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Symeon Grivopoulos Bassam Bamieh
symeon@engr.ucsb.edu bamieh@engr.ucsb.edu

Department of Mechanical and Environmental Engineering
University of California, Santa Barbara, CA 93106-5070

Abstract—We consider an optimal population transfer (N is the dimension ot{), are of great physical importance.
problem for a finite-dimensional quantum system with an |ndeed, the;’s are the possible energies of the system and
energy-like cost. We show that a way to realize a small control the energy “eigenstates’, are the possible states at which
limit is as the limit of large transfer time T. In the process / . o
we show that, in the large T' limit, the optimal control is one can find the syste_m after measuring its _energy. If we
a sum of terms with the following structure: Each term is €Xpand a state vectar in the orthonormal basis furnished

an exponential with frequency given by a Bohr frequency of by thee;’s,

the quantum system times a slow varying envelope, that is a N
function of . The form of these envelopes can be computed S Zwiei’
by solving an “averaged” two-point boundary value problem. =1

We demonstrate our results with an example. . )
the quantitiesv;|* = |ei+|? are called the populations of

. MOTIVATION AND BACKGROUND the energy states. The solution of (1) is

One of the most fundamental and practical problems in  _iHot/h _ al —iEt/h

Chemistry is to influence the outcome of chemical reactions. (t) = e H(0) = Z%(O) ¢ e

Traditionally, one would do this by adjusting environmental i =1 _

variables (temperature, pressure) and by inserting variolte that the dynamics preserves the populations of the

catalysts in the reacting system. Although highly successf§N€rgy states, because

in many cases, this approach still leaves much fto be desired. i (£)[2 = [1(0) efiEit/ﬁ‘2 = [ (0)]2.

A modern approach is to use pulses of laser light to break ‘

existing chemical bonds in molecules so that new ones may particular, if1(0) = e;, theny(t) = e~*Fi*¢; and so

be created. If successful, this would be a much more precifee energy eigenstates are equilibria of the dynamics.

way to achieve desired outcomes of reactions. When a quantum system is acted upon by an external
For this program to be successful, one needs to cofi€ld (€.g. an atom in the electric field of a laser), (1) is

trol the dynamics of reacting atoms and molecules at tH@odified:

microscopic level. In this regime, one needs the language ik = (Ho + ZHuua(t))w @)
of Quantum Mechanics for a correct description of the =

dynamics. Understanding how to control this dynamic%he

under the limitations posed by each individual quamunaescribe the coupling of the system to the external fields

system is a challenging task. _#a(t). System (2) is controllable if, given any initial state

_Beforg we forr_nu_late the problem of interest, we begin, ~ any target staté; (both defined modulo a total
with & brief description of quantum systems. The state Spagﬁase) there exists a transfer tiffleand control functions
of a quantum system is an appropriate, finite or infinite- y

. ; ; . uo ¢ [0,T] — R such that, the solution of (2) with
.dlmens"|o_nal c,omplex .Hlllbert spacde. The evolution law b(0) = ¢, satisfies)(T) = 1q (boths, andi are defined
is Schodinger's equation: modulo phases). The controllability analysis of (2) for finite
ihi) = Ho, 1) dimensional quantum systems is based on controllability
results for right invariant systems on Lie groups ([1], [2],
where H, is a self-adjoint operator i, referred to as [3]). We quote the main result and refer to the bibliography
the system Hamiltoniany) € H is the state variable and for more details: The system (2) is controllable if the Lie
% is Planck’s constant divided bgr. This evolution law Algebra generated by-iH, and the —iH,'s is su(N),
is linear and unitary (norm preserving). By convention, wéhe Algebra of traceless anti-symmetric compldxx N
normalize||:|| = 1. This implies that the actual state spacenatrices.
of the system is the sphejie|| = 1 in . Also, the physical The design of controls that steer a quantum system to
interpretation of the quantum mechanical formalism (whiclglesired target states is a very important problem, see [4],
we are not going to go into) requires that we identify stateld]. [6] for constructive approaches, [7], [8], [9], [10] for
that differ only by a total phase factag, ~ ¢%1). optimal control approaches based on energy-like objectives,
The (normalized) eigenvectors and eigenvaluesfpf  [11], [12] for Lyapunov-based approaches and [13] for time-
optimal control. We would like to differentiate betweeo-
Hpe; = Eie;, i =1,...,N herentstate transfers, where tielative phases between the
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components of the final state are important ammbherent envelopes control the timing and mixing of the various fre-
state transfers, where only a final population is desired amliencies. We also show how to compute these envelopes by
the relative phases between the components of the final stati#ving an “averaged” two-point boundary value problem.
are not important. It is the importance of incoherent state Before we leave this introduction, we would like to com-
transfers to many applications in Quantum Chemistry, thaent on two issues. First, regarding the choice of optimal
motivates our study of the structure of optimal controls focontrol design in contrast to other design techniques, like
such transfers. those mentioned above. As far as constructive techniques
Before we get into more detail, we would like to mentionare concerned, the calculations involved in the design be-
an important concept from Quantum Mechanics, which wilcome impossible as the size of the system increases and
prove to be significant in the development. This is the notiotypically, the system size in Quantum Chemistry can be
of Bohr frequencies of a quantum system: For every pairery large. This is not to say of course that the difficulty
of eigenstatesg; ande;, the quantity of solving the optimal control problem does not increase as
E; - E the system size ingreases. _ _
Wij =~ We would also like to comment on the important issue
) i of how big the transfer time can be. For many applications,
(or rather its absolute _\_/alue) is referred‘ to as the Boncfspecially to Quantum Computing, transfer times must be
frequency of the transition between state@nd j. The  ghort The main reason for this is that (2) does not take
reason is the following: If one tunes the external fieldn, consideration the effects of the environment on the
exactly to this frequency, one can trapsfer aIIFh_e poDUIat'oﬁ'uantum system and so, any control design based on it
of state: to state; (and vice versa) in a sufficiently 10ng 14 be invalidated for times of the order of the so called
time. Let's be more precise. For simplicity, consider ggconerence time. In cases like these one should use other
quantum system with one control (which is usually the case),iro strategies, e.g. time-optimal control [13].
and set: to 1: For Quantum Chemistry, the time constraints come from
i) = (Ho + Hyu(t))i. (3) the factthat, in a molecule, besides the vibrational dynamics
. ) . which is of interest in dissociation phenomena, there is
One can show with an averaging argument that, using thgso rotational and electronic dynamics. One would like
control u(t) = 7 cos(wijt + ¢) for a large timeT', 5 achieve dissociation in a time scale where the other

results to the following final populations: dynamics is not important. It turns out that in many cases,
1 this time scale is large enough for our approximation to be
(TP = [9;(0)* + O(T)’ useful.
|q/)j(T)|2 = |i(0)* + 0(%)7 1. OPTIMAL POPULATION TRANSFERS
) ) 1 In this approach to control design, one singles out
[Ve(T)I" = |¥x(0)] +O(f), k#1,3. controls that achieve a desired transfer and, in addition,

. : timize a certain performance index. The energy-like per-
So, the Bohr frequencies are resonance frequencies 1%? P 9y P

the interaction of a quantum system with external fields. In rmance index T
many applications in Physics and Chemistry, one wants to J= 7/ W2(t) dt
cause a transition from a fully populated energy eigenstate 2 Jo ’
to an unpopulated one. For this, a field of the right frequenadyas a physical appeal and leads to interesting conclusions.
will suffice. If it happens that the matrix element of thewe pose the following problem: Find@&(t), t € [0, 7], that
control Hamiltonian between these two states is zero @hinimizes.J and drives an initial statey, of system (3) to
very small, one would have to use transitions through target populatiod |4 (T)|? = pi }i=1.... N-
intermediate states. That is, one would have to mix and The Maximum Principle of optimal control provides nec-
time fields with the right Bohr frequencies. So far, intuitionessary conditions for optimality in terms of the Hamiltonian
has been the only guide on how to do this. function

If we consider the more general problem of transfering 1, o
an initial state to a targatistribution of populations using ~H (¥, A, u) = Su”—iX (Ho+Hyu)p+i)' (Ho+Hi)A, (4)

fields of the right Bohr frequencies and timing, intuition can,here \ is the co-state vector. The optimal controland

hardly be of any help. This is even more so if we wouldye oo rresponding state and co-state satisfy the equations
like this transfer to be optimal in some sense, for example SH SH SH
1

in terms of energy used to achieve it. p="2, A=-—

Here, we consider the general problem of optimizing o\’ oy ou
a population transfer with respect to the control energwhich, given the expression fdi, have the form
We show that for large transfer times, the previous picture ;

emerges naturally: The optimal field is a sum of terms, Z% = (Ho+ Hu), )
with each term being an exponential with a Bohr frequency iA = (Ho+ Hyu), (6)
multiplied by a slow envelope, i.e. a function éf These u = i(NHpp— ' Hi)). (7
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To these equations one must append the boundary conie now define a normalized co-state variaf),leby ¢(t) =

tions e((t), wheree = ||¢||. Using this new variable, we rewrite
|¢6¢(0)\2 =1, (T =ps (8) equations (10), (11) and (12) usingfrom (12):
and X = eWFOx-XFOOFH)x,  (15)
m(P)A(0)) = Im(4; (T)A(T)) = 0, ©) ¢ = e(FOx-XFOOFWHE  (16)
u = dete[F(t)(x{ = X))- (17)
Vi = 1,...,N (transversality conditions). Also) is

perpend|cu|ar tQ/) that is )\’ ( )w( ) — 0 te [0 T] These From (17) we see that controls the “size” ofu (|n faCt
equations define a two-point boundary value problem whictincex and¢ are normalized, the amplitude ofis less or

has proved to be very hard to solve, both analytically anfdual to2e[|H[). We want to consider the limit of small
numerically. On the analytical side, only a few special case&®ntrol amplitude, i.ee < 1. Note that the determination
have been solved: Transfers between energy eigenstafés is part of the two-point boundary value problem so, we
in two- and three-state systems with the so-calledt p ~Cannot make any a priori statements about its size. We'll see
structure [14]. Also, a semi-analytical solution exists fofn the next section how the smadllimit can be realized.
the case of a two-state system with one control only;Or how, we want to approximate equations (15) - (17) for
where the functional form of the control can be determinegmalle.

analytically, but the two-point boundary value problem can The ideal approximation method in our case is averaging.
be solved only numerically [8]. We shall comment onln averaging, one deals with equations of the form

the difficulty of the numerical solution of this problem in

. ) = . 1
section VI. y=cflyt.e) (18)
f must be a continuous, twice differentiable function of its
I11. AN APPROXIMATION BASED ON AVERAGING arguments such that the limit
H H . - _ 1 t+7
I.n this section, we present an appro?<|mat|qn Fo the two Fou(y) = lim ~ F(t,y,0) dt’
point boundary value problem (5) - (9) in the limit of small =00 Ty

control amplitude. In the next section we show that thi
limit can be realized as a large transfer time limit and so
we end up with an approximate form for the optimal contro
in the largeT limit. W = € fay(w)

To begin, we change variables (transform to the “Inter- .
action P?cture") g ( with the same initial condition (i.ew(0) = y(0)) is O(¢)

close to that of (18) for a time interval of Ieng@(%). What
e~ iHoty makes averaging particularly suitable for the problem at
—iHot hand is, that the right hand sides of (15) and (16) are almost-
¢ ¢ periodic functions. So, we proceed to average (15) and (16).
To make the procedure more transparent, we rewrite (15)
dn, component form:

Rxists. A standard averaging theorem (see Chapter 8 of [15])
Puarantees that, for sufficiently small the solution of

(&
A

The time evolution of the new variableg and ¢ is due
entirely to the control, because the free evolution has be
accounted for. In the new variables, the necessary condmons ( Wit ) piwi

— H kl H 7,]
of optimality take the form Z e € (Goa = Xi1) Z 1o X

ix = uF(t)y, (10) We make two assumptions about the system:

i = uF(t)C, (11) 1) The diagonal terms of the control Hamiltonian are

w = i(C'F(t)x — X' F(t)C) zero,Hy;; = 0,Vi = 1,..., N. This assumption is not
T , 12 essential in what we are doing, but it does simplify
= it )l 12) the equations a bit.

2) All Bohr frequencies are different from each other,

where F(t) = eHot [, e—tHot glong with ) e
() ! 9 e wij #wk, (4,7) # (k,1).

[Wox(0)2 =1, |xi(T)* = ps (13) Since the time average of an exponenti&t’ is zero,
only terms with no time dependence will contribute to the
and averaged equations. Lettingand z be the averageg and
m ()¢ (0)) = Im(x; (T)¢G(T)) = 0. (14) ¢, the averaged state and co-state equations are:
Note the appearance of the Bohr frequencies in the matrix T = 52 [ Hs iz )z, (19)

elements of F,

_ ) 5 = ¢ |Hyi5)%( T 2] — 275)2; (20)
E](t) — Hlijel(Eiij)t — Hljjezwijt. Z J J
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The optimal control is then approximated up to ordKE) We end this section with two remarks. First, the solutions

by we are approximating are in general local optima of the
u= z’eZHlije"wwt(ggj,g; — zjxf) (21) control energy. Unfortunately, except for the cases where
i we can solve the “averaged” (or the original) two-point

Note that the norm of andZ is preserved by the averaged boundary_ value proble_m exactly, there is usually no way to
tell if a given control isglobally energy-optimal. Second,

dynamics. This is a very desirable feature, since it mimics
the situation in the full dynamics. we have not found (an approximation tl) solutions of the
two-point boundary value problem (10) - (14). It may be the

IV. IDENTIFYING THE LIMIT ¢ = 0AST — o0 case that solutions exist such thats not small even for
In equations (19) - (20), let — £5: Ia_rge transfer times. Such solutions, thou_g_h local optima,
will have too large a cost to be energy-efficient.
Huij|" (@i ) 22
Z‘ g (222 )5 (22) V. AN EXAMPLE
Z \Hog; 2 (wi2" — 20 )z, (23) Consider a three-state system with
Q emlz \/Fei()lls
Let's also write the boundary conditions (13) and (14) in Hy, = ez 0 el ;
terms ofz and z: VreTtons e taas 0
o x(0)]2 =1, |zy(T)]* = ps (24) wherer < 1. This is a system with(H1)12| = [(H1)as3],
where we scaled the control so that the first two matrix
and ) § elements have a magnitude bfWe take|(H;)13| = /7 <
Im(¥pg 2(0)) = Im(z; (T)2(T)) = 0. (25) 1, because we are interested in the transfer
A key observation is the following: If (V) (t), 2V (t)) 1 0
is a solution of the two-point boundary value problem (22) o= 0 — Yg=1 0|,
- (25) over the time interval0, 1], then 0 1

(M), 2D (1)) = (m(l)(i)’ lz(l)(3)>7 (26) and would like to see how the intermediate transitions
T T 1 — 2 and2 — 3 “aid” the direct transitionl — 3 which
is a solution over the time intervé, T']. It follows that, has a smaller coupling. In this example, we can solve for
0 the approximate optimal control analytically, except for a
— ”Z H certain parameter which must be determined numerically. It
turns out that the optimal control has the form

We can take the transfer tim& large enough to make

|2T)|| as small as desired. We nowpostulate the e u(t) = %{a(r) cos(wiat + aga + 1) cos(g%)
of the last section to be = |7 = @ Then _ o ont
(zD(t), 2T (t)) is, by the averaging theorem, a solu- + a(r) sin(wast + azs + ¢ — 1) Sm(§f)
tion of the two-point boundary value problem (10) - (14) 7r cos(wist + ¢)}

correct to orderT Although thise and the corresponding 2(1—r) 13

(zM(t), 2T)(t)) do not solve the two-point boundary
value problem (10) - (14gxactly they are correct up to

order%, for T' large enough. We rewrite equation (21) in
the form

where ¢, ¢ € [0,27]. a(r) > 0 has to be determined as
a function ofr by satisfying the boundary conditions for
the state, given the form of the optimal control. Figures (1)
- (3) show the approximate optimal control, the envelopes
u(t) of the Bohr frequency “components” of the approximate
iwist (T) (T) ye _ (T) (T) 1\ % optimal control and the averaged (dashed line) and exact
=1 ZHl - Bz () =27 (B2 (1)) (full line) evolution of the three state system under this
" ‘ control forT = 207 (r = .1 anda is numerically found to
— ZH eiwist (1)(T) 2 )(T)* - z;l)(f)x(l)(f)*) bea = 2.6249). The form of the optimal control turns out to
be quite intuitive: From figure (2), there is a “component”
ot with the frequency of the transitioh — 3 and constant
:f ZH“je 7 Lﬁ(f)' (27) amplitude that causes a “direct” transition from state 1 to
g state 3. There are also components with the frequencies of
Note the structure of the optimal control: It is a sum ofthe transitionsl — 2 and2 — 3, such that the amplitude
terms of the form (exponential of a Bohr frequency) of the first is large initially and goes to zero at the end
(slow varying envelope). Moreover, the envelopes can bef the transition, while the amplitude of the second does
computed by solving the “averaged” two-point boundaryhe exact opposite. Physically, we expect a large population
value problem (22) - (25) ino, 1]. transfer from state 1 to state 2 which is then followed by
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a large transfer from 2 to 3, and this is indeed what figure VI. DISCUSSION

(3) demonstrates.
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Let's begin by summarizing our results: To find an ap-
proximate solution to the two-point boundary value problem
(5) - (9) or equivalently (10) - (14), correct to order
over the time horizonT’, solve the two-point boundary
value problem (22) - (25) over the time intervl, 1].
Then, (2™ (t), 2(T)(t) ) from (26) furnish the approximate
solutions and (27) is the approximate optimal control. As
a side remark, the size dof" that makes this a good
approximation is determined by the size |pf(")||. More
specifically, equations (15 ) - (16 ) suggest that the quality
of the approximation improves as

1]

el 2 = 1

[Fnl

shrinks to zero.

From a theoretical standpoint, this result offers an insight
into the structure of the optimal controls for incoherent
population transfers. In particular, it reduces the transfer
problem to aschedulingproblem for the envelopes of
the Bohr frequency sinusoids. This is both a conceptual
and a computational simplification. Indeed, the original
two-point boundary value problem to be solved [inT]
requires the solution of equations with dynamics “fast” on
this time scale. This is because equations (5) - (6), or
equivalently, (10) - (11) contain the fast dynamics of the
free evolution. This is illustrated in figure (3), where the
exact populations exhibit fast variations on top of their long
time evolution. This makes the numerical solution of the
original two-point boundary value problem very sensitive
to errors, especially for large systems. On the other hand,
the “averaged” two-point boundary value problem (22) -
(25) does not suffer from this problem and its solution
should be computationally much easier than that of (5) - (9).
Furthermore, the two-point boundary value problem two-

Fig. 2. Envelopes of Bohr frequency components of the approximat@Oint boundary value prObIem (22) - (25) needs to be solved

optimal control

populations
°
&

e

WR R wN e
! !

01f
. o ‘ ‘
0 10 20 30 40
time

Fig. 3. Population of states vs. time. The dashed lines represent t

50

averaged and the solid lines the exact solution.

L
60

only once in order to provide (approximate) solutions to the
original two-point boundary value problem fany transfer
time T'. This is in contrast to a direct numerical solution of
(5) - (9) , which would have to be redone for evéry This

is not to say of course that (22) - (25) constitute an easy
problem to solve, especially for realistic molecular systems
where the size of the system could be very big.

We would also like to comment on the relation of
our work with two references, [16] and [17]. In the first
work, the authors consider incoherent transfers with various
convex costs depending on the moduli of the controls. They
study quantum systems of the form

ihtp = (Ho + Hy(t)) b,

where each element dff;(t) is either zero or a complex
control (sinceH; can have complex entries). By transform-
ing to the “Interaction Picture”, the drift term is eliminated
and by redefining the controls, they end up with a driftless
f#ne-invariant control system. It then follows trivially that
every control (optimal or not) is of the form, exponential of
single Bohr frequency times an envelope. The main result of
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