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Abstract— The paper presents the application results con-
cerning the fault diagnosis of a dynamic process using dynamic
system identification and model–based residual generation
techniques. The first step of the considered approach consists
of identifying different families of models for the monitored
system. In particular, it is selected the most accurate identified
model able to describe in the best way the dynamic behaviour
of the considered process. The next step of the fault diagnosis
scheme requires the design of output estimators e.g., dynamic
observers or Kalman filters) which are used as residual gener-
ators. The proposed fault diagnosis and identification scheme
has been tested on a real chemical process in the presence of
both sensor, actuator, component faults and disturbance. The
results and concluding remarks have been finally reported.

I. INTRODUCTION

Since the early 1970’s, the problem of reliable fault
diagnosis in dynamic processes has received great attention
and a wide variety of robust approaches has been proposed
and developed. Recently, different analytical redundancy–
based methods have been developed to diagnose faults in
linear, time-invariant, dynamic systems and a wide variety
of model–based approaches has been proposed [1].

There are different model–based approaches to the fault
diagnosis problem [2], namely parameter identification [3],
parity equations [4], methods in frequency [5] or in state–
space domain, such as diagnosis observers [6] and Kalman
filters [7].

Even if analytical redundancy methods have been recog-
nised as a powerful and effective technique for detecting
faults, the generation of robust residuals is a critical issue
because of the presence of unavoidable modelling uncer-
tainty. The main problem regarding the reliability of fault
diagnosis schemes consists of the modelling uncertainties
which are due, for example, to process noise, parameter
variations and non–linearities.

Model–based methods use a model of the monitored
process in order to produce the symptom or residual gener-
ator. If the system is not complex and can be described
accurately by the mathematical model, fault detection is
directly performed by using a simple geometrical analysis
of residuals.

In real industrial systems however, since the modelling
uncertainty is unavoidable, the design of a robust fault
diagnosis scheme should consider the modelling uncertainty
with respect to the sensitivity of the faults. Several papers
addressed this problem. For example, optimal robust parity
relations were proposed in [4], and the threshold selector
concept was introduced in [8].
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One other promising approach is the decoupling between
disturbances and residuals achieved by means of a proper
observer scheme and design [9], [1]. This approach requires
the knowledge of a model of the process under investigation
and, in particular, of the disturbance distribution matrix.
Thus, modelling [9] or identification [10], [11], [12] proce-
dures can be defined to estimate the disturbance distribution
matrix.

This work aims to define a comprehensive methodology
for the diagnosis of actuator, component and sensor fault of
an industrial process by using an output estimation approach
[11], in conjunction with residual processing schemes which
may include a simple threshold detection [9].

Two main aspects of the proposed methodology should
be underlined. Firstly, the Fault Detection and Isolation
(FDI) model–based approach does not require any physi-
cal knowledge of the process under observation. A linear
mathematical model of the input–output links are, in fact,
obtained by means of identification schemes which use
Equation Error (EE), Errors–In–Variables (EIV) and State–
Space (SS) models [10], [11].

In the case of the EIV identification technique, it is based
on the Frisch scheme methodology [13], [11]. This approach
gives a reliable model of the plant under investigation, as
well as providing variances of the input-output noises [14],
[11]. Secondly, in this work linear prototypes for the design
of linear output estimators [11] have been developed instead
of complicated non–linear models obtained by modelling
techniques in connection with non–linear observers. In fact,
as the feature of system supervision is to monitor the
operation and performance of the system with respect to
an expected point of operation, linear system methods are
still very valid.

In particular, in this paper, the complete procedures
of model identification and residual generation for fault
diagnosis have been tested on the real data acquired from
a chemical process. The results coming from the real data
tests are reported and commented.

The paper is organised as follows. In Section II the prob-
lem statement is given and described from a mathematical
point of view. The fault diagnosis scheme is then presented
in Section III. In Section IV, the chemical industrial process
used to test the proposed methodology is presented and the
results concerning the diagnosis of faults are also reported.
Finally, conclusions reported in Section V close the paper.

II. PROBLEM FORMULATION

This section addresses the mathematical modelling of the
system under diagnosis for the problem of model–based
fault diagnosis. Let us suppose that a number of N samples



can be acquired form the monitored system depicted in
Figure (1). Such time sequences of data can represent the
input and the output variables u(t) ∈ �r and y(t) ∈ �m

of the process, with t = 1, . . . , N , respectively.
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Fig. 1. The monitored system.

In the general framework of linear systems, in this paper
we consider the description of the plant (1) and its input–
output measurements by means of a discrete–time, time–
invariant, input–output dynamic model with the following
structure:

y(t) = F(z) u(t) + G(z) e(t), t = 1, . . . , N. (1)

The entries of the discrete–time transfer matrices F(z) and
G(z) are parametrised as rational functions of polynomials
in the variable z, the coefficients of which are the model
parameters to be identified [10]. Since the equation error
term e(t) is introduced to describe the disturbance (un–
modelled dynamics) affecting the model, the system (1)
is often called equation error (EE) model structure. The
variable z represents the forward shift operator, i.e. z y(t) =
y(t+1) and it is consistent with the conventional definition
of the z–transform.

Depending on the structure of the transfer matrices F(z)
and G(z), the family of the EE models can describe the
classes of the so–called ARX (Auto–Regressive eXoge-
nous), ARMAX (Auto–Regressive Moving Average eXoge-
nous) and the most general Box–Jenkins (BJ) structures
[10].

The input–output models represented by the system fam-
ily (1) can be transformed into a state–space formulation,
in which a first–order difference equation exploits an aux-
iliary state vector x(t) ∈ �n [10]. Hence, the following
representation can also be considered:

{
x(t + 1) = A x(t) + B u(t) + H e(t)
y(t) = C x(t) + e(t) , t = 1, . . . , N,

(2)

where A, B, C and H are matrices of appropriate dimen-
sions that can be obtained by direct identification proce-
dures, e.g., the subspace approaches [15], [16].

Since the vector e(t) appears explicitly as in (1), the SS
representation (2) is known as the innovation form of the
state–space description.

Finally, another set of models which can be used for
identification purpose is represented by the EIV systems.

According to this theory, it is assumed that the monitored
system can be described by a linear, discrete–time, time–
invariant, dynamic model of the type:

y(t) = F(z) u(t), t = 1, . . . , N, (3)

where the transfer matrix F(z) consists of polynomial
rational function of z representing the link between the input
and the output measurements.

As depicted in Figure (1), the input and the output vari-
ables u∗(t) and y∗(t) are usually measured through actuator
and sensors. Generally, sensor and actuator measurements
are affected by additive noise, that can be modelled as:

{
u(t) = u∗(t) + ũ(t),
y(t) = y∗(t) + ỹ(t). (4)

According to the EIV model theory, the variables ũ(t)
and ỹ(t) are generally described as white, zero-mean,
uncorrelated Gaussian noises [13], [14], [11].

Since the error vector e(t) does not appear explicitly in
the EIV models as in (1), the uncertainty is represented by
the noise terms ũ(t) and ỹ(t) and their variances, that have
to be identified [14]. Hence, it is assumed that u(t) and y(t)
are the only available measurements from the real process.

These model sets (1), (2) and (3) belong to the most com-
monly used ones in practice and we have therefore reason
to present and use them since both explicit algorithms for
parameter identification and analytic results are available
[15], [10].

The model description in Eqs. (1), (2) and (3) assumes
fault–free system operations and working conditions. As
depicted in Figure (1), additive fault occurrence can be
modelled by means of the following relations:

{
u(t) = u∗(t) + fu(t)
y(t) = y∗(t) + fy(t) (5)

where fu(t) and fy(t) are the actuator and sensor faults,
respectively.

These vectors may be modelled by step and ramp signals
in order to describe the presence of bias or drift on the mea-
surements (abrupt and slowly developing faults). Signals
u(t) and y(t) represent the input and output measurements,
respectively, which have been used for the fault detection
task. Therefore, by neglecting actuator and sensor dynamics,
under fault–free assumptions (1), u(t) = u∗(t) and y(t) =
y∗(t).

On the other hand, the case of component faults fc(t)
cannot be described by Eqs. (5). On the other hand, by
assuming general detectability conditions [9], faults affect-
ing output measurements y(t) can be successfully detected
by monitoring both u(t) and y(t) signals. In particular, in
some cases, the fault fc(t) could be described as:

x(t + 1) = A x(t) + B u(t) + fc(t) (6)



where the fault is represented as the case when some
condition changes in the system rendering the dynamic
relations (2) invalid.

The orders and parameters (structures) of the EE and SS
models (1) and (2) can be estimated from the measured
data u(t) and t(t) by means of automatic identification
procedures available in the System Identification Toolbox
in Matlab environment [15], [10]. On the other hand, the
estimation of EIV models (3) was presented in [14] and
was achieved by a software program implemented in Matlab
environment by the same author [11].

Among all the systems presented above, the aim of the
paper consists of selecting the most accurate identified
model which is able to describe the measured data u(t)
and y(t) in the “best possible” way. Since the essence of
an identified model is its prediction aspect, we can introduce
the following performance index:

J =
m∑

i=1

1
N

N∑
t=1

(
ŷi(t) − yi(t)

)2
(7)

representing the sum of the mean square errors between the
i–th output vector ŷi(t) predicted by the different MIMO
models (1), (2) and (3) and the corresponding i–th output
measurement yi(t).

It is worthwhile noting how another very effective way
of evaluating the adequacy and flexibility of the identified
models consists in their use for performing complete sim-
ulations (i.e. using only the initial samples of the predicted
outputs) and in comparing the obtained predictions with
the measured output samples. This procedure gives the best
results when applied to sequences different from those used
to identify the model. The mean square prediction error (7)
between the measured outputs and the ones obtained by
simulation can be used to compare the different identified
models.

III. RESIDUAL GENERATION

The problem treated in this work regards the diagnosis
of faults on the basis of the knowledge of the measured
sequences u(t) and y(t). The structure of the fault detection
device is depicted in Figure (2).

The symptom or residual generation r(t) is implemented
by means of dynamic observers or Kalman filters, driven
by u(t) and y(t), in order to produce a set of signals from
which it will be possible to diagnose faults associated to
actuators, components and sensors. As depicted in Figure
(2), the symptom evaluation refers to a logic device which
processes the redundant signals generated by the first block
in order to unequivocally detect any fault occurrence.

Fault diagnosis is therefore achieved through the pro-
cessing of the residual signals r(t) = y(t) − ŷ(t) =
y(t) − C x̂(t). The are obtained comparing the system
measurements with the dynamic observer or Kalman filter
predictions designed on the basis of the identified model of
the process under diagnosis.

Residual
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evaluation
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y(t)
r(t)

Residuals Fault signals

Fig. 2. Logic diagram of the residual generator.

As an example, a dynamic observer for the SS model has
the following structure:

x̂(t + 1) = Ax̂(t) + Bu(t) + K
(
y(t) − C x̂(t)

)
(8)

x̂(t) being the observer state vector. The observer eigenval-
ues are often chosen in order to maximise fault detection
promptness and to minimise the occurrence of false alarms.
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Fig. 3. The observer (filter) residual generator scheme.

On the other hand, for the Kalman filter design, the
essential difference regards the choice of the feedback
matrix K which is computed by solving a Riccati equation.
The solution of this equation requires the knowledge also
of the variance matrices of the input and the output noises,
which can be identified by means of the dynamic Frisch
scheme [13], [14], [11].

The proposed FDI scheme is applied to a Continuous
Stirring Tank Reactor (CSTR) process [17], the dynamic
behaviour description of which has been achieved by using
a model obtained from identification procedures.

IV. CHEMICAL PROCESS FAULT DETECTION

The aim of the study presented in this paper is to
develop a general procedure for the diagnosis of faults
in a chemical process by means of identified models of
the process under investigation. In particular, the monitored
process is a real Continuous Stirring Tank Reactor, where
the reaction between reactant and product is exothermic.

The main input variables (r = 3) are: the reactor jacket
inlet temperature Tin(t) [K], the reactor temperature T (t)
[K] and the reactor cooling water rate q(t) [ m3

min ]. The main
output (m = 4) measurements are: the reactor jacket outlet
temperature Tout(t) [K], the product percentage conversion
C(t) [%], the number average molecular weight Nm(t)
[ g

mol ] and weight average molecular weight Wm(t) [ g

mol ].



The process objective is to maintain constant the reactor
polymer production by controlling the main input variables
in despite of the unmeasurable disturbance, i.e., the reactor
impurity concentration and fouling d(t). The importance of
this case study is that there are many examples of reactors
in industry like polymerisation reactor [17]. The CSTR with
cooling jacket is shown in Figure (4).

TT
TT

CW

HW

TC

TC TC

Fig. 4. Schematic of the CSTR process.

Hence, the process has r = 3 control inputs, u(t) =[
Tin(t), T (t), q(t)

]
, while the output measurements (m =

4) are y(t) = [Tout(t), C(t), Nm(t),Wm(t)]. These actual
signals can be acquired from the real plant depicted in
Figure (4).

The disturbance vector d(t) represents reactor impuri-
ties and fouling. Constant physical properties and constant
boundary pressures of all input and output streams are
assumed. Both process normal operating time series and
faulty data (with different amount of impurities and fouling)
have been measured from the real process. A sampling
rate of 0.5s. was used to acquire a number of N = 240
actual data sequences. The measurements acquired from the
actual chemical process have been modified for proprietary
reasons.

Therefore, according to Section (II), several families
of multiple input–multiple output (MIMO) models (three
inputs and four outputs) have been identified by using
a batch sequence of normal operating data. Each MIMO
model of type (1), (2) and (3) is driven by u(t) and provides
the prediction of the output ŷ(t) for t = 1, . . . , N .

Table (I) shows the performances of the different iden-
tified models by reporting the values of the J index (7)
with respect to the identification data. Each model has been
tested also in different operating conditions and the output
reconstruction errors J are compared in Table (I). Several
time series of batch data from by reactor corresponding to
different amounts of reactor impurities and fouling (valida-
tion data) have been also exploited in order to validate the
ARX, ARMAX, BJ, SS and EIV models.
On the basis of the simulation results summarised in Table
(I), a MIMO SS model can be chosen to describe with the
“best accuracy” the monitored process dynamics.

The CSTR process data contains several faults. Some of
these faults are known (actuator fu(t) and sensor fy(t)), and
other are unknown (component or system fc(t)). Abrupt

TABLE I

CSTR MODEL PERFORMANCES J WITH IDENTIFICATION AND

VALIDATION DATA.

Model Order J (Ident.) J (Valid.)
ARX (EE) 5 0.1203 0.4631

ARMAX (EE) 3 0.0067 0.0161
BJ (EE) 3 0.0826 0.0996

SS 4 0.0034 0.0081
EIV 5 0.1082 0.3511

fault dynamics can be associated with a step change in
process variables. On the other hand, slow developing faults
can be associated with an increase in the variability of some
process variables, e.g., a slow drift in the reaction kinetics.

In this work different fault cases have been considered:
(a) the reactor jacket inlet temperature Tin(t) (sudden ac-
tuator fault fu(t)), (b) the reactor jacket outlet temperature
Tout(t) (incipient sensor fault fy(t)) and (c) the process
fc(t) fault (reactor impurities and fouling) concerning the
product percentage conversion C(t) have been considered
in the following.

Therefore, in such fault scenario, in order to successfully
perform the fault detection task, three process measurements
Tin(t), Tout(t) and C(t) are exploited.

The residual r(t) generation has been performed ac-
cording to the fault diagnosis scheme presented in Section
(III). The dynamic observers for the residual signal r(t)
computation can be designed on the basis of the most
accurate identified SS model of the process under diagnosis.
Observer eigenvalues have been selected with a trial and
error procedure in order to maximise the fault residual
sensitivity and to minimise the false alarm occurrence [11].
On the other hand, the Kalman filters design requires
the identification noise covariance matrices affecting the
input–output measurements. They have been estimated by
exploiting the Frisch scheme identification method [14],
[11].

As an example, Figure (5) represents fault–free and faulty
residual r(t) abrupt change for the case in which the
additive actuator fault fu(t) affects the reactor jacket inlet
temperature Tin(t) commencing at the sample 50 (t = 25s.).

On the other hand, Figure (6) represents the healthy
and the faulty residual r(t) slow variation for the case in
which the additive sensor fault fy(t) affects the reactor
jacket outlet temperature Tout(t) starting at the sample 150
(t = 75s.).

Finally, Figure (7) represents the fault–free and the faulty
residual r(t) changes when a reactor system fault fc(t)
affects the product percentage conversion C(t). Such a
process fault fc(t) is due to the formation of reactor
impurities and fouling.

It is worthwhile noting that, in general, in order to achieve
the maximal fault detection capability, the measurement
corresponding to the most sensitive output y(t) to a fault
signal has to be selected. Moreover, with reference to this
case study, the monitored signals are enough to accomplish



Fig. 5. Fault case (a) concerning the reactor jacket inlet temperature
Tin(t).

Fig. 6. Fault case (b) regarding the reactor jacket outlet temperature
Tout(t).

fault isolation, as well [11].

V. CONCLUSION

The complete design procedure for FDI in actuators,
components and sensors of an industrial process was de-
scribed in this work. The fault diagnosis was performed by
using a bank of dynamic observers or Kalman filters. Faults
on the component of the system, actuator and sensors were
therefore considered. The suggested method did not require
any physical knowledge of the process under observation
since the input–output links were obtained by means of an
identification scheme, which uses EE, EIV, and SS models.
In the situation of EIV models, the identification technique
(Frisch scheme) gave the variances of the input–output
noises, which are required in the design of the Kalman
filters.

Such a procedure was applied to the real data acquired

Fig. 7. Fault case (c) affecting the product percentage conversion C(t).

from an industrial chemical process. In order to analyse the
diagnostic effectiveness of the FDI system in the presence
of changes or drifts in measurements, faults described also
by ramp functions were generated. The results obtained by
this approach indicated that the minimal detectable faults on
the system actuator, component and sensor are of interest
for the industrial diagnostic applications.

The main aspect of this work was the use of linear system
identification and modelling methods, although the system
considered was non–linear. This is considered important to
avoid the complexities that would otherwise be inevitable
when non–linear models are used. There is certainly an
increasing interest in the use of non–linear methods (non–
linear observers, extended Kalman filters, fuzzy-logic meth-
ods, etc). However, as the feature of system supervision is
to monitor the operation and performance of the system
with respect to an expected point of operation, linear system
methods are still very valid. Deviations from expected
behaviour can be used to monitor system performance
changes as well as system component malfunctions.
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