
 
 

 

   Abstract—An adaptive neural network (NN) -based output 
feedback controller is proposed to deliver a desired tracking 
performance for a class of discrete-time nonlinear systems, 
which is represented in non-strict feedback form. The NN 
backstepping approach is utilized to design the adaptive 
output feedback controller consisting of: 1) a NN observer to 
estimate the system states with the input-output data, and 2) 
two NNs to generate the virtual and actual control inputs, 
respectively. The non-causal problem in the discrete-time 
backstepping design is avoided by using the universal NN 
approximator. The persistence excitation (PE) condition is 
relaxed both in the NN observer and NN controller design. 
The uniformly ultimate boundedness (UUB) of the closed-loop 
tracking error, the state estimation errors and the NN weight 
estimates is shown.     

I. INTRODUCTION 
HE adaptive neural network (NN) backstepping control 
approach is a potential solution to control a larger class 

of nonlinear systems since the NNs are nonlinear in the 
tunable parameters. By using NNs in each stage of the 
backstepping procedure to estimate certain nonlinear 
functions, a more suitable control law can be designed 
without using the LIP assumption and the need for a 
regression matrix of the standard backstepping approach 
[1]. 
   Adaptive NN backstepping state feedback control of 
nonlinear discrete-time systems in strict feedback form has 
been addressed in the literature [2], where the nonlinear 
system is expressed as ( ) ( )( ) ( )( ) ( )kxkxgkxfkx iiiiii 11 ++=+ , 
and ( ) ( )( ) ( )( ) ( )kukxgkxfkx nnnnn +=+1  where ( ) Rkxi ∈   

is the state, ( ) Rku ∈  is the control input, 

( ) ( ) ( )[ ] iT
ii Rkxkxkx ∈= ,,1 L  and ( )1,,1 −= ni K . For 

the strict-feedback systems [1], the nonlinearities 
( )( )kxf ii  and ( )( )kxg ii  depend only upon 

states ( ) ( )kxkx i,,1 K , i.e., ( )kxi . In state feedback 
control design, the control input depends on the available 
states. If the states are not available for measurement or if 
they are too expensive to measure, an observer is used to 
estimate the states, and then the estimated values will be 
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substituted for the unavailable states in the output feedback 
controller design.  
   Several output feedback control schemes by using the 
backstepping design [3-4] in discrete time are developed 
for the strict feedback nonlinear systems. However, for the 
non-strict feedback nonlinear systems, the previous 
methods will result in a non-causal control problem (the 
current control depends on the future system states). 
Therefore, an adaptive NN output feedback controller is 
proposed to deliver a desired tracking performance for a 
class of discrete-time nonlinear systems in non-strict 
feedback form. Several practical systems, for instance the 
spark ignition engine dynamics operating either with high 
EGR levels or under lean operation [5], can be represented 
in non-strict feedback form. The non-causal problem is 
overcome by employing the NN approximator.  
    The proposed adaptive NN output feedback controller 
design employs the backstepping approach and it includes 
three NNs: 1) a NN observer to estimate certain system 
states with the input-output data, and 2) two NNs to 
generate the virtual and real control input, respectively. The 
main contributions of this paper can be summarized as 
follows: 1) the adaptive NN output feedback control 
scheme is extended to the non-strict feedback nonlinear 
systems. The non-causal problem is confronted by 
employing the universal NN approximator; 2) the 
requirement of the PE condition for the boundedness of NN 
weight estimates is relaxed for both the NN observer and 
controller design by using novel NN weight updating rules 
and selecting the overall Lyapunov function consisting of 
system tracking error, system state estimation errors and 
NN weight estimation errors; 3) a well-defined controller is 
presented by overcoming the problem of ( )( )kxg iiˆ  
becoming zero since a single NN is used to approximate 
both the nonlinear functions ( )( )kxf ii  and ( )( )kxg ii ; 4) 

the assumption that the sign of ( )( )kxg ii  is known a priori 
is relaxed. The uniformly ultimate boundedness (UUB) of 
the closed-loop tracking error, the state estimation errors 
and the NN weight estimates is shown.   

II. NONLINEAR SYSTEM DESCRIPTION AND NN OBSERVER DESIGN 

A. The Nonlinear System Description 
   The discrete-time nonlinear system in non-strict feedback 
form is expressed as: 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )kdkxkxkxgkxkxfkx '
122112111 ,,1 ++=+ ,  (1) 
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( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )kdkukxkxgkxkxfkx '
22122122 ,,1 ++=+ ,  (2) 

( ) ( )kxky 1= ,                                    (3) 

where ( ) Rkx ∈1  and ( ) Rkx ∈2 are the states, ( ) Rku ∈  

is the control input, ( ) Rky ∈  is the system output, state 

( )kx2  is not measurable, ( ) Rkd ∈'
1  and ( ) Rkd ∈'

2  are 
bounded unknown disturbances, whose bounds are given 
by ( ) '

1
'
1 mdkd < and ( ) '

2
'
2 mdkd < . 

   Equations (1) and (2) represent a discrete-time nonlinear 
system in non-strict feedback form, since unknown 
functions ( )⋅1f  and ( )⋅1g depend upon both states ( )kx1  

and ( )kx2 , unlike the case of strict feedback systems, 
where ( )⋅1f  and ( )⋅1g  depend upon only the state ( )kx1 .    

   The control objective is to drive the system state ( )kx1  to 

track the desired trajectory ( )kx d1 . Since ( )kx2  is 
considered unavailable, it is estimated by the NN observer. 
Subsequently, the estimated state is used to design the 
adaptive NN output feedback controller.   
   Throughout this paper, all quantities with “^” represent 
estimated quantities. In addition, quantities with “~” 
represent the estimation errors. Subscripts “o” and “c” refer 
to the observer and the controller quantities, respectively. 

B. Observer Structure 
   Considering the system (1) and (2), for simplicity, let us 
denote ( )kfi  for ( ) ( )( )kxkxfi 21 , , ( )kgi  for 

( ) ( )( )kxkxgi 21 , , 2,1=∀i , where ( )kfi  and ( )kgi  are 
considered smooth functions, which are unknown. The 
system under consideration can be written as 

( ) ( ) ( ) ( ) ( )kdkxkgkfkx '
12111 1 ++=+ ,      (4) 

( ) ( ) ( ) ( ) ( )kdkukgkfkx '
2222 1 ++=+ .       (5)                                              

   Writing system (4) and (5) into the vector form as 
( ) ( ) ( )kdkfkx '1 +=+ ,                (6) 

   where  
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   The term ( )1−kf  can be viewed as an unknown smooth 
function vector, and it can be estimated by a NN [6].  

( )( )1))1(()1( −+−=− kzkzvwkf ooo
T
o

T
o εϕ  

( )( )1))1(( −+−= kzkzw ooo
T
o εϕ ,         (8) 

 where the input to the NN is taken as 
( ) ( ) ( ) ( )[ ] 3

21 1,1,11 Rkukxkxkz T
o ∈−−−=− , the matrix 

2×∈ on
o Rw  and on

o Rv ×∈ 3 represent the target output and 
hidden layer weights, the hidden layer activation function 

( )( )1−kzoϕ  represents  ( )( )1−kzv o
T
oϕ , on denotes the 

number of the nodes in the hidden layer, 

and ( )( ) Rkzoo ∈−1ε is the functional approximation 
error. It is demonstrated in [6] that, if the hidden layer 
weight, ov , is chosen initially at random and held constant 
and the number of hidden layer nodes is sufficiently large, 
the approximation error ( )( )1−kzooε can be made 

arbitrarily small over the compact set RS ⊂ since the 
activation function forms a basis.  
   The proposed NN observer for (6) is defined as 

))1(ˆ()1(ˆ))1(ˆ()1(ˆ)(ˆ −−=−−= kzkwkzvkwkx o
T
oo

T
o

T
o ϕϕ ,   (9) 

where ( ) ( ) ( )[ ] 2
21 ˆ,ˆˆ Rkxkxkx T ∈=  is the estimated value 

of ( )kx , and ( ) ( ) ( ) ( )[ ] 3
21 1,1ˆ,1ˆ1ˆ Rkukxkxkz T

o ∈−−−=−  
is the input to the NN observer, the 
matrix ( ) 21ˆ ×∈− on

o Rkw  is the actually output layer 

weight, the ( )( )1ˆ −kzoϕ  represents  ( )( )1ˆ −kzv o
T
oϕ .  Here, 

it is assumed that the initial value of ( )0u  is bounded. In 
the next section, via Lyapunov analysis, it is shown that all 
the values of ( )ku  are bounded Rk ∈∀ . 

C. Observer Error Dynamics 
    Define the state estimation errors as 

)()(ˆ)(~ kxkxkx iii −=   2,1=i .              (10) 
   The estimation errors can be expressed in a vector form 
as 

)()(ˆ)(~ kxkxkx −= ,                     (11) 

   where 2)(~ Rkx ∈ .  Combining (6), (8), (9) and (11), we 
obtain the estimation error dynamics as  

))1(ˆ()1(ˆ)()(ˆ)(~ −−=−= kzkwkxkxkx o
T
o ϕ  

          ( )( ) )1('1))1(( −−−−−− kdkzkzw ooo
T
o εϕ  

  )1()1( −+−= kdk ooξ ,                                    (12) 
   where 

( ) ( ) ooo wkwkw −−=− 1ˆ1~ ,                  (13) 

   ))1(ˆ()1(~)1( −−=− kzkwk o
T
oo ϕξ  

( ) ))1(ˆ()1(ˆ −−−= kzwkw o
T

oo ϕ ,              (14) 

( )))1(())1(ˆ())1(~( −−−=− kzkzwkzw oo
T
oo

T
o ϕϕϕ ,       (15) 

and 
( )( )1)1('))1(~()1( −−−−−=− kzkdkzwkd ooo

T
oo εϕ .     (16) 

III. ADAPTIVE NN OUTPUT FEEDBACK CONTROLLER DESIGN  

A. Adaptive NN Output Feedback Controller Design 

Assumption 1: The desired trajectory ( )kx d1  is a smooth 

function, and hence it is bounded over the compact set S .           
Assumption 2: The unknown smooth functions, ( )kgi , 

2,1=∀i  are bounded away from zero within certain 



 
 

 

compact set S  as  ( ) 0111 >>> mM gkgg  and 

( ) 0222 >>> mM gkgg , respectively.               

   Next the adaptive NN output feedback control design is 
discussed. 

Step 1:  Virtual controller design. 
   Define the tracking error between actual and desired 
trajectory as 

                  ( ) ( ) ( )kxkxke d111 −= ,                     (17) 

where ( )kx d1  is the desired trajectory. Combining with 
(4), (17) can be rewritten as 
( ) ( ) ( )111 111 +−+=+ kxkxke d                    

( ) ( ) ( ) ( ) ( )kdkxkxkgkf d
'
11211 1 ++−+= .    (18) 

   By viewing ( )kx2  as a virtual control input, a desired 
feedback control signal can be designed as 

( ) ( ) ( ) ( )( )11
11

1
2 ++−= kxkf

kg
kx dd .              (19) 

The term ( )kx d2 can be approximated by the first action 
NN as 

( ) ( )( ) ( )( ) ( )( ) ( )( )kxkxwkxkxvwkx TTT
d 111112 εφεφ +=+= , (20) 

where the input is the state ( )kx , 1
1

nRw ∈  and 
12

1
nRv ×∈ denote the constant ideal output and hidden 

layer weights, 1n  is the hidden layer nodes number, the 

hidden layer activation function ( )( )kxvT
2φ  is simplified as 

( )( )kxφ , and ( )( )kx1ε  is the approximation error.   

   Since ( )kx2  is unavailable, the estimated state ( )kx̂ is 
selected as the NN input. Consequently, the virtual control 
input is taken as 

( ) ( ) ( )( ) ( ) ( )( )kxkwkxvkwkx TTT
d ˆˆˆˆˆ 1112 φφ == ,      (21) 

where ( ) 1
1ˆ nRkw ∈  is the actual weight matrix for the first 

action NN . Define the weight estimation error by 
( ) ( ) ( )kwkwkw 111 ˆ~ −= ,                 (22) 

Define the error between ( )kx2  and ( )kx d2ˆ as 

( ) ( ) ( )kxkxke d222 ˆ−= .                 (23) 

Equation (18) can be expressed using (23) for ( )kx2  as  
( ) ( ) ( ) ( ) ( )( ) ( ) ( )kdkxkxkekgkfke dd

'
1122111 1ˆ1 ++−++=+ , (24) 

or equivalently 
( ) ))()()()((1 11211 kdkkekgke ++=+ ξ ,       (25) 

where 
))(ˆ()(~)( 11 kxkwk T φξ = ,                         (26) 

)))(())(ˆ()(())(~()( 11 kxkxkwkxkw TT φφφ −= ,  (27) 
and 

( ) ( ) ))(~()()(
)(

)( 11
1

'
1

1 kxkwkx
kg
kdkd T φε +−= .     (28) 

Step 2:  Design of the control input u(k). 
   Rewriting the error ( )ke2  from (23) as  
( ) ( ) ( )1ˆ11 222 +−+=+ kxkxke d                        

( ) ( ) ( ) ( ) ( )kdkxkukgkf d
'
2222 1ˆ ++−+= , (29) 

where ( )1ˆ2 +kx d  is the future value of ( )kx d2ˆ . Here, 

( )1ˆ2 +kx d  is not available in the current time step.  
However, from (19) and (21), it can be clear that ( )1ˆ2 +kx d  

is a smooth nonlinear function of the state ( )kx , virtual 

control input ( )kx d2ˆ  and the system errors ( )ke1  and 

( )ke2 . Consequently, ( )1ˆ2 +kx d  is assumed to be 
approximated by using a NN.     
    Select the desired control input by using the second NN 
in the controller design as 

( ) ( ) ( ) ( )( ) ( )kelkxkf
kg

ku dd 1122
2

1ˆ1
+++−=  

( )( ) ( )( )kzkzvw TT
222 εσ += ( )( ) ( )( )kzkzwT

22 εσ += ,    (30) 

where 2
1

nRw ∈  and 25
1

nRv ×∈ denote the constant ideal 

output and hidden layer weights, 2n  is the hidden layer 
nodes number, the hidden layer activation function 

( )( )kzvT
2σ  is simplified as ( )( )kzσ , ( )( )kz1ε  is the 

approximation error, Rl ∈1  is the design constant, 

( ) 5Rkz ∈  is the NN input, which is given by (31). 

Considering the fact state ( )kx2  cannot be measured, 

( )kz  is substituted with ( ) 5ˆ Rkz ∈ , where 

( ) ( ) ( ) ( ) ( ) ( )[ ] 5
211221 ,,ˆ,, Rkekelkxkxkxkz T

d ∈= ,   (31)  
   and 

( ) ( ) ( ) ( ) ( ) ( )[ ] 5
211221 ˆ,ˆ,ˆ,ˆ,ˆˆ Rkekelkxkxkxkz T

d ∈= , (32) 
  where 

( ) ( ) ( )kxkxke d111 ˆˆ −= ,                 (33) 
   and 

( ) ( ) ( )kxkxke d222 ˆˆˆ −= .                (34) 
   The actual control input is now selected as 

))(ˆ()(ˆ)( 2 kzkwku T σ= ,               (35) 

   where ( ) 2
2ˆ nRkw ∈  is the actual output layer weights. 

        Substituting (30) and (35) into (29) yields 
))()()()(()1( 221122 kdkkelkgke ++=+ ξ ,   (36) 

where 
)()(ˆ)(~

222 kwkwkw −= ,                 (37) 

))(ˆ()(~)( 22 kzkwk T σξ = ,                (38) 



 
 

 

)))(())(ˆ()(())(~()( 22 kzkzkwkzkw TT σσσ −= , (39) 
and 

))(~()()(
)(

)( 22
2

'
2

2 kzkwk
kg

dkd T σε +−= . (40) 

   Equations (25) and (36) represent the closed-loop error 
dynamics. It is required to show that the estimation error 
(12), the system errors (25) and (36) and the NN weight 
matrices ( )kwoˆ , ( )kw1ˆ  and ( )kw2ˆ  are bounded.  

B. Weight Updates for Guaranteed Performance 

Assumption 3 (Bounded Ideal Weights): Let ow , 1w and 

2w be the unknown output layer target weights for the 
observer and two action NNs and assume that they are 
bounded above so that 

momo wwww 11 , ≤≤ , and mww 22 ≤ ,   (41) 

where +∈Rwom , +∈Rw m1  and +∈Rw m2  represent the 
bounds on the unknown target weights where the Frobenius 
norm [7] is used. 
Fact 1: The activation functions are bounded above by 
known positive values so that  

( ) mϕϕ ≤⋅ , ( ) mφφ ≤⋅  and ( ) mσσ ≤⋅ ,     (42) 

where +∈Rmϕ , +∈Rmφ and +∈Rmσ are the upper bounds. 
Assumption 4 (Bounded NN Approximation Error): The 
NN approximation errors ( )( )1−kzooε , ( )( )kx1ε  

and ( )( )kz2ε  are bounded over the compact set RS ⊂  

by omε , m1ε  and m2ε , respectively [6].  

Fact 2: The terms ( ) 21 Rkdo ∈− , ( ) Rkd ∈1  and 

( ) Rkd ∈2  are bounded over the compact set S  by 

( ) ommmomomo dwdkd εϕ ++=≤− '1 ,           (43) 

   where +∈Rdm
'  is the upper bound for ( )1' −kdo , 

( ) mmm
m

m
m w

g
ddkd φε 11

1

'
1

11 ++=≤ ,                 (44) 

   and  

( ) mmm
m

m
m w

g
ddkd φε 11

1

'
1

21 ++=≤ ,           (45) 

Theorem 1: Consider the system given in (1) and (2) and 
let the Assumptions 1 through 4 hold. Let the unknown 
disturbances be bounded by ( ) '

1
'
1 mdkd ≤  and 

( ) '
2

'
2 mdkd ≤ , respectively. Let the observer NN weight 

tuning be given by 
T

o
T
ooooo Ikelkzkwkzkwkw ))1())(ˆ()(ˆ))((ˆ()(ˆ)1(ˆ 11 ++−=+ ϕϕα ,(46) 

where [ ]TI 1,1= , with the virtual control NN weight 
tuning be provided by 

))())(ˆ()(ˆ))((ˆ()(ˆ)1(ˆ 111111 kelkxkwkxkwkw T +−=+ φφα , (47) 
and the control input weight be tuned by 

))())(ˆ()(ˆ))((ˆ()(ˆ)1(ˆ 111222 kelkzkwkzkwkw T +−=+ σσα , (48) 

where ,,, 21 RRRo ∈∈∈ ααα and Rl ∈1  are design 
parameters. Let the NN observer, virtual and actual control 
inputs be defined as (9), (21) and (35), respectively. The 
estimation error (12), the tracking errors (25) and (36) and 
the NN weights ( )kwoˆ , ( )kw1ˆ  and ( )kw2ˆ  are UUB with 
the bounds specifically given by (A.12) through (A.17) 
provided the design parameters are selected as: 

(1) ( ) ,10 2 << ko ϕα                             (49) 

(2) ( ) 10 2
1 << kφα ,                                  (50) 

(3) ( ) ,10 2
2 << kσα                                    (51) 

(4) 
mgg

l
m 2

1

1
133

1
< ,                                 (52) 

Proof: See Appendix.                                                          
Remark 1: A well-defined controller is developed in this 
paper by avoiding the problem of ( ) 2,1,ˆ =∀ikgi  
becoming zero. 
Remark 2: It is important to note that in this theorem there 
is no PE condition for the NN observer and NN controller 
as well as the linearity in the parameters assumption, in 
contrast with standard work in the discrete-time adaptive 
control. 
Remark 3: Generally, a nonlinear separation principle is 
not valid and hence it is relaxed in this paper for the 
controller design.   

IV. SIMULATION 
   To verify the performance of the adaptive NN output 
feedback controller, consider the following nonlinear 
system, given in non-strict feedback form, as 

( ) ( )
( )( ) ( ) ( )kxkx
kx

kx
kx 212

2

1
1 2

564
11 ++

+
−=+ ,    (53) 

( ) ( )
( )( ) ( ) ( )( ) ( )ku

kxkxkx
kxkx ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

−+
+

−=+ 2
2

2
1

2
1

2
2 1

7
116

11 , (54) 

( ) ( )kxky 1= ,                               (55) 

where ( ) 2,1, =∈ iRkxi  are the states, ( ) Rku ∈  is the 

control input, ( ) Rky ∈  is the system output, the state 

( )kx1  is known via the output ( )ky , the state ( )kx2  is 

immeasurable. Note that ( ) ( )
( )( ) ( )kx
kx

kx
kf 12

2

1
1 564

1
+

+
−=  

is a nonlinear function of both states ( )kx1  and ( )kx2 . 



 
 

 

   The objective is to drive the state ( )kx1  to track the 
reference signal, which was selected as 

( ) ( )ξω += kTkx d sin21 , where 
2

,1.0 πξω == with 

a sampling interval of T = 50msec. The total simulation 
time is taken as 250 seconds. 1l  is taken as -0.05.  
   The number of hidden layer neurons in the observer 
NN, ( )kwT

oϕˆ , controller NN1 ( )kwTφ1ˆ  and NN2 

( )kwTσ2ˆ  each was taken as 15.  For weight updating, the 

learning rate is selected as 01.0=oα , 1.01 =α  and 

1.02 =α . The inputs to observer NN, ( )kwT
oϕˆ , control 

NNs, ( )kwTφ1ˆ  and ( )kwTσ2ˆ  are selected as ( )kzoˆ , ( )kx̂  

, and ( )kẑ  (32), respectively.  The initial inputs to the 
hidden layer weights for the three NNs are selected at 
random over an internal of [0, 1] and all the activation 
functions used are hyperbolic tangent sigmoid functions.  
The initial output layer weights for all the three NN are 
chosen to be zero. 
   Two cases are considered: first, the adaptive output 
feedback NN controller is considered to the system, and 
then a proportional controller is applied.  Fig. 1 illustrates 
the performance of the adaptive NN output feedback 
controller. From the figure, it is obvious that the system 
tracking performance is superior even when the state is not 
measured. The NN control input is presented in Fig. 2 
where it clearly shows that the input is bounded. On the 
other hand, Figs 3 and 4 present the performance of the 
conventional proportional controller and the control input. 
The gain of the controller is also taken as -0.05. From Fig. 
3, it is clear that the tracking performance has deteriorated 
in comparison with Fig. 1.  
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   Fig. 1.  Performance of the adaptive NN output controller.                   
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Fig. 2. Adaptive NN controller input. 
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Fig. 3. Performance of a conventional controller without NNs.                            
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Fig. 4. Control input. 

V. CONCLUSION 
   An adaptive neural network (NN) -based output feedback 
controller is proposed to deliver a desired tracking 
performance for a class of discrete-time nonlinear systems, 
which is expressed in non-strict feedback form. The 
adaptive NN output feedback controller consists of three 
NNs: 1) a NN observer to estimate the system states with 
the input-output data, and 2) two NNs to generate the 
virtual and real control inputs, respectively. The uniformly 
ultimate boundedness (UUB) of the closed-loop tracking 
error, the state estimation errors and the NN weight 
estimates is shown.  Results show that the performance of 
the proposed controller schemes is highly satisfactory while 
meeting the closed loop stability. The controller scheme 
does not require an offline learning phase and the NN 
weights can be initialized randomly or to zeros.  



 
 

 

APPENDIX 
Proof of Theorem 1: Define the Lyapunov function  

)(
6

1)(
6

)1(~)1(~
4
1)( 2

22
2

2
12

1

2 ke
g

ke
g
lkxkxkJ

mm

T ++−−=  

 )(~)(~1)(~)(~1))1(~)1(~(1
22

2
11

1

kwkwkwkwkwkwtr TT
o

T
o

o ααα
++−−+ ,(A.1) 

   where +∈Rl2  is a design parameter. The first difference 
of Lyapunov function is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )kJkJkJkJkJkJkJ 654321 ∆+∆+∆+∆+∆+∆=∆ , (A.2) 

   The first term, ( )kJ1∆ , is obtained using (12) as 

 222
1 )1(~

4
1)1(

2
1)1(

2
1)( −+−+−≤∆ kxkdkkJ ooξ , (A.3) 

   Now taking the second term in the first difference (A.1) 
and substituting (25) into (A.1), we get 
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   Taking the third term in (A.1) and substituting the (36) 
into it and simplifying, we get 

 )(
6

1)(
2
1)(

2
1)(

2
)( 2

22
2

2
2

2
2

2
1

2
1

3 ke
g

kdkkelkJ
m

−++≤∆ ξ , (A.5) 

   Taking the fourth term in (A.1) and substituting the (46) 
and simplifying, we get 
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   The fifth term ( )kJ5∆  is obtained using weight updating 
rule (47) as 
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   Using (48), the last term ( )kJ6∆  is expressed as 
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   Combining (A.3) through (A.8) to get the first difference 
and simplifying to get 
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   where  
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   This implies that ( ) 0≤∆ kJ  as long as (49) through (52) 
hold along with the following condition 
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 and                          ( ) MDkx 21~ >− ,                     (A.12) 

or                       
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or                          ( ) Mo Dk 21 >−ξ ,               (A.15) 

or                          ( ) MDk 21 >ξ ,                      (A.16) 

or                          ( ) MDk 22 >ξ ,                      (A.17) 

   According to the standard Lyapunov extension theorem 
[7], this demonstrates that ( )1~ −kx , ( )ke1 , ( )ke1  and the 
weight estimation errors are UUB. The boundedness of 
( )1−koξ , ( )k1ξ  and ( )k2ξ  implies that ( )kwo

~ , ( )kw1
(  

and ( )kw2
(  are bounded, and this further implies that the 

weight estimates oŵ (k), 1ŵ (k) and 2ŵ (k) are bounded.  
Therefore all the closed-loop signals in the observer-
controller system are bounded.         
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