated state of ( ) m

i Rkx ∈  with 

ni ,,1L= and ( ) ( ) ( ) ( )[ ] ( )mnTTT
n

T Rkukxkxkz 1
11 1,1ˆ,,1ˆ1ˆ +∈−−−=− K  is 

the input vector to the observer NN at kth instant, 
( ) mnRkw ×∈− 11ˆ1  and ( ) 11

1
nmnRv ×+∈ denote the output and 

hidden layer weights, the hidden layer activation function 
( )( ) 11ˆ11

nRkz ∈−φ  represents ( )( )1ˆ111 −kzvTφ , and 1n  is the 
number of the nodes in the hidden layer. It is demonstrated 
in [11] that, if the hidden layer weights, 1v , is chosen 
initially at random and kept constant and the number of 
hidden layer nodes is sufficiently large, the NN 
approximation error can be made arbitrarily small since the 
hidden layer NN activation function vector forms a basis.  

B. Observer Error Dynamics 
   Define the state estimation error by 

)()(ˆ)(~ kxkxkx iii −= ,    ni ,...,1= ,         (4) 

where m
i Rkx ∈)(~ , ni ,...,1= , is the state estimation error. 

In fact, the observer NN approximates the nonlinear 
function given by ( )( ) ( )( ) ( )111 −−+− kukxgkxf . This nonlinear 
function can be expressed as 

( )( ) ( )( ) ( ) ( )( )1))1((111 111111 −+−=−−+− kzkzvwkukxgkxf TT εφ  

( ) ( )( )11 1111 −+−= kzkwT εφ ,           (5) 

where mnRw ×∈ 1
1 is the target NN weight matrix, 

( )( )111 −kzε  is the NN approximation error, and the NN 
input is given 
by ( ) ( ) ( ) ( )[ ] ( )mnTTT

n
T Rkukxkxkz 1
11 1,1,,11 +∈−−−=− K . 

   Combining (3), (4) and (5) to get  
)()(ˆ)(~ kxkxkx nnn −= )1()1( 11 −+−= kdkξ ,       (6) 

   where 
111 )1(ˆ)1(~ wkwkw −−=− ,                   (7) 

( )( )1ˆ)1(~)1( 1111 −−=− kzkwk T φξ ,               (8) 
))1(()1(ˆ())1(~( 111111 −−−=− kzkzkz φφφ ,        (9) 

( ) ))1(')1(())1(~()1( 111111 −+−−−=− kdkzkzwkd T εφ .    (10) 
   The dynamics of the estimation error using (4) and (6) is 
obtained as 

)1(~)(~
21 −= kxkx  

M                                           (11) 
)1()1()(~

11 −+−= kdkkxn ξ  

IV. OUTPUT FEEDBACK CONTROLLER DESIGN  
   Our objective is to design an adaptive critic NN output 
feedback controller for the system (1) and (2) such that 1) 
all the signals in the closed-loop system remain UUB; 2) 
the state ( )kx  follows a desired trajectory   

( ) ( ) ( ) nmTT
d

T
dd RnkykykY ∈−+= ]1,,[ L , with ( ) m

d Rky ∈  and 

( )ikyd +  represent the future value of ( )kyd , 1,,1 −= ni K ; 
and 3) a long-term system performance index is optimized.   

Assumption 2: The desired trajectory, ( )kYd , is a smooth 

function and it is bounded over the compact subset of nmR .  

A. Auxiliary Controller Design 
   Define the tracking error between actual and desired 
trajectory as 

)()1()1( ikykxke dii +−+=+ , ni ,...,1= ,          (12) 
Equation (1) can be rewritten as 

)()()())(())(()1( nkykdkukxgkxfke dn +−′++=+ .  (13) 
Define the desired auxiliary control signal as 

))()()(())((()( 1
1 kelnkykxfkxgkv ndd +++−= − ,    (14) 

where mmRl ×∈1  is a design matrix selected such that the 
tracking error, ( )ken

, is bounded. 

     Since ( )( )kxf  and ( )( )kxg  are unknown smooth 
functions, the desired auxiliary feedback control input 

)(kvd  cannot be implemented. From (14) and the 
Assumptions 1 and 2, )(kvd  can be approximated by the 
action NN  



 
 

 

( ) ( ))())(()())(()( 2222222 kskswksksvwkv TTT
d εφεφ +=+= ,   (15) 

where ( ) ( ) ( )[ ] ( )mnTT
n

T Rkekxks 1, +∈=  is the NN input, 
mnRw ×∈ 2

2  and ( ) 21
2

nmnRv ×+∈ denote the output and 
hidden layer target weights, the hidden layer activation 
function ( )( ) 2

2
nRks ∈φ  represents ( )( )ksvT

22φ , ( )( )ks2ε  is 
the action NN approximation error, and 2n  is the number 
of the nodes in the hidden layer.  

   Replacing the actual states with their estimated values, 
(15) can be expressed as 

))(ˆ()(ˆ))(ˆ()(ˆ)( 22222 kskwksvkwkv TTT φφ == ,              (16)  

where ( ) mnRkw ×∈ 2
2ˆ  is the actual weight matrix, the action 

NN input is given by ( ) ( ) ( )[ ] ( )mnTT
n

T Rkekxks 1ˆ,ˆˆ +∈= , where 

( ) m
n Rke ∈ˆ  is referred as the modified tracking error, 

which is defined between the estimated state and the 
desired trajectory as 

)()1(ˆ)1(ˆ ikykxke dii +−+=+ ,  1,,1 −= ni K ,   (17) 

and  
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B. Controller Design with Magnitude Constraints    
   By applying the magnitude constraints, the actual control 
input ( ) mRku ∈ is now given by 

( ) ( )
( )( )

( )
( )⎪⎩

⎪
⎨
⎧

≥
≤

=
max

max

max sgn ukvif
ukvif

kvu
kv

ku ,                 (19) 

where maxu is the actuator limit.  

Case 1: ( ) maxukv ≤  

   In this case, the control input ( ) ( )kvku = . Substituting 
(14), (15) and (16) into (13) yields 

 ( ) ( ) ( )( ) ( ) ( )kdkkxgkelke nn 2211 ++=+ ζ ,            (20)                                                                                        
where 

222 )(ˆ)(~ wkwkw −= ,                     (21) 

( )( )kskwk T ˆ)(~)( 222 φξ = ,                   (22) 
( ))())(ˆ())(~( 222 ksksks φφφ −= ,            (23) 

( )( ) ( )( ) ( )( )( ) )('~)( 2222 kdkskswkxgkd T +−= εφ .    (24) 
Thus, the tracking error dynamics is given by 

( ) ( )keke 21 1 =+  
                              M                       ,           (25) 
( ) ( ) ( )( ) ( ) ( )kdkkxgkelke nn 2211 ++=+ ζ  

Case 2: ( ) maxukv ≥  

   In this case, the control input ( ) ( )( )kvuku sgnmax= .  
Combining with (13), (14), (15) and (16) to get  

)()()())(())(()1( nkykdkukxgkxfke dn +−′++=+          
( ) ( )( ) )()()())(())(( nkykdkvkvkukxgkxf ddd +−′+−++=
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'
222max1 )))(())((sgn))((()( +−−+= εφ  

( )kdkel n
'
21 )( += ,                                                            (26) 

   where 

( ) ( )( ) ( )kdkskswkvukxgkd T '
222max

'
2 )))(())((sgn))((( +−−= εφ ,(27) 

   Therefore, for the Case 2, the tracking error dynamics 
can be written as 

( ) ( )keke 21 1 =+  
                              M                      ,                 (28) 

( ) ( ) ( )kdkelke nn 211 ′+=+  

V. WEIGHT UPDATES FOR GUARANTEED PERFORMANCE 

A. Weights Updating Rule for the Observer NN 
   The observer NN weight update is driven by the state 
estimation error ( )kx1

~ , i.e., 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )TT kxlkzkwkzkwkw 1211111111
~ˆˆˆˆ1ˆ +−=+ φφα ,  (29)  

where mmRl ×∈2  is a design matrix, and R∈1α  is the 
observer NN adaptation gain.  

B.    Strategic Utility Function 

   The utility function ( ) ( ) mm
ii Rkpkp ∈= =1][  is defined 

based on the modified tracking error ( )kê  and it is given by 

( ) ( )
⎪⎩

⎪
⎨
⎧ ≤

=
otherwise

ckeif
kp i

i ,1

ˆ,0
,  mi ,,2,1 K=      (30) 

where +∈ Rc  is a pre-defined threshold. The utility 
function ( )kp  is viewed as the current system performance 
index: ( ) 0=kpi  and ( ) 1=kpi refers to the good and 
unacceptable tracking performance respectively.  
   The strategic utility function ( ) mRkQ ∈ , is defined as  

( ) ( ) ( ) ( )NpkpkpkQ kNN 11 21 +− +++++= ααα L ,     (31) 
where R∈α  and 10 << α , and N  is the final time 
instant. The term ( )kQ  is viewed here as the future system 
performance measure. 

C. Design of the Critic NN 
   The critic NN is used to approximate the strategic utility 
function ( )kQ . The prediction error is defined as 

( ) ( ) ( ) ( )( )kpkQkQke N
c αα −−−= 1ˆˆ ,            (32) 



 
 

 

where the subscript “c” stands for the “critic” and   
( ) ( ) ( )( ) ( ) ( )( )kxkwkxvkwkQ TTT ˆˆˆˆˆ

33333 φφ == ,          (33) 

and ( ) mRkQ ∈ˆ  is the critic signal, ( ) mnRkw ×∈ 3
3ˆ  and 

3
3

nnmv ×ℜ∈ represent the matrix of weight estimates, 

( )( ) 3ˆ3
nkx ℜ∈φ  is the activation function vector in the 

hidden layer, 3n  is the number of the nodes in the hidden 
layer, and the critic NN input is the system state 

estimate ( ) ( ) ( )[ ] nmTT
n

T kxkxkx ℜ∈= ˆ,,ˆˆ 1 K . The objective 
function to be minimized by the critic NN is defined as 

( ) ( ) ( )kekekE c
T
cc 2

1
= .                    (34) 

   The weight update rule for the critic NN is a gradient-
based adaptation, which is given by 

( ) ( ) ( )kwkwkw 333 ˆˆ1ˆ ∆+=+ ,                (35) 
where 

( ) ( )
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⎤
⎢
⎣

⎡
∂
∂

−=∆
kw
kEkw c

3
33 ˆ

ˆ α .                     (36) 

Before we proceed further, the following Lemma is needed. 
Lemma 1: Given the matrices mmRA ×∈ , mnRX ×∈  and 
vectors nRb ∈  and mRq ∈ , the derivative of the following 
scalar with respect to the matrix X is given by 

( ) ( )
( )( )TTT

TTT

qbAXAb
X

qbAXqbAX
+=

∂

⎟
⎠
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⎝
⎛ ++∂

2 .    (37) 

 Using Lemma 1 and (36), the weight updating rule for the 
adaptive critic NN is given by  

( ) ( ) ( )( ) ( ) ( ) ( )( )TN kQkpkQkxkwkw 1ˆˆˆˆ1ˆ 1
3333 −−+−=+ + ααφα , (38) 

where R∈3α  is the critic NN adaptation gain. 

D. Weight Updating Rule for the Action NN 

   The action NN weights )(ˆ2 kwT are tuned by using the 
functional estimation error, ( )k2ζ , and the error between 
the desired strategic utility function ( ) m

d RkQ ∈  and the 
critic signal ( )kQ̂ .  Define 

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )kQkQkxgkkxgke da −+=
− ˆ1

2ζ ,    (39) 

where ( )k2ζ  is defined in (22), ( )( ) mmRkxg ×∈  is the 
principle square root of the diagonal positive definite 

matrix ( )( )kxg , i.e., ( )( )( ) ( )( )kxgkxg =
2

, and 

( )( )( ) ( )( )( )kxgkxg
T

= , ( ) m
a Rke ∈ , and the subscript 

“a” stands for the “action NN”.   
   The desired strategic utility function ( )kQd  is taken as “0” 
[8], to indicate that at every step, the nonlinear system can 
track the reference signal well. Thus, (39) becomes 

( ) ( )( ) ( ) ( )( )( ) ( )kQkxgkkxgkea
ˆ1

2
−

+= ζ ,         (40) 
   The objective function to be minimized is given by 

( ) ( ) ( )kekekE a
T
aa 2

1
= ,                          (41) 

Using Lemma 1 and (25), the gradient-based weight 
updating rule is given by     

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )Tnn kQkdkelkekskwkw ˆ1ˆˆ1ˆ 212222 +−−+−=+ φα , (42) 
where R∈2α  is the action NN adaptation gain.  Since 

( )1+ken  and ( )ken  are unavailable, the modified tracking 
errors ( )1ˆ +ken  and ( )kenˆ  respectively are used instead. In 
the ideal case, we take the ( )kd2  as zero to obtain the 

action NN ))(ˆ()(ˆ 22 kskwT φ  weight updating rule. 

( ) ( ) ( )( ) ( ) ( ) ( )( )Tnn kQkelkekskwkw ˆˆ1ˆˆˆ1ˆ 12222 +−+−=+ φα , (43) 

VI. MAIN RESULT 
Assumption 3: Let 1w , 2w  and 3w  be the unknown output 
layer target weights for the observer, action and critic NNs, 
and assume that they are bounded above so that 

mm wwww 2211  , ≤≤ , and mww 33 ≤ ,         (44) 

where Rw m ∈1 , Rw m ∈2  and Rw m ∈3 represent the 
bounds on the unknown target weights. 
Fact 1: The activation functions are bounded by known 
positive values so that  

( ) 3,2,1, =≤ ik imi φφ ,                      (45) 

where 3,2,1, =∈ iRimφ  is the upper bound for ( ) 3,2,1, =ikiφ . 

Assumption 4: The NN approximation errors ( )( )kz11ε  

and ( )( )ks2ε are bounded over the compact set mRS ⊂  by 

m1ε  and m2ε , respectively [11].  

Fact 2: The terms ( ) mRkd ∈1 , ( ) mRkd ∈2  and ( ) mRkd ∈′2  

are bounded over the compact set mRS ⊂  by 
( ) mmmmm dwdkd 1

'
1111 2 εφ ++=≤ ,           (46) 

where +∈ Rd m1  is the upper bound for ( )kd1 , 
( ) mmmmm dwgdkd ′++=≤ 211max22 2 εφ ,       (47) 

and  
( ) ( ) mmmmm dwugdkd ′+++=′≤′ 222maxmax22 εφ ,     (48) 

Theorem 1: Consider the system given by (1) and (2).  Let 
the Assumptions 1 through 4 hold with the disturbance 
bound md ′  a known constant. Let the state estimates are 
provided by the observer (3), and the control input be given 
by (19). Let the observer NN ( ) ( )( )kzkwT

111 ˆˆ φ , action NN 

))(ˆ()(ˆ 22 kskwT φ , and the critic NN ( ) ( )( )kxkwT ˆˆ 33 φ  weight 
tuning be given by (29), (43) and (38) respectively. Then 
the state estimation error ( )kxi

~ , the tracking error ( )kei , 
and the NN weight estimates, ( ) ( )kwkw 21 ˆ,ˆ  and ( )kw3ˆ  are 
UUB, with the bounds specifically given by (A.4) through 



 
 

 

(A.8) provided the controller design parameters are 
selected as:  

(a) ( )( ) 1ˆ0 2
111 << kzφα ,                       (49) 

(b) ( )( ) 2
max

min2
22 ˆ0

g
gks << φα ,                (50) 

(c) ( )( ) 1ˆ0 2
33 << kxφα ,                        (51) 

 (d) 
2
20 << α ,                                       (52) 

where 1α , 2α  and 3α  are NN adaptation gains, andα  is 
employed to define the strategic utility function. 
Proof: See Appendix.                                                          
Remark 1: The proposed scheme results in a well-defined 
controller by avoiding the problem of ( )( )kxĝ  becoming 
zero.  
Remark 2: The weights of the observer, action and critic 
NNs can be initialized at zero or random. This means that 
there is no explicit off-line learning phase needed.  

VII. SIMULATION 
   The MIMO nonlinear system is described by 

( ) ( )kxkx 31 1 =+ ,                           (53) 
( ) ( )kxkx 42 1 =+ ,                         (54) 
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( ) ( ) ( )[ ]Tkxkxky 21 ,= .                    (57) 
where ( ) 4,,1, L=∈ iRkxi  is the state, ( ) Rku ∈1  and 

( ) Rku ∈2  are the control inputs and ( ) 2Rky ∈  is the 
system output. The objective is to track a reference signal 
using the proposed adaptive NN output feedback controller. 
The reference signal used was selected as 

( ) ( ) ( )[ ]Td kTkTky πξωξω +++= sin,sin ,
2

,1.0 πξω == , with 

a sampling interval of T=25msec. The total simulation time 
is taken as 250 seconds. The actuator constraint is taken as 
0.6. All the three NNs have 8 nodes in the hidden layer. For 
weight updating, the learning rate is selected 
as 001.031 == αα  and 01.02 =α .  The parameterα  is taken 
as 0.5. Both 1l  and 2l  are selected as I5.0 , where I is a 2-
by-2 identity matrix. All the initial weights are chosen at 
random in the interval [0,1] and all the activation functions 
are hyperbolic tangent sigmoid functions.   
    Figs 1 and 2 illustrate the good tracking performance of 
the adaptive output feedback NN controller with saturation. 
Fig. 3 depicts the bounded control inputs.  

0 50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5
The tracking performance of x1(k)

Time(second)

A
m

pl
itu

de

Actual signal
Reference signal

 
Fig. 1.  Tracking performance of the state x1(k). 
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Fig. 2.  Tracking performance of the state x2(k). 
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                       Fig. 3.  NN control inputs with saturation.                                   

VIII. CONCLUSION 
   A novel adaptive critic NN based output feedback 
controller with magnitude constraints is designed to deliver 
a desired tracking performance for a class of MIMO strict 
feedback nonlinear discrete-time systems. The adaptive 
critic NN structure optimizes certain strategic utility 
function. Magnitude constraints on the control input allow 
the designer to meet the physical limits of the actuator 
while meeting the closed-loop stability and tracking 
performance. The UUB of the closed-loop tracking and the 
estimation errors and NN weight estimates was 
demonstrated.  Simulation results justify theoretical 
conclusions.     

APPENDIX 
Proof of Theorem 1 
Case 1: ( ) maxukv ≤ . Define the Lyapunov function as 



 
 

 

( ) ( ) ( ) ( ) ( )
2

1

4
2

1

3
2

1

2
2

1

1

33
~

2
1~

2
∑+∑+∑+∑ −=
====

n

i
n

n

i
i

n

i
i

n

i
i kekekxkxkJ γγγγ                                                                      

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) 2
3933

3

8
22

2

7

11
1

6
11

1

5

~~~~

~~1~1~

kkwkwtrkwkwtr

kwkwtrkwkwtr

TT

TT

ζγ
α
γ

α
γ

α
γ

α
γ

+++

+−−+

 (A.1) 

where 9,,1, K=∈ + iRiγ  are design parameters. By using 
the observer (3), the control input (19) and the weight 
updating rules (29), (43) and (38), to get 
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2
max251 1~4

2
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−−−=∆ kxlJ γγ ( ) ( ) 2
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2
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1 kel nγγγ +−−  

( )( ) ( ) ( ) ( ) ( ) ( ) 2
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where 
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   This implies that ( ) 0≤∆ kJ  as long as (49) through (52) 
hold and the following conditions hold 
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or 
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max2715726
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2
ggg

Dk M

γγγ
ζ

−−
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or 

( )
7

2
88

3
2 γαγγ

ζ
′−−

≥ MDk .                   (A.8) 

Case 2: ( ) maxukv > . 

   The proof is similar to that in Case 1 and it is omitted. 

   For both Case 1 and Case 2, ( ) 0≤∆ kJ for all k is greater 
than zero. According to the standard Lyapunov extension 
theorem [10], this demonstrates that ( )kx1

~ , ( )ke1  and the 
weight estimation errors are UUB. The boundedness of 

( )k1ζ , ( )k2ζ  and ( )k3ζ  implies that ( )kw1
~ , ( )kw2

~  

and ( )kw3
~  and weight estimates ( )kw1ˆ , ( )kw2ˆ  and ( )kw3ˆ  

are bounded.  Since ( )kx1
~  is bounded, from the estimation 

errors system given by (11), it implies that all the 
estimation errors are bounded. Similarly, based on the 
tracking error system (25) and (28), bounded ( )ke1  implies 
that all the tracking errors are bounded. Therefore all the 
signals in the observer-controller system are bounded.   
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