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Abstract— Observers design is addressed for a class of
continuous-time, nonlinear dynamic systems with Lipschitz
nonlinearities. A full-order state estimator is considered that
depends on an innovation function made up of two terms: a
linear gain and a feedforward neural network that provides a
nonlinear contribution. The gain and the weights of the neural
network are chosen in such way to ensure the convergence of
the estimation error. Such a goal is achieved by constraining
the derivative of a Lyapunov function to be negative definite
on a sampling grid of points. Under assumptions on the
smoothness of the Lyapunov function and of the distribution of
the sampling points, the negative definiteness of the derivative
of the Lyapunov function is obtained by minimizing a cost
function that penalizes the constraints that are not satisfied.
Suitable sampling techniques allow to reduce the computa-
tional burden required by the network’s weights optimization.
Simulations results are presented to illustrate the effectiveness
of the proposed method.

I. I NTRODUCTION

Various methods are reported in the literature to construct
observers. A Lyapunov function is usually considered to
guarantee the convergence to zero of the estimation error.
Unfortunately, there is no general methodology to find such
Lyapunov function.

The first convergence results on observers for nonlinear
systems were presented in [1] and [2]. The state-space trans-
formation approach (see [3], [4]) allows one to easily find an
observer with linear error dynamics in the transformed state-
space. In this context, high-gain observers were considered
[5] and frequently used in cascade with a regulator for
output feedback control. The design of constant-gain ob-
servers has been faced in [6], [7]. To deal with the problem
of uncertainties, variable-structure observers were proposed
[8]. In [9], [10] the design of sliding-mode observers for
nonlinear systems was addressed.

In this paper, state estimation problems are considered
for continuous-time, nonlinear dynamic systems with Lip-
schitz nonlinearities by means of a full-order observer
that is constructed using a suitable innovation function.

Under some regularity assumptions on the system and
measurement equations and on the innovation function, a
procedure is developed to design such an observer, which
can be implemented by means of a class of approximating
networks such as feedforward neural networks.

In order to guarantee the convergence of the estimation
error, a quadratic Lyapunov function is sought for a param-
eterized innovation function that is made up of two terms: a
linear gain and a feedforward neural network that provides
a nonlinear contribution. The design parameters (i.e., the
linear gain and the weights of the neural network) can
be chosen in such a way to constrain the derivative of a
quadratic Lyapunov function to be negative on a sampling
grid of points on the Cartesian product of the state space
and the estimation error space. This is accomplished by
minimizing a cost function that penalizes the constraints that
are not satisfied in correspondence of the sampling points.
It is worth noting that the selection of the design parameters
is made completely off line (see also [11]). This is the main
advantage with respect to neural approaches to estimation
for nonlinear systems (see, among the most recent ones,
[12], [13], [14]) that rely on the on-line adaptation of the
neural weights.

Under assumptions on the distribution of the sampling
points and smoothness of the Lyapunov function, the neg-
ative definiteness of the Lyapunov function’s derivative is
ensured, thus the resulting observers provides a convergent
estimation error. In particular, it is shown that convergence
is obtained by using special deterministic sequences that
aim at optimizing the dispersion of the sampling points
(a measure that quantifies “how uniformly” the points are
spread).

The paper is structured as follows. Section II is devoted
to the description of the basic assumptions on the class
of nonlinear systems considered. The proposed observer
is constructed using approximating networks described in
Section III. Section IV presents a design method for such



observer. Simulation results are shown in Section V. Brief
comments and the conclusions are given in Section VI.

II. SYSTEM DESCRIPTION AND BASIC ASSUMPTIONS

We consider a class of systems described by
{ .

x= Ax + f (x)
y = C x ,

(1)

where x ∈ X ⊂ Rn is the state vector,X is compact,
y ∈ Rm is a vector of measurement,A ∈ Rn×n and
C ∈ Rm×n are matrices, andf : X → Rn . We make the
following assumption.

Assumption 1:Let Bx
4
= {x ∈ X : ‖x‖ < x̄ , x̄ > 0} .

Then,

(i) f : X → Rn is Lipschitz inBx , i.e, there exist
Lx

f ∈ R+ such that‖f(x1)− f(x2)‖ ≤ Lx
f ‖x1 −

x2‖, for all x1, x2 ∈ Bx ;
(ii) the pair (A,C) is observable.

Assumption 1 (i) guarantees the existence and uniqueness
of a local solution of the differential equation describing
the dynamics of the system (1) (see, for example, [15]).
Assumption 1 (ii) says that we focus on observable systems
that have the state-space representation (1) or that are
diffeomorphic to (1) (see, for an introduction, [16]).

A full-order state estimator for (1) is given by
.

x̂= A x̂ + f(x̂) + L (y − Cx̂) + γ (y − Cx̂) , (2)

where L ∈ Rn×m is a matrix and γ : Rm → Rn is
a function. The following assumption defines admissible
functionsγ.

Assumption 2:Let z
4
= y − Cx̂ ∈ Z ⊂ Rm and Bz

4
=

{z ∈ Z : ‖z‖ < z̄ , z̄ > 0} . Then γ : Z → Rn is locally
Lipschitz in Bz and such thatγ(0) = 0 .

The Lipschitz condition in Assumption (2) is a suffi-
cient requirement for having a unique local solution of
the differential equation (2) describing the estimator. The
condition γ(0) = 0 in Assumption (2) guarantees that, in
the absence of disturbances, if there existsT ≥ 0 such that
x̂(T ) = x(T ) , then x̂(t) = x(t) for every t ≥ T (see,
e.g., [17]). The innovation function has been chosen with
the above-written form for the sake of simplicity, although
it can be of a more general type [17], e.g., with a function
γ (Cx,Cx̂) such thatγ(z, z) = 0 , ∀z ∈ Z.

III. PARAMETERIZED ESTIMATORS VIA APPROXIMATING

NETWORKS

We face the problem of designing an estimator for system
(1) by searching for a matrixL and a functionγ associated
with a suitable Lyapunov function for the estimation error
e(t) = x(t) − x̂(t) of the observer (2). Towards this end,
we further restrict the class (2) of observers by considering

functionsγ that not only satisfy Assumption (2), but that
also have a special structure, corresponding to linear com-
binations of functions with a fixed structure and depending
on a vector wν ∈ Rl of parameters. More precisely, for
every ν ∈ N we define the following class of functions.
By C(K,Rn) we denote the space of continuous functions
defined on a compact setK ⊂ Rm , equipped with the
supremum norm.

Definition 1: Approximating networks of orderν are
functions belonging to the set

Aν
4
= { γν : K × Rl → Rn such that

(i) γν j(ξ, ωνj ) =
ν∑

i=1

cij ϕi(ξ, κi), ϕi : K × Rl

→ R, |cij | ≤ A, A ∈ R+, κi ∈ Rl, i =
1, . . . , ν, j = 1, . . . , n, ων j

4
= col(cij , κi : i =

1, . . . , ν);
(ii) ϕi(·, κi) bounded in aggregate, i.e., ∃M ∈
R+ such that ∀i = 1, . . . , ν, ∀κi ∈
Rl, sup

ξ∈K
|ϕi(ξ, κi)| ≤ M ;

(iii) ϕi(·, κi) is Lipschitz, i.e., ∀ i =
1, . . . , ν ∃Li ∈ R+ such that ∀κi ∈
Rl, |ϕi(ξ, κi)− ϕi(ξ′, κi)| ≤ Li|ξ − ξ′| ;
(iv) ϕi(·, κi) = 0 , i = 1, . . . , ν , ∀κi ∈ Rl . } .

Note that items (iii) and (iv) in Definition 1 take into
account the requirements of Assumption 2.

Thus, the estimator (2) takes on the form
.

x̂= A x̂ + f(x̂) + L (y − Cx̂) + γν (y − Cx̂, wν) , (3)

where γν : Rn×Rl → Rn ∈ Aν .
The definition above characterizes approximating net-

works as a particular kind of linear combinations of
variable-basis functions. More precisely, for eachi ϕi(·, ·)
is a given basis function andcij and the components
of κi are free parameters, lumped together in the vector

wν
4
= col (wν j , j = 1, . . . , n) ∈ RN (ν) , where N (ν) =

mkν + nν . In practice, as the inner parametersκiin each
basis function allow a wide flexibility, typically variable-
basis functions are obtained by varying such parameters
in a unique “mother function”ϕ(·, ·) . The properties of
variable-basis approximation and their application to opti-
mization problems have been extensively studied in [18],
[19], [20], [21].

As eachγν is a sum ofν Lipschitz functions bounded
by AM , it is Lipschitz. Then, we have the following

Proposition 1: For each ν, approximating Networks of
order ν are admissible innovation functions.

Once a type of approximating networks, i.e., a mother
function ϕ(·, ·) is chosen, the Lyapunov function for the
estimator (3) depends on the values ofL and wν . As to
the functionϕ, it is suitable to make a choice generating



sets Aν that have a closure as large as possible: loosely
speaking, the larger such a closure, the wider the choice
at our disposal for a Lyapunov function. So we shall use
approximating networks that are dense in the space of
continuous functions on compact sets, i.e., in the neural-
network parlance, that enjoy the “universal approximation
property”. Well-known examples of approximating net-
works are feedforward neural networks of the perceptron
type, with at mostν hidden units and bounded parameters
and radial-basis-functions with at mostν hidden units and
bounded input weights and variances. The proofs of the fact
that such functions are provided with the density property
in the spaceC(K,Rn), where K ⊂ Rm is compact, can
be found, for example, in [22] and [23].

To guarantee the possibility of finding an estimator
implemented with a “small” numberν of basis functions
also for vectorsx to be estimated with a large number
of components, we shall employ so-called “polynomially-
complex approximating networks”. Such networks have the
desirable property that the numberν of basis functions
required to guarantee a fixed approximation accuracy has
to grow, under mild conditions, at most polynomially with
the number of variables (in the case of the estimator (3),
the dimensionm of the measurement vector); see [18], [19],
[24] for details.

Once the structure of the approximating networkγν is
fixed, the parametersL and wν are chosen, and the output
y is known, the evolution of the estimated state vector
x̂ is completely determined by (3) according to the intial
conditions. Of course, the selection ofL and wν must
ensure the stability of the estimation error.

By (1) and (3), the dynamics of the estimation error is
given by

.
e= (A− LC) e + f(x)− f(x̂)− γν (C e, wν) . (4)

If a quadratic Lyapunov functionV = eT P e is considered
with a symmetric positive definite matrixP , we obtain

.

V = eT
[
(A− LC)T P + P (A− LC)

]
e

+ 2 [f(x)− f(x̂)− γν (C e,wν)]T P e .

By Assumption 1 (ii) the pair(A,C) is observable, so, for
any gain matrixL such thatA− LC is Hurwitz and any
symmetric positive definite matrixQ , there exists a unique
symmetric positive definite matrixP solving the Lyapunov
equation

(A− LC)T P + P (A− LC) = −Q .

Therefore, in order to guarantee the asymptotic stability of
the estimation error, we can impose

.

V≤ 0, i.e.,

2 [f(x)− f(x− e)− γν (C e,wν)]T P e− eT Q e ≤ 0

along the trajectories of both the system and the estimation
error dynamics. In the next section, we shall address this
specific issue.

IV. D ESIGN OF THE PARAMETERIZED ESTIMATOR BY

SAMPLING SEQUENCES AND OPTIMIZATION

Let E ⊂ Rn be a compact set where the estimation
error takes values and defineSM ⊂ X × E as a set of
M sample pointssi

4
= (xi, ei)T for i = 1, . . . ,M in the

Cartesian product of the state and estimation error spaces
and consider

.

V (si, wν)
4
= 2 [f(xi)− f(xi − ei)

− γν (C ei, wν)]T P ei − eT
i Q ei ,

i = 1, 2, . . . ,M . (5)

In the following, we show how it is possible to prove the
asymptotic convergence of the estimation error by imposing
the negativity of the derivative

.

V (si, wν) of the Lyapunov
function on the points ofSM . This corresponds to finding a
wν (i.e., optimizing a suitable approximating networkγν)
such that

.

V (si, wν) ≤ 0 , i = 1, 2, . . . , M. (6)

In order to ensure that the derivative
.

V (s, wν) is

negative forany s that belongs to a compact setS
4
= E×X,

we exploit the regularity ofV̇ and choose a sampling rule
that guarantees a suitably dense covering ofS.

To this end, definew∗ν,M as the parameters vector ob-
tained after optimizing the networkγν over M sample

points, and letV̇ ∗(s)
4
= V̇ (s, w∗ν,M ). By the Lipschitz

continuity of the functionsf andγ, it follows that for any
s, s′ ∈ S the functionV̇ ∗ is Lipschitz too, i.e., there exists
LV ∈ R+ such that|V̇ ∗(s)− V̇ ∗(s′)| ≤ LV ‖s− s′‖, .

As V̇ ∗(si) < 0 for all si ∈ SM , i = 1, . . . ,M , there
existsεV > 0 such that

εV
4
= − max

1≤i≤M
V̇ ∗(si) . (7)

Then, for anys ∈ S, we can write

V̇ ∗(s) ≤ V̇ ∗(s̃) + LV ‖s− s̃‖ ≤ LV sup
s∈S

‖s− s̃‖ − εV

where s̃
4
= arg min

1≤i≤M
‖s − si‖ is the sample point closest

to s. The quantityθ (SM )
4
= sup

s∈S
min

1≤i≤M
‖s − si‖ is called

the dispersionof the sequence ofM points [25] and is a
measure of their uniformity of distribution. Thus

V̇ ∗(s) ≤ LV θ (SM )− εV ,

So, V̇ ∗(s) is negative definite provided that the sample
sequence and the number of pointsM are such that

θ (SM ) <
εV

LV

Therefore, by [15][Theorem 3.1, p. 100], the estimation
error converges to zero.

In other words, we must guarantee that (i) the points of
SM are spread in the most uniform way onS (in such a
way that θ(SM ) is small), without leaving regions of the



space “undersampled” and (ii) that the points are “close
enough” to each other.

The discussion above enables us to state the following
result.

Theorem 1:Consider observer (3) for system (1) and
suppose that Assumptions 1 and 2 hold. If there exist a
gain matrix L, two symmetric positive definite matricesP
and Q, a set SM ⊂ E × X of sampling points, and a
parameters vectorw∗ν,M such that

(A− LC)TP + P (A− LC) = −Q (8)
.

V (si, w
∗
ν,M ) ≤ 0 , si ∈ SM , (9)

i = 1, 2, . . . , M ,

θ (SM ) <
εV

LV
, (10)

then for anye(0) ∈ E the estimation error of the observer
(3) converges to zero.

In order to satisfy the constraints expressed by (9), we
need to choose an approximating networkγν of a suffi-
ciently large order and optimize its parameters by minimiz-
ing a cost function that penalizes non-satisfied constraints.
Following [26], we use the cost

J =
M∑

i=1

(
max

{
0,

.

V (si, wν,M )
})2

. (11)

In the particular case in which the approximating net-
works γν are given by neural networks, the way of op-
timizing their parameters is quite different from standard
neural-network learning, where the goal is to minimize the
distance of the network’s output from given target values.
In our approach, as done in [26], we use an optimization
sometimes referred to asdistal training; so we have to em-
ploy ad-hoc techniques, which are often modified versions
of standard minimization algorithms. For example, in [26]
the satisfaction of the constraints is obtained by minimizing
a suitable quadratic penalty function using a specialized
version of the Levenberg-Marquardt algorithm. Note also
that this approach is somehow dual to the approach reported
in [26] to design closed-loop neural controllers for nonlinear
systems. For our simulations, we used a Monte Carlo
technique combined with a clustering algorithm, typically
employed in global optimization problems (see [27], [28]).

Condition (10) is related to the dispersion properties
of the grid SM . Monte Carlo sampling with uniform
distribution can satisfy these requirements, as long as
the sample sizeM is large enough. The best dispersion
properties, in the sense described above, belong to special
deterministicsequences calledlow-discrepancy sequences,
commonly employed in the fields of number-theoretic meth-
ods, statistics and quasi Monte Carlo integration. Examples
of such sequences are(t, n) − sequences, the Halton
sequence, and theHammersley sequence[27], [25]. The

use of low-discrepancy sequences for function learning by
neural networks is described in [29].

All such sequences attain deterministically a rate of
convergence for the dispersion of orderO

(
M−1/2n

) ≤
θ (SM ) ≤ O

(√
2nM−1/2n

)
, where the numberM of

points required to attain a desired dispersion can be com-
puted exactly. With respect to pure Monte Carlo sampling, it
is proven that these discretization schemes suffer less from
the formation of clusters of points in particular regions of
the space, which undermines the uniformity of the sampling.

V. NUMERICAL RESULTS

We consider the Van der Pol equation given by
.
x1= x2
.
x2= −9x1 + 2(1− x2

2)x2

y = x1 .
(12)

Although system (12) is not stable, it admits a limit cycle;
so the hypothesis of the compactness ofX is satisfied.

The design of an observer for (12) was made by choosing
L = (0.03,−0.06)T andQ equal to the identity and solving
the corresponding Lyapunov equation to findP .

The results obtained forx1(0) = x2(0) = 0 with a
selection of the initial estimated valuesx̂1(0) = x̂2(0) = 3
by using a 3-neuron feedforward neural network with 100
and 700 sampling points for training are shown in Fig.s 1
and 2, respectively. The results in the same conditions with
a 10-neuron feedforward neural network with 100 and 700
sampling points are shown in Fig.s 3 and 4, respectively.

From the figures it turns out that the performances
at steady state are quite good for all the cases. The
transient behaviors of the estimators depend on both the
approximation capability of the neural networks and on
the effectiveness of the training. The number of sampling
points may considerably affect the performances, as a larger
neural network requires a larger set of sampling points.
The bad behavior shown in Fig. 3 for an observer with a
10-neuron feedforward neural network trained using only
100 sampling points may be ascribed to an overfitting
phenomenon, due to the small number of discretization
points with respect to the number of neural units.

VI. CONCLUSIONS

A new method to design observers for a class of nonlinear
systems has been presented. The observer depends on an in-
novation function that is made up of two terms: a linear gain
and a feedforward neural network that provides a nonlinear
contribution. The gain and the neural network weights are
chosen in such way to guarantee the convergence to zero of
the estimation error by searching for a sufficiently smooth
Lyapunov function. We have shown that such a convergence
can be obtained by constraining the derivative of the Lya-
punov function to be negative on a well-shaped sampling
grid of points, as this, together with additional conditions
on the linear gain, ensures the asymptotic stability of the
estimation error. For what concerns the sampling points, the
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Fig. 1. Numerical results with a 3-neuron feedforward neural network and 100 sampling points for training.
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Fig. 2. Numerical results with a 3-neuron feedforward neural network and 700 sampling points for training.

use of so-called low-discrepancy sequences, which ensure
deterministic convergence with favorable rates when the
number of points grows, has been discussed.
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[18] V. Kurková and M. Sanguineti, “Bounds on rates of variable-basis
and neural-network approximation”,IEEE Trans. on Information
Theory, vol. 47, pp. 2659–2665, 2001.
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