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Reinforcement Learning-based Output Feedback
Control of Nonlinear Systems with Input Constraints

P. He and S. Jagannathan

Abstract—A novel neural network (NN) -based output
feedback controller with magnitude constraints is designed to
deliver a desired tracking performance for a class of multi-
input-multi-output (MIMO) discrete-time strict feedback
nonlinear systems. Reinforcement learning in discrete time is
proposed for the output feedback controller, which uses three
NNs: 1) a NN observer to estimate the system states with the
input-output data; 2) a critic NN to approximate certain
strategic utility function; and 3) an action NN to minimize
both the strategic utility function and the unknown dynamics
estimation errors. The magnitude constraints are manifested
as saturation nonlinearities in the output feedback controller
design. Using the Lyapunov approach, the uniformly ultimate
boundedness (UUB) of the state estimation errors, the
tracking errors and weight estimates is shown.

I. INTRODUCTION

HE output feedback controller schemes are necessary

when certain states of the plant become unavailable for
measurement. Moreover, the separation principle does not
hold for nonlinear systems, even when an exponentially
decaying state estimation error can lead to instabili@ at
finite escape time [1]. Consequently, the output feedback
control design is quite difficult.

Several output feedback controller designs in discrete
time are proposed for the signal-input-single-out (SISO)
nonlinear systems [2-4]. In particular, a backstepping-based
adaptive output feedback controller scheme is presented [2]
for the control of a class of strict feedback nonlinear
systems, where a rank condition is required to ensure the
boundedness of all signals. In [3], a discrete-time NN
output feedback controller is designed for a class of
nonlinear systems expressed in input-output fashion, where
the system is assumed to be minimum phase. A deadzone
algorithm is used to develop a well-defined controller. In
[4], two discrete output feedback control schemes are given
based on a causal input-output representation and an
adaptive NN observer, respectively. The semi-globally
UUB of the closed-loop systems is shown.

In this paper, the output feedback design using adaptive
critic neural network (NN) architecture is considered for an
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unknown MIMO nonlinear discrete system. The
reinforcement learning-based adaptive critic NN approach
[5-9] has emerged as a promising tool to develop optimal
NN controllers due to its potential to find approximate
solutions to dynamic programming, where a strategic
utility function, which is considered as the long-term
system performance measure, can be optimized. The
adaptive critic output feedback NN controller consists of:
1) a NN observer to estimate the system states with the
input-output data, 2) an action NN to drive the output to
track the reference signal and to minimize both the strategic
utility function and the unknown dynamics estimation
errors, and 3) an adaptive critic NN to approximate certain
strategic utility function and to tune the weights of the
action NN. With incomplete information of the system
states and dynamics, an approximate optimization is
accomplished using the proposed controller. Further, the
actuator constraints are manifested as saturation
nonlinearities during the controller development in contrast
to other works where no explicit magnitude constraints are
treated [1-9].

Besides optimization, contributions of this paper can be
summarized as follows: 1) the demonstration of the UUB
of the overall system is shown even in the presence of NN
approximation errors and bounded unknown disturbances
unlike in the existing adaptive critic works [6-9] where the
convergence is given under ideal circumstances; 2) the NN
weights are tuned online instead of offline training that is
commonly employed in adaptive critic design [5]; and 3)
the LIP assumption is overcome along with the persistent
excitation (PE) condition requirement [4] both in NN
observer and controller designs.

II. BACKGROUND

A. Nonlinear System Description

Consider the following nonlinear system, to be
controlled, given in the following form
x(k+1) = x, (k)
: ) (1
x, (ke +1)= £ (xlk))+ g ek ul) + (k)
k)= x,(k), @
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with state x(k)z[xlT(k), x! (k) an(k)]T eR™, and each
x,(k)e R",
k, f(x(k))e R™is the unknown nonlinear function vector,

i=1---,n 1is the state at time instant
g(x(k))e R™ is a diagonal matrix of unknown nonlinear
functions,
d'(k)e R™ is the unknown but bounded disturbance vector,

whose bound is assumed to be a known constant,
Hd'(kj‘gd'm. The Frobenius norm [10] is used through this

u(k)e R"is the control input vector and

paper. It is assumed that the output, y(k)e R”, is known at
the kth instant and the state vector X, (k) eR",i=2,---,n 18
considered unavailable at kth step.

Assumption 1: Let the diagonal matrix g(x(k))e R™" be a
positive definite matrix for eachx(k)e R™, let g . eR
and g _ € R be the minimum and maximum eigenvalues
of the g(x(k))e R™" with

0< &min < &max -

matrix respectively,

III. NN OBSERVER DESIGN

A. Observer Structure

For the system (1) & (2), we use the following state
observer to estimate the state x(k).

X, (k) =x,(k=1)
3 (3)

&, (k) =W (k=D v 2 (k=) =y (k =D (2, (k~1))
where #,(k)e R” is the estimated state of x,(k)e R” with
i=l-nand 2 (k-1)=[ (k=12 (k-1 k-1)] RPP s
the input vector to the observer NN at kth instant,
W(k—=1)e R"™ and v, € RU™ denote the output and
hidden layer weights, the hidden layer activation function
¢(2,(k—1))e R™ represents ¢1(v1T Z (k—l)), and 7, is the
number of the nodes in the hidden layer. It is demonstrated
in [11] that, if the hidden layer weights, v,, is chosen

initially at random and kept constant and the number of
hidden layer nodes is sufficiently large, the NN
approximation error can be made arbitrarily small since the
hidden layer NN activation function vector forms a basis.

B. Observer Error Dynamics
Define the state estimation error by
X, (k) = x,(k) - x,(k) »

where X;(k) e R™, i=1,...,n, is the state estimation error.

i=1,..,n, 4)

In fact, the observer NN approximates the nonlinear
function given by f(x(k —1))+ g(x( —1)lu(k —1). This nonlinear
function can be expressed as

S (el =1))+ g (elk = 1)hulk = 1) = wi' 6, (0] 2, (k 1)) + &, (z, (k 1))

= y(k—1)+&(z (k1)) ®)

where w; € R"™is the target NN weight matrix,
&/(z,(k=1)) is the NN approximation error, and the NN
input is given

by zy(k ~1) = [ (k~1)...ox (1) (k1) € RO

Combining (3), (4) and (5) to get

%, (k)= 5,(0)~x, (k) = &k ~D+d(k=1),  (6)
where

k=1 =Wk~ w, %)
& (k=1 =W (k=g (2,(k 1)), ®)
H (k- =¢(Zk-D-¢(z(k-1)), )
d(k=1)=w{ $ G, (k=)= (&,(z, (k=1) +d'(k=1)). (10)
The dynamics of the estimation error using (4) and (6) is

obtained as
X1 (k) =%, (k =1)

: (11)
X, (k) =& (k=1 +d,(k-1)

IV. OutpPUT FEEDBACK CONTROLLER DESIGN

Our objective is to design an adaptive critic NN output
feedback controller for the system (1) and (2) such that 1)
all the signals in the closed-loop system remain UUB; 2)
the state x(k) follows a desired trajectory
v, (k)=[yh(k), -, T (k+n-1)]" e R™, with y,(k)e R™ and
Vi (k+i) represent the future value of y, (k), i=1...,n-1;
and 3) a long-term system performance index is optimized.

Assumption 2: The desired trajectory, Y (k), is a smooth

function and it is bounded over the compact subset of R™™ .

A. Auxiliary Controller Design

Define the tracking error between actual and desired
trajectory as
e(k+1)=x,(k+1) -y (k+i), i=L..,n, (12)
Equation (1) can be rewritten as
e, (k+1)= f(x(k)) + g(x(k)u(k) +d'(k)— y, (k+n). (13)
Define the desired auxiliary control signal as

v (k)= g7 ()= f (x(k) + v (k+n) + he, (k). (14)

where/, e R™" is a design matrix selected such that the
tracking error, ¢ (k), is bounded.

Since  f(x(k)) and g(x(k)) are unknown smooth

functions, the desired auxiliary feedback control input
vy(k) cannot be implemented. From (14) and the

Assumptions 1 and 2, v,(k) can be approximated by the
action NN
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v (k) = w3 ¢y (v s(k)) + &, (s(k)) = w) ¢y (s(k)) + &, (s(k)), (15)

where s(k)= [xT (k) el (k)]r e R is the NN input,
w, € R"™™ and v, e U™ denote the output and
hidden layer target weights, the hidden layer activation
function ¢, (s(k))e R™ represents ¢, (v2T s(k)), &,(s(k)) is
the action NN approximation error, and 7, is the number
of the nodes in the hidden layer.

Replacing the actual states with their estimated values,
(15) can be expressed as

v(k) =W} (k)g, (v3 5(k)) = W) (k) (3(K)) » (16)

where 1w, (k)e R™*™ is the actual weight matrix, the action

NN input is given by §(k)= [iT(k), énT(k)]T e R where
¢,(k)e R™ is referred as the modified tracking error,
which is defined between the estimated state and the
desired trajectory as

ek +)=x,(k+1) =y, (k+i), i=1...,n—1, (17)

and
31(k) =y (k)
: (18)
2, (k)= v (k+n-1)

B. Controller Design with Magnitude Constraints
By applying the magnitude constraints, the actual control
input u(k)e R™ is now given by

u(k){ - V(k)

sgn k

if ()

(19)
if (k)

<
max
>

where u,,,, is the actuator limit.

Case 1: HV ]‘

Umax

In this case, the control inputu(k):v(k). Substituting

(14), (15) and (16) into (13) yields

e, (k+1)=the, (k)+ g(x(k)), (k) + dy k), (20)
where
Wy (k) = Wy (k) = w,, (21)
& (k) =W () (5(k)), (22)
3G (K) = ¢ (5(k)) — 4 (s(k) (23)
dy (k) = g(x(k)ow] 4y G (k) - s, (s(k)))+ 'Ky . (24)
Thus, the tracking error dynamics is given by
e(k+1)=e,(k)
: ; (25)

0+ ()

e,k +1)=he,(k)+

Case 2: ||v X|

max

In this case, the control inputu(k)= u,,, sgn(v(k)).
Combining with (13), (14), (15) and (16) to get

e,(k+1)= f(x(k))+ g(x(k)u(k)+d'(k)—y,(k+n)

= f(x(k))+ g (el w(h) + vy (k)= vy (k )+ d'(k) =y, (k +n)

= lie, (k) + g(x(k)) (Upay sg(v(k))— W] 8, (s(K)) — &, (s(k))) +d (k)

= lLie, (k) + d5 (k),
where

dy (k) = g(x(k)) (1t sgn(v(k))—w] ¢y (s(k)) — & (s(k)) + d (k) ,(27)

Therefore, for the Case 2, the tracking error dynamics
can be written as

(26)

ek +1)=ex(k)

: , (28)
e, (k+1)=1Le,(k)+ d5(k)

V. WEIGHT UPDATES FOR GUARANTEED PERFORMANCE

A. Weights Updating Rule for the Observer NN

The observer NN weight update is driven by the state
estimation error ¥, (k), i.c.,

1 (6) = G )T () G+ 7)) . 29)

where [, e R™" is a design matrix, anda; € R is the

Wk +1)=w

observer NN adaptation gain.

B.  Strategic Utility Function
The utility function p(k)=[p,(k)|"; € R™ is defined
based on the modified tracking error é(k) and it is given by

pilk)= {0’ ilék) < C i=12...m

(30)
1, otherwise

wherece R* is a pre-defined threshold. The utility
function p(k) is viewed as the current system performance
pi(k)=0 and p;(k)=1refers to the good and

unacceptable tracking performance respectively.

index:

The strategic utility function Q(k)e R™ , is defined as
ok)=a" plk+1)+a" ' plk +2)+---+a"'p(N), (31)
wherea e R and O<a <1, and N is the final time
instant. The term Q(k) is viewed here as the future system
performance measure.

C. Design of the Critic NN

The critic NN is used to approximate the strategic utility
function Q(k). The prediction error is defined as
a p(k)) R

(k)= Ok)- a0k ~1)- (32)
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[IPR L)

where the subscript “c” stands for the “critic” and
00611 04 06 54 (I )

and O(k)er™ is the critic signal, W;(k)e R"™" and

(33)

vy € R""" represent the matrix of weight estimates,

@(}E(k)) eR™ is the activation function vector in the
hidden layer, n; is the number of the nodes in the hidden
and the critic NN input is the system state
The
function to be minimized by the critic NN is defined as

£ ()= el (ke (k).

The weight update rule for the critic NN is a gradient-
based adaptation, which is given by

layer,
estimate %(k ) = [fclT (k),...,fcr(k)]] eR™.

. objective

(34)

Wy (k +1)= 5 (k) + Ak (k) (35)
where
A (0) = a{ = gﬂ (36)

Before we proceed further, the following Lemma is needed.
Lemma 1: Given the matrices 4 € R™™, X e R™" and
vectors b e R" and g € R™, the derivative of the following
scalar with respect to the matrix X is given by

a((AX b+ ‘;);((AX b+ q)) = 2b(47 (ax b+ q))T :

Using Lemma 1 and (36), the weight updating rule for the
adaptive critic NN is given by

N R . - 7

i +1)= o ()~ s (ONO) + & plk) - Qi ~1)] . (38)

where a; € R is the crltlc NN adaptation gain.

(37

D. Weight Updating Rule for the Action NN
The action NN weights W) (k)are tuned by using the

functional estimation error, &, (k), and the error between
the desired strategic utility functionQ,(k)e R” and the
critic signal Q(k) Define

= VGl () + (Gl (0%) - 0,(0)). 39)
where &, (k) is defined in (22), Jg x(k eRmxm is the

principle square root of the diagonal positive definite

matrix  g(xk), ie. (JeG®)f =g(k)). and

( g(x(k )l ( g(x ) (k)e R™, and the subscript

“a” stands for the “act10n NN
The desired strategic utility functionQ, (k) is taken as “0”

[8], to indicate that at every step, the nonlinear system can
track the reference signal well. Thus, (39) becomes

K)= 2G5 (k) + (Vew)) ' o)

The objective function to be minimized is given by

(40)

(41)
the gradient-based weight

E, )= 5 €l (B, ).
Using Lemma 1 and (25),
updating rule is given by
il +1)= o)) (42)
where «, € R is the action NN adaptation gain. Since
e, (k + 1) and e, (k) are unavailable, the modified tracking

errors ¢,(k+1) and é,(k) respectively are used instead. In

() - g (500 e, (6 + 1)~ e, () - dy )+

the ideal case, we take the dz(k) as zero to obtain the
action NN w; (k)¢, ($(k)) weight updating rule.

()= ey GO, (ke +1)- 16, () + O)) , (43)

Wy(k+1)=

VI. MAIN RESULT

Assumption 3: Let w;, w, and w; be the unknown output
layer target weights for the observer, action and critic NN,
and assume that they are bounded above so that

[l < i el < w5 and s < s, (44)

eR

bounds on the unknown target weights.
Fact 1: The activation functions are bounded by known
positive values so that

¢ (kN < B

where ¢,, e R,i=1,2,3 is the upper bound for ¢,(k),i =123 .

wherew;,, e R, w,, and wj,, € Rrepresent the

i=123, (45)

Assumption 4: The NN approximation errors &,(z(k))
and &, (s(k)) are bounded over the compact set S — R” by
&

n and &, , respectively [11].

Fact 2: The terms d, (k) e R™, d,(k)e R™ and dj(k)e R™

are bounded over the compact set S < R™ by

ldy (k)| < i,y = 2 + iy + €1 » (46)
where d,, € R* is the upper bound for d,(k),
”dz (km <dyy = 28 maxWimBim + Exm + dpy » 47)
and
”dé (k]| <dy, = Gmax (”max FWoPom + Eam )+ d,, (48)

Theorem 1: Consider the system given by (1) and (2). Let
the Assumptions 1 through 4 hold with the disturbance
bound d,, a known constant. Let the state estimates are

provided by the observer (3), and the control input be given
by (19). Let the observer NN w/ (k)¢ (2,(k)), action NN

wy (k)@, (5(k)), and the critic NN w3( )¢3( ( )) weight
tuning be given by (29), (43) and (38) respectively. Then
the state estimation error ¥,(k), the tracking error e;(k),
and the NN weight estimates, W, (k), W, (k) and (k) are
UUB, with the bounds specifically given by (A.4) through
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(A.8) provided the controller design parameters are
selected as:

@ 0<ali(& W) <1, (49)
(b) 0< g (k)" < Emin, (50)
(©) 0< eyl (G (k) <1, (51)

V2 (52)

do<a<
2

where «;, a, and «a; are NN adaptation gains, and & is
employed to define the strategic utility function.

Proof: See Appendix. ]
Remark 1: The proposed scheme results in a well-defined
controller by avoiding the problem of g(x(k)) becoming
Zero.

Remark 2: The weights of the observer, action and critic
NNs can be initialized at zero or random. This means that
there is no explicit off-line learning phase needed.

VII. SIMULATION

The MIMO nonlinear system is described by
x(k+1)=x;(k),
xz(k +1): x4(k) ,

1+x32(k) 1+x12(k)+x§ k
xz(k)

9 2
e )=o) Y T 0

k)= o (k) x (k)] (57)
where x,-(k)e R,i=1---,4 1is the state, ul(k)eR and

uy(k)e R are the control inputs and y(k)e R® is the

system output. The objective is to track a reference signal
using the proposed adaptive NN output feedback controller.
The reference signal used was selected as

4 (k)= [sin(@hT + &) sin(@kT + £+ 2)]f ,@=0.1,& = % , with

a sampling interval of 7=25msec. The total simulation time
is taken as 250 seconds. The actuator constraint is taken as
0.6. All the three NNs have 8 nodes in the hidden layer. For
weight updating, the learning rate 1is selected
asa; =a; =0.001 anda, =0.01. The parameter « is taken

as 0.5. Both /; and /, are selected as 0.5/ , where [ is a 2-

by-2 identity matrix. All the initial weights are chosen at
random in the interval [0,1] and all the activation functions
are hyperbolic tangent sigmoid functions.

Figs 1 and 2 illustrate the good tracking performance of
the adaptive output feedback NN controller with saturation.
Fig. 3 depicts the bounded control inputs.

The tracking performance of x1(k)

—— Actual signal
—— Reference signal

AV

)

Amplitude

— =
.
‘\\4

——
S

(( ]

TTe—
<
<

-1

-1.5

. . . .
0 50 100 150 200 250
Time(second)

Fig. 1. Tracking performance of the state x1(k).

The tracking performance of x2(k)

— Actual signal
—— Reference signal

Amplitude
°
‘\— —

. . . .
0 50 100 150 200 250
Time(second)

Fig. 2. Tracking performance of the state x2(k).

Control Inputs

Amplitude

0 50 100 150 200 250
Time(second)

Fig. 3. NN control inputs with saturation.

VIII. CONCLUSION

A novel adaptive critic NN based output feedback
controller with magnitude constraints is designed to deliver
a desired tracking performance for a class of MIMO strict
feedback nonlinear discrete-time systems. The adaptive
critic NN structure optimizes certain strategic utility
function. Magnitude constraints on the control input allow
the designer to meet the physical limits of the actuator
while meeting the closed-loop stability and tracking
performance. The UUB of the closed-loop tracking and the

estimation errors and NN weight estimates was
demonstrated. Simulation results justify theoretical
conclusions.

APPENDIX

Proof of Theorem 1
Case 1: ||v(k)| <u

< Uy - Define the Lyapunov function as
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n n 2 n 2
I =25 1) + 223 o DS )] + 5 e k)

+§tr( T (k= 1) (k — 1))+ 2 jtr(VvlT (k)i ()

+£_72tr(~g (k) (k))+£—itr(v73T A

v |
1

(A.1)
Ve ol ()

+ .
Jd=1...

the observer (3), the control input (19) and the weight
updating rules (29), (43) and (38), to get

§ ! =
AJ = _%Q/l - 47/5]22max]x1 (k - 1]|2 _5(72 _476122max ]|x1 (k1|2

where y; € R ,9 are design parameters. By using

L) -5l =305 + 73V Jeu (O

el -l 6 k) s 15 0+ A -7 -2 N
-7s (1 — oy (k- 1)° ]\c:l (k—1)+ 5,3, (k= 1)+ wl ¢, (k - 1)”2
s =11 =274 Jr k=1

(k)+ (1 s (k) )

- }/7(gmin _a2H¢2(kX‘2grznax éVZ k
8min ~ 0{2H¢2 ‘ gmax

- (7/7gmin — 73Zmax ~ V4&imax ]|§2 (km
=7 (1 —ases (k)||21‘;3 (k)+ w3 g5 (k) + & plk) - 2Ok - 1)”2

- (yg 2y’ 74 )|§3 (k)||2 +Dj,, (A.2)
where

D =y 472+ 20+ B W B2, + (s + 74+ 2042, + 2750242,
2yt b +6rs 2y 3l g, (A3)
This implies that AJ(k)<0 as long as (49) through (52)

hold and the following conditions hold

)5 max| 22 2Dy | (A4)
\/}/1 _4}/5122max \/7/2 _4}/6122max
or
i) 2 ma S0y (A3)
\/_ \/74_373+74)llmax
or
[ T e —T (A6)
\/76 7 _27/7 \/75 N _2}/9122max
or
SOE - (A7)
\/7/7gmm 7/3gmax y4gmax
or
ROE Dy . (A.8)

V78 *278(12 -7

Case 2: |W(k)| > t,,,

The proof is similar to that in Case I and it is omitted.

For both Case 1 and Case 2, AJ (k)£ 0 for all & is greater

than zero. According to the standard Lyapunov extension
theorem [10], this demonstrates that X, (k),el(k) and the

weight estimation errors are UUB. The boundedness of
lgi (k). |lc2 (k)| and [¢5(k)| implies that || (k)| [, (k)]
and ||va3(k1| and weight estimates W, (k), W, (k) and (k)
are bounded. Since X, (k) is bounded, from the estimation

errors system given by (11), it implies that all the
estimation errors are bounded. Similarly, based on the
tracking error system (25) and (28), bounded ¢, (k) implies

that all the tracking errors are bounded. Therefore all the
signals in the observer-controller system are bounded.
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