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Abstract— We consider an optimal population transfer
problem for a finite-dimensional quantum system with an
energy-like cost. We show that a way to realize a small control
limit is as the limit of large transfer time T . In the process
we show that, in the large T limit, the optimal control is
a sum of terms with the following structure: Each term is
an exponential with frequency given by a Bohr frequency of
the quantum system times a slow varying envelope, that is a
function of t

T
. The form of these envelopes can be computed

by solving an “averaged” two-point boundary value problem.
We demonstrate our results with an example.

I. M OTIVATION AND BACKGROUND

One of the most fundamental and practical problems in
Chemistry is to influence the outcome of chemical reactions.
Traditionally, one would do this by adjusting environmental
variables (temperature, pressure) and by inserting various
catalysts in the reacting system. Although highly successful
in many cases, this approach still leaves much to be desired.
A modern approach is to use pulses of laser light to break
existing chemical bonds in molecules so that new ones may
be created. If successful, this would be a much more precise
way to achieve desired outcomes of reactions.

For this program to be successful, one needs to con-
trol the dynamics of reacting atoms and molecules at the
microscopic level. In this regime, one needs the language
of Quantum Mechanics for a correct description of the
dynamics. Understanding how to control this dynamics
under the limitations posed by each individual quantum
system is a challenging task.

Before we formulate the problem of interest, we begin
with a brief description of quantum systems. The state space
of a quantum system is an appropriate, finite or infinite-
dimensional complex Hilbert spaceH. The evolution law
is Schr̈odinger’s equation:

i~ ψ̇ = H0ψ, (1)

whereH0 is a self-adjoint operator inH, referred to as
the system Hamiltonian,ψ ∈ H is the state variable and
~ is Planck’s constant divided by2π. This evolution law
is linear and unitary (norm preserving). By convention, we
normalize‖ψ‖ = 1. This implies that the actual state space
of the system is the sphere‖ψ‖ = 1 inH. Also, the physical
interpretation of the quantum mechanical formalism (which
we are not going to go into) requires that we identify states
that differ only by a total phase factor,ψ ∼ eiφψ.

The (normalized) eigenvectors and eigenvalues ofH0,

H0ei = Eiei, i = 1, . . . , N

(N is the dimension ofH), are of great physical importance.
Indeed, theEi’s are the possible energies of the system and
the energy “eigenstates”ei, are the possible states at which
one can find the system after measuring its energy. If we
expand a state vectorψ in the orthonormal basis furnished
by theei’s,

ψ =
N∑

i=1

ψiei,

the quantities|ψi|2 = |e′iψ|2 are called the populations of
the energy states. The solution of (1) is

ψ(t) = e−iH0t/~ ψ(0) =
N∑

i=1

ψi(0) e−iEit/~ ei.

Note that the dynamics preserves the populations of the
energy states, because

|ψi(t)|2 = |ψi(0) e−iEit/~|2 = |ψi(0)|2.

In particular, if ψ(0) = ei, thenψ(t) = e−iEit ei and so
the energy eigenstates are equilibria of the dynamics.

When a quantum system is acted upon by an external
field (e.g. an atom in the electric field of a laser), (1) is
modified:

i~ ψ̇ = (H0 +
∑
α

Hαuα(t) )ψ. (2)

The Hα’s are referred to as control Hamiltonians and
describe the coupling of the system to the external fields
uα(t). System (2) is controllable if, given any initial state
ψ0 and any target stateψd (both defined modulo a total
phase), there exists a transfer timeT and control functions
uα : [0, T ] → R such that, the solution of (2) with
ψ(0) = ψ0 satisfiesψ(T ) = ψd (bothψ0 andψd are defined
modulo phases). The controllability analysis of (2) for finite
dimensional quantum systems is based on controllability
results for right invariant systems on Lie groups ([1], [2],
[3]). We quote the main result and refer to the bibliography
for more details: The system (2) is controllable if the Lie
Algebra generated by−iH0 and the−iHα’s is su(N),
the Algebra of traceless anti-symmetric complexN × N
matrices.

The design of controls that steer a quantum system to
desired target states is a very important problem, see [4],
[5], [6] for constructive approaches, [7], [8], [9], [10] for
optimal control approaches based on energy-like objectives,
[11], [12] for Lyapunov-based approaches and [13] for time-
optimal control. We would like to differentiate betweenco-
herentstate transfers, where therelativephases between the



components of the final state are important andincoherent
state transfers, where only a final population is desired and
the relative phases between the components of the final state
are not important. It is the importance of incoherent state
transfers to many applications in Quantum Chemistry, that
motivates our study of the structure of optimal controls for
such transfers.

Before we get into more detail, we would like to mention
an important concept from Quantum Mechanics, which will
prove to be significant in the development. This is the notion
of Bohr frequencies of a quantum system: For every pair
of eigenstates,ei andej , the quantity

ωij =
Ei − Ej

~
,

(or rather its absolute value) is referred to as the Bohr
frequency of the transition between statesi and j. The
reason is the following: If one tunes the external field
exactly to this frequency, one can transfer all the population
of statei to statej (and vice versa) in a sufficiently long
time. Let’s be more precise. For simplicity, consider a
quantum system with one control (which is usually the case)
and set~ to 1:

iψ̇ = (H0 +H1u(t))ψ. (3)

One can show with an averaging argument that, using the
control u(t) = π

|H1ij |T cos(ωijt + φ) for a large timeT ,
results to the following final populations:

|ψi(T )|2 = |ψj(0)|2 +O(
1
T

),

|ψj(T )|2 = |ψi(0)|2 +O(
1
T

),

|ψk(T )|2 = |ψk(0)|2 +O(
1
T

), k 6= i, j.

So, the Bohr frequencies are resonance frequencies for
the interaction of a quantum system with external fields. In
many applications in Physics and Chemistry, one wants to
cause a transition from a fully populated energy eigenstate
to an unpopulated one. For this, a field of the right frequency
will suffice. If it happens that the matrix element of the
control Hamiltonian between these two states is zero or
very small, one would have to use transitions through
intermediate states. That is, one would have to mix and
time fields with the right Bohr frequencies. So far, intuition
has been the only guide on how to do this.

If we consider the more general problem of transfering
an initial state to a targetdistribution of populations using
fields of the right Bohr frequencies and timing, intuition can
hardly be of any help. This is even more so if we would
like this transfer to be optimal in some sense, for example
in terms of energy used to achieve it.

Here, we consider the general problem of optimizing
a population transfer with respect to the control energy.
We show that for large transfer times, the previous picture
emerges naturally: The optimal field is a sum of terms,
with each term being an exponential with a Bohr frequency
multiplied by a slow envelope, i.e. a function oft

T . These

envelopes control the timing and mixing of the various fre-
quencies. We also show how to compute these envelopes by
solving an “averaged” two-point boundary value problem.

Before we leave this introduction, we would like to com-
ment on two issues. First, regarding the choice of optimal
control design in contrast to other design techniques, like
those mentioned above. As far as constructive techniques
are concerned, the calculations involved in the design be-
come impossible as the size of the system increases and
typically, the system size in Quantum Chemistry can be
very large. This is not to say of course that the difficulty
of solving the optimal control problem does not increase as
the system size increases.

We would also like to comment on the important issue
of how big the transfer time can be. For many applications,
especially to Quantum Computing, transfer times must be
short. The main reason for this is that (2) does not take
into consideration the effects of the environment on the
quantum system and so, any control design based on it
would be invalidated for times of the order of the so called
decoherence time. In cases like these one should use other
control strategies, e.g. time-optimal control [13].

For Quantum Chemistry, the time constraints come from
the fact that, in a molecule, besides the vibrational dynamics
which is of interest in dissociation phenomena, there is
also rotational and electronic dynamics. One would like
to achieve dissociation in a time scale where the other
dynamics is not important. It turns out that in many cases,
this time scale is large enough for our approximation to be
useful.

II. OPTIMAL POPULATION TRANSFERS

In this approach to control design, one singles out
controls that achieve a desired transfer and, in addition,
optimize a certain performance index. The energy-like per-
formance index

J =
1
2

∫ T

0

u2(t) dt,

has a physical appeal and leads to interesting conclusions.
We pose the following problem: Find au(t), t ∈ [0, T ], that
minimizesJ and drives an initial stateψ0 of system (3) to
a target population{|ψi(T )|2 = pi}i=1,...,N .

The Maximum Principle of optimal control provides nec-
essary conditions for optimality in terms of the Hamiltonian
function

H(ψ, λ, u) =
1
2
u2−iλ′(H0+H1u)ψ+iψ′(H0+H1)λ, (4)

whereλ is the co-state vector. The optimal controlu and
the corresponding state and co-state satisfy the equations

ψ̇ =
∂H

∂λ′
, λ̇ = −∂H

∂ψ′
and

∂H

∂u
= 0,

which, given the expression forH, have the form

iψ̇ = (H0 +H1u)ψ, (5)

iλ̇ = (H0 +H1u)λ, (6)

u = i(λ′H1ψ − ψ′H1λ). (7)



To these equations one must append the boundary condi-
tions

|ψ′0ψ(0)|2 = 1, |ψi(T )|2 = pi (8)

and

Im(ψ′0λ(0)) = Im(ψ∗i (T )λi(T )) = 0, (9)

∀ i = 1, . . . , N (transversality conditions). Also,λ is
perpendicular toψ, that isλ′(t)ψ(t) = 0, t ∈ [0, T ]. These
equations define a two-point boundary value problem which
has proved to be very hard to solve, both analytically and
numerically. On the analytical side, only a few special cases
have been solved: Transfers between energy eigenstates
in two- and three-state systems with the so-calledk + p
structure [14]. Also, a semi-analytical solution exists for
the case of a two-state system with one control only,
where the functional form of the control can be determined
analytically, but the two-point boundary value problem can
be solved only numerically [8]. We shall comment on
the difficulty of the numerical solution of this problem in
section VI.

III. A N APPROXIMATION BASED ON AVERAGING

In this section, we present an approximation to the two-
point boundary value problem (5) - (9) in the limit of small
control amplitude. In the next section we show that this
limit can be realized as a large transfer time limit and so,
we end up with an approximate form for the optimal control
in the largeT limit.

To begin, we change variables (transform to the “Inter-
action Picture”),

ψ = e−iH0tχ,

λ = e−iH0tζ.

The time evolution of the new variablesχ and ζ is due
entirely to the control, because the free evolution has been
accounted for. In the new variables, the necessary conditions
of optimality take the form

iχ̇ = uF (t)χ, (10)

iζ̇ = uF (t)ζ, (11)

u = i (ζ ′F (t)χ− χ′F (t)ζ)
= i tr[F (t)(χζ ′ − ζχ′)], (12)

whereF (t) = eiH0tH1 e
−iH0t, along with

|ψ′0χ(0)|2 = 1, |χi(T )|2 = pi (13)

and

Im(ψ′0ζ(0)) = Im(χ∗i (T )ζi(T )) = 0. (14)

Note the appearance of the Bohr frequencies in the matrix
elements of F,

Fij(t) = H1ije
i(Ei−Ej)t = H1ije

iωijt.

We now define a normalized co-state variableζ̂, by ζ(t) =
εζ̂(t), whereε = ‖ζ‖. Using this new variable, we rewrite
equations (10), (11) and (12) usingu from (12):

χ̇ = ε (ζ̂ ′F (t)χ− χ′F (t)ζ̂)F (t)χ, (15)
˙̂
ζ = ε (ζ̂ ′F (t)χ− χ′F (t)ζ̂)F (t) ζ̂, (16)

u = i ε tr[F (t)(χζ̂ ′ − ζ̂χ′)]. (17)

From (17), we see thatε controls the “size” ofu (in fact,
sinceχ and ζ̂ are normalized, the amplitude ofu is less or
equal to2ε‖H1‖). We want to consider the limit of small
control amplitude, i.e.ε � 1. Note that the determination
of ε is part of the two-point boundary value problem so, we
cannot make any a priori statements about its size. We’ll see
in the next section how the smallε limit can be realized.
For now, we want to approximate equations (15) - (17) for
small ε.

The ideal approximation method in our case is averaging.
In averaging, one deals with equations of the form

ẏ = εf(y, t, ε). (18)

f must be a continuous, twice differentiable function of its
arguments such that the limit

fav(y) := lim
τ→∞

1
τ

∫ t+τ

t

f(t′, y, 0) dt′

exists. A standard averaging theorem (see Chapter 8 of [15])
guarantees that, for sufficiently smallε, the solution of

ẇ = εfav(w)

with the same initial condition (i.e.w(0) = y(0)) is O(ε)
close to that of (18) for a time interval of lengthO( 1

ε ). What
makes averaging particularly suitable for the problem at
hand is, that the right hand sides of (15) and (16) are almost-
periodic functions. So, we proceed to average (15) and (16).
To make the procedure more transparent, we rewrite (15)
in component form:

χ̇i = ε
( ∑

kl

H1kl e
iωklt(ζ̂∗kχl − χ∗k ζ̂l)

) ∑
j

H1ij e
iωijtχj

We make two assumptions about the system:

1) The diagonal terms of the control Hamiltonian are
zero,H1ii = 0,∀i = 1, . . . , N . This assumption is not
essential in what we are doing, but it does simplify
the equations a bit.

2) All Bohr frequencies are different from each other,
i.e. ωij 6= ωkl, (i, j) 6= (k, l).

Since the time average of an exponentialeiωt is zero,
only terms with no time dependence will contribute to the
averaged equations. Lettingx and ẑ be the averagedχ and
ζ̂, the averaged state and co-state equations are:

ẋi = ε
∑

j

|H1ij |2(xiẑ
∗
j − ẑix

∗
j )xj , (19)

˙̂zi = ε
∑

j

|H1ij |2(xiẑ
∗
j − ẑix

∗
j )ẑj . (20)



The optimal control is then approximated up to orderO(ε)
by

u = iε
∑
ij

H1ije
iωijt(xj ẑ

∗
i − ẑjx

∗
i ) (21)

Note that the norm ofx and ẑ is preserved by the averaged
dynamics. This is a very desirable feature, since it mimics
the situation in the full dynamics.

IV. I DENTIFYING THE LIMIT ε→ 0 AS T →∞
In equations (19) - (20), letz = εẑ:

ẋi =
∑

j

|H1ij |2(xiz
∗
j − zix

∗
j )xj , (22)

żi =
∑

j

|H1ij |2(xiz
∗
j − zix

∗
j )zj . (23)

Let’s also write the boundary conditions (13) and (14) in
terms ofx andz:

|ψ′0 x(0)|2 = 1, |xi(T )|2 = pi (24)

and
Im(ψ′0 z(0)) = Im(x∗i (T )zi(T )) = 0. (25)

A key observation is the following: If(x(1)(t), z(1)(t) )
is a solution of the two-point boundary value problem (22)
- (25) over the time interval[0, 1], then

(x(T )(t), z(T )(t) ) = (x(1)(
t

T
),

1
T
z(1)(

t

T
) ), (26)

is a solution over the time interval[0, T ]. It follows that,

‖z(T )‖ =
‖z(1)‖
T

.

We can take the transfer timeT large enough to make
‖z(T )‖ as small as desired. We nowpostulate the ε

of the last section to beε = ‖z(T )‖ = ‖z(1)‖
T . Then

(x(T )(t), z(T )(t) ) is, by the averaging theorem, a solu-
tion of the two-point boundary value problem (10) - (14)
correct to order1T . Although thisε and the corresponding
(x(T )(t), z(T )(t) ) do not solve the two-point boundary
value problem (10) - (14)exactly, they are correct up to
order 1

T , for T large enough. We rewrite equation (21) in
the form

u(t)

= i
∑
ij

H1ije
iωijt(x(T )

j (t)z(T )
i (t)∗ − z

(T )
j (t)x(T )

i (t)∗)

=
i

T

∑
ij

H1ije
iωijt(x(1)

j (
t

T
)z(1)

i (
t

T
)∗ − z

(1)
j (

t

T
)x(1)

i (
t

T
)∗)

=
i

T

∑
ij

H1ije
iωijtLji(

t

T
). (27)

Note the structure of the optimal control: It is a sum of
terms of the form (exponential of a Bohr frequency)×
(slow varying envelope). Moreover, the envelopes can be
computed by solving the “averaged” two-point boundary
value problem (22) - (25) in[0, 1].

We end this section with two remarks. First, the solutions
we are approximating are in general local optima of the
control energy. Unfortunately, except for the cases where
we can solve the “averaged” (or the original) two-point
boundary value problem exactly, there is usually no way to
tell if a given control isglobally energy-optimal. Second,
we have not found (an approximation to)all solutions of the
two-point boundary value problem (10) - (14). It may be the
case that solutions exist such thatε is not small even for
large transfer times. Such solutions, though local optima,
will have too large a cost to be energy-efficient.

V. A N EXAMPLE

Consider a three-state system with

H1 =

 0 eiα12
√
reiα13

e−iα12 0 eiα23
√
re−iα13 e−iα23 0

 ,

wherer < 1. This is a system with|(H1)12| = |(H1)23|,
where we scaled the control so that the first two matrix
elements have a magnitude of1. We take|(H1)13| =

√
r <

1, because we are interested in the transfer

ψ0 =

 1
0
0

 −→ ψd =

 0
0
1

 ,

and would like to see how the intermediate transitions
1 → 2 and2 → 3 “aid” the direct transition1 → 3 which
has a smaller coupling. In this example, we can solve for
the approximate optimal control analytically, except for a
certain parameter which must be determined numerically. It
turns out that the optimal control has the form

u(t) =
2
T

{
a(r) cos(ω12t+ α12 + ψ) cos(

π

2
t

T
)

+ a(r) sin(ω23t+ α23 + φ− ψ) sin(
π

2
t

T
)

+
π

2(1− r)
cos(ω13t+ φ)

}
whereφ, ψ ∈ [0, 2π]. a(r) > 0 has to be determined as
a function of r by satisfying the boundary conditions for
the state, given the form of the optimal control. Figures (1)
- (3) show the approximate optimal control, the envelopes
of the Bohr frequency “components” of the approximate
optimal control and the averaged (dashed line) and exact
(full line) evolution of the three state system under this
control forT = 20π (r = .1 anda is numerically found to
bea = 2.6249). The form of the optimal control turns out to
be quite intuitive: From figure (2), there is a “component”
with the frequency of the transition1 → 3 and constant
amplitude that causes a “direct” transition from state 1 to
state 3. There are also components with the frequencies of
the transitions1 → 2 and 2 → 3, such that the amplitude
of the first is large initially and goes to zero at the end
of the transition, while the amplitude of the second does
the exact opposite. Physically, we expect a large population
transfer from state 1 to state 2 which is then followed by



a large transfer from 2 to 3, and this is indeed what figure
(3) demonstrates.
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Fig. 1. Approximate optimal control for the transition1→ 3 in T = 20π.
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optimal control
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Fig. 3. Population of states vs. time. The dashed lines represent the
averaged and the solid lines the exact solution.

VI. D ISCUSSION

Let’s begin by summarizing our results: To find an ap-
proximate solution to the two-point boundary value problem
(5) - (9) or equivalently (10) - (14), correct to order1T
over the time horizonT , solve the two-point boundary
value problem (22) - (25) over the time interval[0, 1].
Then,(x(T )(t), z(T )(t) ) from (26) furnish the approximate
solutions and (27) is the approximate optimal control. As
a side remark, the size ofT that makes this a good
approximation is determined by the size of‖z(1)‖. More
specifically, equations (15 ) - (16 ) suggest that the quality
of the approximation improves as

ε‖H1‖2 =
‖z(1)‖
T

‖H1‖2

shrinks to zero.
From a theoretical standpoint, this result offers an insight

into the structure of the optimal controls for incoherent
population transfers. In particular, it reduces the transfer
problem to a scheduling problem for the envelopes of
the Bohr frequency sinusoids. This is both a conceptual
and a computational simplification. Indeed, the original
two-point boundary value problem to be solved in[0, T ]
requires the solution of equations with dynamics “fast” on
this time scale. This is because equations (5) - (6), or
equivalently, (10) - (11) contain the fast dynamics of the
free evolution. This is illustrated in figure (3), where the
exact populations exhibit fast variations on top of their long
time evolution. This makes the numerical solution of the
original two-point boundary value problem very sensitive
to errors, especially for large systems. On the other hand,
the “averaged” two-point boundary value problem (22) -
(25) does not suffer from this problem and its solution
should be computationally much easier than that of (5) - (9).
Furthermore, the two-point boundary value problem two-
point boundary value problem (22) - (25) needs to be solved
only once in order to provide (approximate) solutions to the
original two-point boundary value problem forany transfer
time T . This is in contrast to a direct numerical solution of
(5) - (9) , which would have to be redone for everyT . This
is not to say of course that (22) - (25) constitute an easy
problem to solve, especially for realistic molecular systems
where the size of the system could be very big.

We would also like to comment on the relation of
our work with two references, [16] and [17]. In the first
work, the authors consider incoherent transfers with various
convex costs depending on the moduli of the controls. They
study quantum systems of the form

i~ ψ̇ = (H0 +H1(t) )ψ,

where each element ofH1(t) is either zero or a complex
control (sinceH1 can have complex entries). By transform-
ing to the “Interaction Picture”, the drift term is eliminated
and by redefining the controls, they end up with a driftless
time-invariant control system. It then follows trivially that
every control (optimal or not) is of the form, exponential of
single Bohr frequency times an envelope. The main result of



that work is that the real and imaginary parts of the envelope
are the same, modulo a phase, for optimal transfers. The
point is then that one can reduce the number of controls
one is optimizing over. In our case, the controls enter in a
more general fashion, and, in general, there are not enough
controls so that, after eliminating the drift, we end up with
a driftless time-invariant system. Rather, the form of the
optimal control is a consequence of the large transfer time
limit.

In the second work, the authors consider (3)linearized
around (ψ(0)(t), u(0)(t) ) = (e−iEitei, 0), an equilibrium
point of the free dynamics. They consider optimal coherent
state transfers for this linearized system with a quadratic
cost and find that the resulting optimal control is a mix
of sinusoidals with Bohr frequenciesωji, j 6= i. The
approximation of (3) by a linearized model is valid for
transfer times of order1 and final statesε close to the initial
one, whereε is the expansion parameter. Our result concerns
the exact model, arbitrary initial and final populations and
holds for times of order1ε ∼ T . Again, the special form of
the resulting optimal control is a consequence of the large
transfer time limit.

Finally, we would like to mention some possible exten-
sions of this work. An obvious direction is the search for a
computationally efficient procedure to solve the two-point
boundary value problem (22) - (25), especially for large sys-
tems. Questions of robustness to parameter uncertainty and
noise in the control implementation have to be addressed
as well.
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