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Abstract—Under the structural assumption of stochastic
stability, we prove existence of maximal solution for a certain
perturbed algebraic Riccati equation in infinite dimensional
Banach space. The positive perturbation operator is as it
appears in control problems involving Markov jump linear
systems with infinite countable state space.

I. INTRODUCTION

An extensive literature can be found on the study
of Markov jump linear systems (MJLS) for the case in
which the state space of the Markov chain is finite (see,
e.g., [1], [7]-[9], [16], [17], [20] and references therein).
Recently, a research thrust on MJLS has been in the
infinite countable case (see, [2], [3], [10], [11]).

In this paper, we contribute to this subject proving
existence (and uniqueness) of maximal solution for
an algebraic Riccati equation in infinite dimensional
Banach space, where a positive operator acting as a per-
turbation appears. The space under concern is that of all
infinite norm bounded sequences of complex matrices.
This sort of problem has been treated in [6] in the finite
dimensional case and using a contraction assumption
(assumption 2.1 of this reference), originally introduced
in [20]. We have discarded such condition. Instead, we
use a certain structural concept of stabilizability. On
the other hand, the positive operator, instead of being
arbitrary as in [6], is as it appears in control problems
involving MJLS with infinite countable state space. This
has allowed us to use an equivalence result involving
stabilizability, Lyapunov equations and the spectrum
of a certain operator in infinite dimension (see [10] and
[12]) to achieve the result of Section III.

Other previous results on maximal solution for MJLS
with finite state space Markov chain are in [14] and [15].

II. NOTATIONS AND CONCEPTUAL
PRELIMINARIES

As usual, C
n stands for the n-dimensional Euclidean

space over the field of complex numbers C. We set
S = N = {1, 2, ...}. In the case of control problems
involving Markov Jump Linear Systems, S corresponds
to the state space of the Markov chain, as we shall see
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Vargas 333, Petrópolis, Rio de Janeiro, CEP 25651-070, Brazil.
e-mail jack@lncc.br and frag@lncc.br

in Section III. We use the superscript ∗ for conjugate
transpose of a matrix. We denote M(Cm, Cn) the
normed linear space of all n by m complex matrices
and, for simplicity, write M(Cn) whenever n = m. The
notation L ≥ 0 and L > 0 is adopted if a self-adjoint
matrix is positive or nonnegative definite, respectively,
and we write M(Cn)+ = {L ∈ M(Cn);L = L∗ ≥ 0}.
Furthermore, In stands for the identity operator in
M(Cn).

We denote ‖·‖ the Euclidean norm in C
n or the

spectral induced norm in M(Cn). We set Hm,n
1 (resp.

Hm,n
∞ ) the linear space of all infinite sequences of

complex matrices H = (H1, H2, ...), Hi ∈ M(Cm, Cn)
such that

∑∞
i=1 ‖Hi‖ < ∞ (resp. sup{‖Hi‖ , i ∈ S}

< ∞) and write Hn
1 and Hn

∞ whenever n = m. For H ∈
Hm,n

1 (resp. H ∈ Hm,n
∞ ) we define ‖H‖1 =

∑∞
i=1 ‖Hi‖

(resp. ‖H‖∞ = sup{‖Hi‖ , i ∈ S}) the norm in the
Banach space (Hm,n

1 , ‖·‖1) (resp. (Hm,n
∞ , ‖·‖∞)).

We define the nonnegative sets Hn+

1 = {H ∈ Hn
1 ,

Hi ∈ M(Cn)+, i ∈ S} and Hn+

∞ = {H ∈ Hn
∞, Hi ∈

M(Cn)+, i ∈ S}, the strictly positive set H̆n+

∞ = {H ∈
Hn+

∞ , Hi > αHI for some αH > 0, i ∈ S} and the
sets Hn∗

1 = {H ∈ Hn
1 , H∗

i = Hi, i ∈ S} and Hn∗
∞ =

{H ∈ Hn
∞, H∗

i = Hi, i ∈ S}. For H = (H1,H2, ...) and
L = (L1, L2, ...) in Hn∗

1 or Hn∗
∞ , we say that H 6 L if

Hi 6 Li for each i in S. We have that H 6 L ⇒ ‖H‖1 6

‖L‖1 and ‖H‖∞ 6 ‖L‖∞. For C = (C1, C2...) ∈ Hn
∞,

we denote C∗ = (C∗
1 , C∗

2 ...) ∈ Hn
∞.

We denote (l1, ‖·‖1) and (l∞, ‖·‖∞) the spaces made
up of all infinite sequences of complex numbers x =
(x1,x2, ...) such that ‖x‖1 =

∑∞
i=1 |xi| < ∞ and ‖x‖∞ =

sup{|xi| , i = 1, 2, ...} < ∞, respectively.

Remark 1: It is easy to verify that (Hm,n
∞ , ‖·‖∞)

and (l∞, ‖·‖∞) are uniformly homeomorphic. Since
(l∞, ‖·‖∞) is a Banach space, (Hm,n

∞ , ‖·‖∞) is also a
Banach space. The same stands for (Hm,n

1 , ‖·‖1) and
(l1, ‖·‖1).

For any complex Banach space Y , we denote Blt (Y )
the Banach space of all bounded linear transformations
of Y into Y equipped with the uniform induced norm,
which we shall also denote by ‖·‖, and for L ∈ Blt (Y )
we denote σ (L) the spectrum of L.

We define the product of an element A∈ Hm,n
η by



another element B ∈ Hq,m
ν by

AB = (A1B1, A2B2, ...), (1)

where η and ν stands either for ∞ or 1. AB then
belongs either to Hq,n

∞ or Hq,n
1 , as we shall see below.

Hn
∞ equipped with (1) is a Banach algebra with unitary

element (In, In, ...).
Lemma 1: For every A∈ Hm,n

∞ , B∈ Hm,n
1 , C ∈

Hq,m
∞ and D ∈ Hq,m

1

(i) AC belongs to Hq,n
∞ and ‖AC‖

∞

6 ‖A‖
∞

‖C‖
∞

,
(ii) AD belongs to Hq,n

1 and ‖AD‖
1

6 ‖A‖
∞

‖D‖
1

and
(iii) BC belongs to Hq,n

1 and ‖BC‖
1

6 ‖B‖
1
‖C‖

∞

.
Proof: Each entry of AiCi, AiDi and BiCi is well

defined and, reminding definition (1), we have that
(i) ‖AC‖

∞

= supi∈S ‖AiCi‖ 6 supi∈S ‖Ai‖ supi∈S ‖Ci‖
= ‖A‖

∞

‖C‖
∞

,
(ii) ‖AD‖

1
=

∑∞
i=1 ‖AiDi‖ 6

∑∞
i=1 ‖Ai‖ ‖Di‖ 6

‖A‖
∞

‖D‖
1
and

(iii) ‖BD‖
1

=
∑∞

i=1 ‖BiDi‖ 6
∑∞

i=1 ‖Bi‖ ‖Di‖ 6

‖B‖
1
‖D‖

∞

..

Let us now consider F̂ ∈ Hn
∞ and Γ = (Γ1,Γ2, ...) ∈

Blt(Hn
1 ) such that Γi(H) =

∑∞
j=1,j 6=i λjiHj for H =

(H1,H2, ...), where [λij ]i,j∈S
is the infinitesimal matrix

of a standard conservative Markov chain {θ} with values
in S, λij ≥ 0, i 6= j, 0 < −λii =

∑∞
j=1,j 6=i λij 6 cte <

∞. For Q = (Q1, Q2, ...) ∈ Hn
1 , we define the operator

D ∈ Blt (Hn
1 ) such that D(Q) = (D1(Q),D2(Q), ...),

Di(Q) = FiQi + QiF
∗
i + Γi(Q), i ∈ S,

and F ∈ Hn
∞ where Fi = F̂i + 1

2λiiIn (to see that
D ∈ Blt (Hn

1 ) refer to [10]). Alternatively (see (1)), we
may write

D(Q) = FQ + QF ∗ + Γ(Q). (2)

Now consider the differential equation

Q̇(t) = D(Q(t)), t ≥ 0. (3)

It is closely related to Markov jump linear systems
and describes the behavior of a version of the state
correlation matrix running in these systems. In order
to preserve the nomenclature in the MJLS scenario, we
define the following L2−type of stability:

Definition 1 (Stochastic Stabilizability (SS)): We
say that system (Â, B,Γ) is stochastically stabilizable
(SS) if there exists a stabilizing K ∈ Hn,m

∞ in that, for
any Q(0) ∈ Hn

1 ,
∫ ∞

0

‖Q(t)‖1 dt < ∞, (4)

where Q(t) ∈ Hn
1 uniquely satisfies (3) with F̂ =

Â − BK (clearly F̂ ∈ Hn
∞). Also, we say that (F̂ ,Γ)

is stochastically stable (SS) if (4), with Q(t) given by
(3), holds.

Definition 2: We say that S is a stabilizing solution of
the Banach space perturbed algebraic Riccati equation

(BPARE) (9) if S belongs to Hn+
∞ , is a solution to the

BPARE and K = R−1B∗S stabilizes (Â, B,Γ) (clearly
K ∈ Hn,m

∞ ).
Remark 2: It is worth noticing that Γ, whose matrix

representation is ((Λ− diag(λii)) ⊗ In)∗, is the adjoint
operator of χ in the finite dimensional case, more ex-
plicitly, the Hilbert space of finite sequences of matrices
in M(C

n
).

III. PROBLEM STATEMENT AND MAIN
THEOREM

We consider the perturbed Riccati operator T ,
defined on the infinite dimensional Banach space Hn

∞

such that, for every H = (H1,H2, ...) ∈ Hn
∞, T (H) =

(T1(H), T2(H), ...) where, for each i ∈ S,

Ti(H) = A∗
i Hi + HiAi + χi(H) + Qi − HiBiR

−1
i B∗

i Hi

(5)

Parameters are uniformly norm-bounded, more pre-
cisely, B = (B1, B2, ...) ∈ Hm,n

∞ , Q = (Q1, Q2, ...) ∈ Hn+
∞

and R = (R1, R2, ...) ∈ H̆m+
∞ . We specify χ = (χ1,

χ2, ...) ∈ Blt(Hn
∞), a positive operator in that it maps

Hn∗
∞ into Hn∗

∞ and Hn+
∞ into Hn+

∞ , as it appears in
control problems involving Markov jump linear systems
with infinite countable state space S (see, e.g., [10] and
references therein): χi(H) =

∑∞
j=1,j 6=i λijHj , or else,

viewing H as an infinite column of matrices, χH =
((Λ− diag(λii)) ⊗ In)H, where Λ = [λij ]i,j∈S

and In

stands for the identity operator in M(Cn). Note that χi

responds for the interconnection among the individual
components Ti. Furthermore, as part of the control-like
specification, we define A ∈ Hn

∞ such that

Ai = Âi +
1

2
λiiIn (6)

for arbitrary Â = (Â1, Â2, ...) ∈ Hn
∞. Since all elements

in (5) are uniformly norm bounded on i ∈ S and
Ti(H)∗ = Ti(H) if H∗ = H , it follows easily that
T maps Hn

∞ into Hn
∞ and Hn∗

∞ into Hn∗

∞ .
In view of (1) and (5), T also writes

T (H) = A∗H + HA + χ(H) + Q − HBR−1B∗H (7)

with R−1 := (R−1
1 , R−1

2 , ...).
Remark 3: In the above control problem scenario (i)

Âi and Bi, i ∈ S, stand for the parameters that drive
the jump-linear dynamic ẋ(t) = Âθ(t)x(t) + Bθ(t)u(t)
where x(t) ∈ C

n denotes the state vector, u(t) ∈ C
m the

control input and, for θ(t) = i, we have that Âθ(t) = Âi

and Bθ(t) = Bi and (ii) Q and R are the associated
state and control penalties.

Before we get into our theorem, let us state an
equivalence result, which is proved in [10] and [12].

Lemma 2: The following assertions are equivalent.

(a) (Â, B,Γ) is stochastically stabilizable (SS) with
stabilizing K.



(b) Given any V ∈ H̆n+

∞ , there is S ∈ H̆n+

∞ , unique
in Hn∗

∞ , satisfying the countably infinite set of
perturbed coupled Lyapunov equations given by

(Ai − BiKi)
∗Si+Si(Ai − BiKi)i + χi(S)+Vi =0,

i ∈ S, (8)

(c) Given some V ∈ H̆n+

∞ , there is S ∈ H̆n+

∞ satisfying
(8).

(d) sup{ Reλ : λ ∈ σ(D)} < 0, with D equipped with
F̂ = Â − BK.

We say that S̄ is maximal in some subset of Hn∗
∞ if

S̄ ≥ Ŝ for every Ŝ in that subset. Clearly S̄ is unique.
Our main result reads as follows:

Theorem 1: Let (Â, B,Γ) be SS. Then the BPARE

T (S) = 0, (9)

with T defined as above, has a (unique) maximal
solution in the set of all solutions in Hn∗

∞ . Moreover this
solution belongs to Hn+

∞ and is such that sup{ Reλ : λ ∈
σ(D)} 6 0, with D equipped with F̂ = Â−BR−1B∗S.

Proof: Let us first write (9) as the following system.

(A − BK)∗S + S(A − BK) + K∗RK = −χ(S) − Q

(10)

K = R−1B∗S (11)

Now, set some stabilizing K1 for (Â, B,Γ). It exists
since (Â, B,Γ) is SS. Starting from K1 we construct
the sequences {Ki}i∈N and {Si}i∈N according to the
following equations.

(A − BKi)∗Si + Si(A − BKi) + Ki∗RKi = −χ(Si)

− Q (12)

and

Ki+1 = R−1B∗Si, (13)

i ∈ S. We use induction to prove that {Si}i∈N exists,
is uniquely defined and nonincreasing and {Ki}i∈N is
stabilizing for (Â, B,Γ). An essential property in this
part of the proof is that, for arbitrarily fixed S ∈ Hn∗

∞ ,
K0 = R−1B∗S is a point of minimum, in that, for every
K ∈ Hn,m

∞

(A − BK)∗S + S(A − BK) + K∗RK − U (14)

= (A − BK0)
∗S + S(A − BK0) + K∗

0RK0,

where U := (K − K0)
∗R(K − K0) ∈ H̆n+

∞ , K0 6= K.
So, for arbitrary i ∈ N, assume that an element Ki ∈

Hn,m
∞ stabilizes (Â, B,Γ). Note that V i := Ki∗RKi +Q

belongs to H̆n+
∞ . Then, from Lemma 2 ((a) ⇒ (b)), there

exists a unique Si ∈ H̆n+
∞ that satisfies

(A − BKi)∗Si + Si(A − BKi) + χ(Si) + V i = 0,
(15)

or else, (12). Let us now show that Si ≥ Ŝ, Ŝ ∈ Hn∗
∞

being an arbitrary solution of (9) or, equivalently,
system (10)/(11). From the minimum property given
by (14),

(A − BKi)∗Ŝ + Ŝ(A − BKi) + Ki∗RKi

− (Ki − K̂)∗R(Ki − K̂) = −χ(Ŝ) − Q (16)

Subtracting (16) from (12), we have that

(A − BKi)∗φi + φi(A − BKi) + χ(φi) + W i = 0,
(17)

φi := Si − Ŝ and W i := (Ki − K̂)∗R(Ki − K̂). Now,
W i belongs to H̆n+

∞ if Ki 6= K̂ and by assumption Ki

stabilizes (Â, B,Γ). Then the solution of (17) is unique
and belongs to H̆n+

∞ , as Lemma 2 ((a) ⇒ (b)) shows.
Hence this is the case of φi := Si−Ŝ. Since both Si and
Ŝ belong to Hn∗

∞ , it follows that Si ≥ Ŝ. If Ki = K̂,
then Si = Ŝ.

Again from the minimum property, Ki+1 = R−1B∗Si

minimizes the left hand side of (12), so we have that

(A − BKi+1)∗Si + Si(A − BKi+1) + Ki+1∗RKi+1

+ χ(Si) + Zi = 0, (18)

Zi := (Ki+1−Ki)∗R(Ki+1−Ki)+Q ∈ H̆n+
∞ if Ki+1 6=

Ki. Hence, for some element in H̆n+
∞ (Zi), there is an

element in H̆n+
∞ (Si) that satisfies (18). From Lemma

2 ((c) ⇒ (a)), Ki+1 stabilizes (Â, B,Γ). If Ki+1 = Ki,
the same conclusion is obvious.

For the step i + 1, we note as before that V i+1 :=
Ki+1∗RKi+1 + Q belongs to H̆n+

∞ and Ki+1 stabilizes
(Â, B,Γ) so that, from Lemma 2 ((a) ⇒ (b)), there
exists a unique Si+1 ∈ H̆n+

∞ that satisfies

(A − BKi+1)∗Si+1 + Si+1(A − BKi+1) + χ(Si+1)

+ V i+1 = 0,

or else,

(A − BKi+1)∗Si+1 + Si+1(A − BKi+1)

+ Ki+1∗RKi+1 = −χ(Si+1) − Q. (19)

Subtracting (19) from (18) we obtain

(A − BKi+1)∗∆i + ∆i(A − BKi+1) + χ(∆i) + U i = 0,
(20)



where ∆i exists and is defined as ∆i := Si − Si+1 and
U i := (Ki+1 −Ki)∗R(Ki+1 −Ki). Now, U i belongs to
H̆n+

∞ if Ki+1 6= Ki and Ki+1 stabilizes (Â, B,Γ), so
that, using Lema 2 ((a) ⇒ (b)), the solution of (20) is
unique and belongs to H̆n+

∞ . Hence this is the case of
∆i. Since both Si and Si+1 belong to Hn∗

∞ , it follows
that Si ≥ Si+1. Clearly, if Ki+1 = Ki,then Si = Si+1.
This completes the induction.

We shall now show that {Si}i∈N converges to
the maximal solution of (9) or, equivalently, system
(10)/(11), and that the other assertions of the theorem
follows. Since {Si}i∈N is nonincreasing and bounded
from below by zero, we have, from a finite dimensional
result on nonnegative matrices, that there exists the
limit in M(Cn)

Sj := lim
i→∞

Si
j , ∀j ∈ S (21)

From this and the results obtained above, S :=
(S1, S2, ...) is such that S ≥ Ŝ, Ŝ ∈ Hn∗

∞ being an
arbitrary solution of (9). Since Si belongs to H̆n+

∞ then
Sj ≥ 0 ∀j ∈ S. Moreover, we justify that S belongs to
Hn

∞ noting that {
∥

∥Si
∥

∥

∞
}i∈N is nonincreasing so that

∥

∥Si
∥

∥

∞
is uniformly bounded on i, say by c1. From

(21) and taking any ε > 0, there are nj such that
∣

∣‖Sj‖ −
∥

∥Si
j

∥

∥

∣

∣ 6
∥

∥Si
j − Sj

∥

∥ 6 ε, ∀i ≥ nj , j ∈ N,
and so

‖Sj‖ 6
∥

∥Si
j

∥

∥ + ε 6 sup
j∈N

∥

∥Si
j

∥

∥ + ε =
∥

∥Si
∥

∥

∞
+ ε 6 c1 + ε

∀j ∈ N.

Hence S ∈ Hn+
∞ . Now, from (13), there exists the limit

Kj := limi→∞ Ki+1
j = limi→∞ R−1

j B∗
j Si

j = R−1
j B∗

j Sj ,
and K := (K1,K2, ...) ∈ Hn,m

∞ . Also, using a mono-
tonicity property in finite dimensional spaces,

χj(S
i) = lim

M→∞

M
∑

r=1,r 6=i

λirS
i
r → lim

M→∞

M
∑

r=1,r 6=i

λirSr

=: χj(S) as i → ∞.

So, passing (12) and (13) to the limit for an arbitrarily
fixed entry j ∈ S, we have that

Kj = R−1
j B∗

j Sj ,

or else, S satisfies (10)/(11). Now, Ki, i ∈ S, stabilize
(Â, B,Γ) and so Lemma (2) ((a) ⇒ (d)) gives us that

sup{ Reλ : λ ∈ σ(Di)} < 0, where Di is defined as (2)
with F̂ i = Â − BKi. From the continuity property of
the spectrum, sup{ Reλ : λ ∈ σ(Di)} ≤ 0.
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