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Abstract— In this paper, practical adaptive neural control is
presented for a class of nonlinear systems with unknown time
delays in strict-feedback form. Using appropriate Lyapunov-
Krasovskii functionals, the uncertainties of unknown time
delays are compensated for. Controller singularity problems
are solved by employing practical neural network control
based on decoupled backstepping design. It is proved that
the proposed design method is able to guarantee semi-globally
uniformly ultimate boundedness of all the signals in the closed-
loop system and the tracking error is proven to converge to a
small neighborhood of the origin. In addition, the residual set
of each states in the closed-loop systems can be determined
respectively.

I. INTRODUCTION

Recent years have witnessed tremendous efforts in adap-
tive control of certain class of nonlinear systems. Adaptive
control is well known for its great capability in compensat-
ing for linearly parameterized uncertainties. To overcome
these uncertainties and obtain global stability, some re-
strictions have to be made to system nonlinearities such
as matching conditions [1], extended matching conditions
[2], or growth conditions [3]. To overcome these restric-
tions, a recursive and systematic backstepping design was
developed in [2]. The overparametrization problem was
then removed in [4] by introducing the concept of tuning
function. Several adaptive approaches for nonlinear systems
with triangular structures have been proposed in [5], [6].
Robust adaptive backstepping control has been studied for
certain class of nonlinear systems whose uncertainties are
not only from parametric ones but also from unknown
nonlinear functions in [7], [8] and among others. For system
ẋ = f(x) + g(x)u, the unknown system function g(x)
causes great design dif£culty in adaptive control. Based
on feedback linearization, certainty equivalent control u =
[−f̂(x)+v]/ĝ(x) is usually taken, where f̂(x) and ĝ(x) are
estimates of f(x) and g(x), and measures have to be taken
to avoid controller singularity when ĝ(x) = 0. To avoid
the singularity problem, stable neural network controllers
have been constructed in [9] by augmenting a robustifying
portion, in [10], [11] by estimating the derivation of the
control Lyapunov function, and by introducing a family of
integral Lyapunov function in [12] which do not require the
estimate of the unknown function g(x).

Robust control of systems with time delays has attracted
much attention due to its mathematical challenge and ap-
plication demand in real-time control. The existence of
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time delays may make the stabilization problem become
much more dif£cult. Lyapunov-Krasovskii functionals [13]
combined with the LMI technique [14] has been used to
establish a framework for the stability and control of time-
delay systems. Robust control of time-delay systems using
the above-mentioned technique are also intensively inves-
tigated. However, for nonlinear systems with delay in the
state, few results are reported. In [15], [16], the authors have
studied a class of nonlinear time-delay systems in strict-
feedback form and systematic and practical backstepping
design has been presented. Under the mild assumption on
the upper bound of the unknown time-delay, the proposed
design based on the Lyapunov stability is delay-independent
in the sense that the design is totally free of unknown
delays. The controller singularity problem is solved by
introducing the practical design and using integral Lya-
punov function. However, due to the integral operation, the
controller is very complicated to practical implementation.
The derivation is also much involved due to coupling of
the integrations and the time-delay terms. Motivated by the
results [12], [17] in which the systems properties has been
fully exploited such that rather simple control scheme has
been developed without using integral-Lyapunov functions
and singularity problems has been avoided as well, we
present in this paper a direct NN controller for a class of
time-delay systems in strict-feedback form. By making a
simple assumption for the af£ne term gn(x) of control that
∂gn(x)/∂xn = 0, the controller design can be simpli£ed
using quadratic Lyapunov functions rather than integral-
Lyapunov functions. The main contribution of the paper
lies in: (i) the introduction of the practical control and the
re-construction of compact sets, which effectively avoid the
singularity problem and, at the same time guarantees the
feasibility and validity of the neural networks approxima-
tion; and (ii) the employment of decoupled backstepping
design, by which the stability analysis of the proposed
practical control can be carried out in a nested manner to
guarantee the closed-loop stability and and the residual set
of each state in zi coordinate can be iteratively individually
determined.

II. PROBLEM FORMULATION

Consider a class of single-input-single-output (SISO)
nonlinear time-delay systems

ẋi(t) = gi(x̄i(t))xi+1(t) + fi(x̄i(t)) + hi(x̄i(t − τi)),
1 ≤ i ≤ n − 1

ẋn(t) = gn(x̄n(t))u + fn(x̄n(t)) + hn(x̄n(t − τn)) (1)



where x̄i = [x1, x2, ..., xi]T , x = [x1, x2, ..., xn]T ∈ Rn

and u ∈ R are the state variables and system input respec-
tively, gi(·), fi(·) and hi(·) are unknown smooth functions,
and τi are unknown time delays of the states, i = 1, ..., n.
The control objective is to design an adaptive controller
for system (1) such that the state x1(t) follows a desired
reference signal yd(t), while all signals in the closed-loop
system are bounded. De£ne the desired trajectory x̄d(i+1) =
[yd, ẏd, ..., y

(i)
d ]T , i = 1, ..., n − 1, which is a vector of yd

up to its ith time derivative y
(i)
d .

A1). The system states x(t) and part of their time
derivatives, ˙̄xn−1(t), are all available for feedback.

A2). The signs of gi(·) are known, and there exist con-
stants gmax ≥ gmin > 0 such that gmin ≤ |gi(·)| ≤ gmax,
and ∂gn(x)/∂xn = 0.

A3). The desired trajectory vectors x̄di, i = 2, ..., n are
continuous and available, and x̄di ∈ Ωdi ⊂ Ri with Ωdi

known compact sets.
A4). The unknown smooth functions hi(x̄i(t)) satisfy the

following inequality |hi(x̄i(t))| ≤
∑i

j=1 |xj(t)|�ij(x̄i(t))
where �ij(·) are known smooth functions.

A5). The size of the unknown time delays is bounded by
a known constant, i.e., τi ≤ τmax, i = 1, ..., n.

The Assumption A2) implies that unknown constants
gi are strictly either positive or negative. Without losing
generality, we shall only consider the case when gi(·) > 0.
It should be emphasized that the bounds gmin and gmax

are only required for analytical purposes, their true values
are not necessarily known since they are not used for
controller design. Note that the requirement for ˙̄xn−1(t)
is a constraint but realistic for many physical systems as
we are not requiring ẋn which is directly in¤uenced by the
control. In addition, ∂gn(x)/∂xn = 0 means that

ġn(x) =
[∂gn(x)

∂x

]T

ẋ(t) =
n−1∑
i=1

∂gn(x)
∂xi

ẋi+1(t)

which is only dependent on the state x. Obviously, ġi(x̄i),
i = 1, ..., n − 1 is also dependent on the state x only. As
gi(·) are smooth function, we know that ∀x̄i ∈ Ω with Ω
being a bounded compact set, there exist constants gid > 0
such that |ġi(·)| ≤ gid. This nice property could be used to
simplify the later controller design.

III. PRELIMINARIES

In this paper, the Radial Basis Function (RBF) neural
network (NN) as a kind of linearly parametrized neural
networks (LPNNs) will be used as a function approx-
imator to approximate the unknown nonlinear function
h(Z) : Rq → R as hnn(Z) = WT S(Z) where the
input vector Z ∈ ΩZ ⊂ Rq, weight vector W =
[w1, w2, · · · , wl]T ∈ Rl, the NN node number l > 1; and
S(Z) = [s1(Z), · · · , sl(Z)]T , with si(Z) being chosen as
the commonly used Gaussian functions, which have the
form si(Z) = exp[−(Z −µi)T (Z−µi)/η2

i ], i = 1, 2, · · · , l
with µi = [µi1, µi2, · · · , µiq]T being the center of the recep-
tive £eld and ηi being the width of the Gaussian function.

Universal approximation results in [18], [19] indicate that,
if l is chosen suf£ciently large, W T S(Z) can approximate
any continuous function, h(Z), to any desired accuracy over
a compact set ΩZ ⊂ Rq to arbitrary any accuracy in the
form of h(Z) = W ∗T S(Z) + ε(Z), ∀Z ∈ ΩZ ⊂ Rq

where W ∗ is the ideal constant weight vector, and ε(Z) is
the approximation error which is bounded over the compact
set, i.e., |ε(Z)| ≤ ε∗, ∀Z ∈ ΩZ where ε∗ > 0 is an unknown
constant. The ideal weight vector W ∗ is an “arti£cial”
quantity required for analytical purposes. W ∗ is de£ned as
the value of W that minimizes |ε| for all Z ∈ ΩZ ⊂ Rq,
i.e., W ∗ := arg minW∈Rl{supZ∈ΩZ

|h(Z) − WT S(Z)|}.
The stability results obtained in NN control literature are

semi-global in the sense that, as long as the input variables
Z of the NNs remain within some pre-£xed compact set,
ΩZ ⊂ Rq, where the compact set ΩZ can be made as large
as desired, there exists controller(s) with suf£ciently large
number of NN nodes such that all the signals in the closed-
loop remain bounded.

Suppose that x ∈ ΩZ , where ΩZ is a compact set. De£ne
sets Ωcz

⊂ ΩZ and Ω0
Z as

Ωcz
:= {x | |x| < cz}, Ω0

Z := ΩZ − Ωcz
(2)

where constant cz > 0 and “−” is used to denote the
complement of set B in set A as A − B := {x|x ∈
A and x /∈ B}.

The following lemma shows the compactness of set Ω0
z1

,
which is useful to re-construct the compact domain of neural
network approximation later.

Lemma 1: Set Ω0
Z is a compact set.

Proof: See [15], [16].

IV. DIRECT NEURAL NETWORK CONTROL FOR

FIRST-ORDER SYSTEM

To illustrate the design methodology clearly, we £rst
consider the tracking problem of a £rst-order system

ẋ1(t) = g1(x1(t))u(t) + f1(x1(t)) + h1(x1(t − τ1)) (3)

where u(t) is the control input. De£ne the tracking error
z1 = x1 − yd, we have

ż1(t) = g1(x1(t))u(t) + f1(x1(t)) + h1(x1(t − τ1)) − ẏd(t)

Based on feedback linearization, the certainty equivalent
control is usually taken the form u(t) = 1

g1(x1)
[−f1(x1) +

v(t)]. In the case that g1(·) and f1(·) are unknown, their
estimates ĝ1 and f̂1 shall be used instead to construct
the controller and singularity problem may occur when
ĝ1(x1) = 0. To avoid the singularity problem, we shall
estimate the unknown term, e.g., f1(x1)

g1(x1)
as a whole rather

than estimate the function g1(·) and f1(·) individually.
Another design dif£culty comes from the unknown time-

delay τ1, which can be compensated for by introducing the
Lyapunov-Krasovskii functional in the form of

VU (t) =
∫ t

t−τ1

U(x(t))dτ (4)



with U(·) ≥ 0 being a properly chosen function. The time
derivative of VU (t) is

V̇U (t) = U(x(t)) − U(x(t − τ1))

among which the term U(x(t − τ1)) can be used to com-
pensate for the unknown time-delay terms related to τ1,
while the remaining term U(x(t)) does not introduce any
uncertainties to the system.

Consider the scalar smooth function Vz1 = 1
2g1(x1)

z2
1(t)

and the Lyapunov-Krasovskii functional VU1 as

VU1(t) =
1

2gmin

∫ t

t−τ1

U1(x1(t))dτ (5)

with U1(x1(t)) = 1
2x2

1(t)�1(x1(t)) ≥ 0. Noting Assump-
tion A4), we have

V̇z1(t) + V̇U1(t)

≤ z1(t)
{

u(t) +
1
g1

[f1(x1(t)) − ẏd(t)]
}
− ġ1

2g2
1

z2
1(t)

+
1
g1

|z1(t)||x1(t − τ1)|�1(t − τ1)

+
1

2gmin
[U1(x1(t)) − U1(x1(t − τ1))] (6)

The terms z1(t) and |x1(t − τ1)|�1(x1(t − τ1)), which are
entangled in their present form, shall be separated such
that the terms with unknown time delay can be dealt with
separately. Using Young’s inequality, (6) becomes

V̇z1(t) + V̇U1(t)

≤ z1(t)
{

u(t) +
1
g1

[f1(x1(t)) − ẏd(t) +
1
2
z1(t)]

}

− ġ1

2g2
1

z2
1(t) +

1
2g1

x2
1(t − τ1)�2

1(x1(t − τ1))

+
1

2gmin
[x2

1(t)�
2
1(x1(t)) − x2

1(t − τ1)�2
1(x1(t − τ1))] (7)

As g1 ≥ gmin, it follows that 1
2g1

x2
1(t−τ1)�2

1(x1(t−τ1)) ≤
1

2gmin
x2

1(t−τ1)�2
1(x1(t−τ1)). In addition, from Assumption

A2), we have − ġ1z2
1

2g2
1

≤ |ġ1|z2
1

2g2
1

≤ g1d

2gmin
z2
1 . Thus, (7) becomes

V̇z1(t) + V̇U1(t) ≤ z1(t)[u(t) + Q1(Z1(t))] +
g1d

2gmin
z2
1 (8)

where

Q1(Z1(t)) =
1

g1(x1)
[f1(x1(t)) − ẏd(t) +

1
2
z1(t)]

+
1

2gminz1(t)
x2

1(t)�
2
1(x1(t)) (9)

with Z1 = [x1, yd, ẏd]T ∈ ΩZ1 ⊂ R3 and ΩZ1 :=
{z1, x̄d2|z1 ∈ R, x̄d2 ∈ Ωd2}.

From (8), it is found that the controller design is free
from unknown time-delay τ1 at present stage. For notation
conciseness, we will omit the time variables t and after
time-delay terms have been eliminated.

Since f1(·) and g1(·) are unknown smooth function,
neural networks shall be used to approximate the function

Q1(Z1). According to the main result stated in [20], any
real-valued continuous function can be arbitrarily closely
approximated by a network of RBF type over a compact set.
However, it is apparent that Q1(Z1) is not continuous over
the compact set ΩZ1 as it is not well-de£ned at z1(t) = 0.
Therefore, we shall re-construct the compact set over which
the neural network approximation is feasible and valid. To
this end, let us de£ne sets Ωcz1

⊂ ΩZ1 and Ω0
Z1

as follows

Ωcz1
:= {z1

∣∣|z1| < cz1}, Ω0
Z1

:= ΩZ1 − Ωcz1

From Lemma 1, we know that Ω0
Z1

is a compact set, over
which function Q1(Z1) is continuous and well-de£ned and
can be approximated by neural networks to arbitrary any
accuracy as follows

Q1(Z1) = W ∗
1

T S(Z1) + ε1(Z1) (10)

where ε1(Z1) is the approximation error. Note that as the
ideal weight W ∗

1 is unknown, we shall use its estimate Ŵ1

instead in the later controller design.
As can be seen from the previous discussion, the control

effort will be activated only in the compact set Ω0
Z1

so that
we would like to relax our control objective to boundedness
of states around the origin rather than the asymptotic
convergence to origin. Accordingly, the following practical
adaptive control is proposed

u(t) =
{ −k1(t)z1 − ŴT

1 S(Z1), z1 ∈ Ω0
Z1

0, z1 ∈ Ωcz1

(11)

k1(t) = k10 + k11 +
ε10

z2
1

∫ t

t−τmax

1
2
x2

1(τ)�2
1(x1(τ))dτ(12)

˙̂
W 1 = Γ1[S(Z1)z1 − σ1(Ŵ1 − W 0

1 )] (13)

where k∗
10

�
= k10 − g1d

2gmin
> 0, k11 > 0, ε10 > 0, matrix

Γ1 = ΓT
1 > 0, σ1 is a small constant to introduce the σ-

modi£cation for the closed-loop system.
Theorem 1: Consider the closed-loop systems consisting

of the £rst-order plant (3), the adaptive control (11)-(13),
for bounded initial conditions x1(0) and Ŵ1(0), all signals
in the closed-loop systems are SGUUB, and the vector Z1

remains in a compact set Ω0
Z1

speci£ed by

Ω0
Z1

=
{

Z1

∣∣∣z2
1 ≤ µ1, ‖Ŵ1‖2 ≤ 2C01/λmin(Γ−1

1 ),

x̄d2 ∈ Ωd2, z1 /∈ Ωcz1

}
(14)

whose size, µ1 = max{√2gmaxC01, cz1}, can be adjusted
by appropriately choosing the design parameters.

Proof: Consider the Lyapunov function candidate
V1(t) as

V1(t) = Vz1(t) + VU1(t) +
1
2
W̃T

1 (t)Γ−1
1 W̃1(t) (15)

with (̃·) = (̂·) − (·). Its time derivative along (8) is

V̇1 ≤ z1[u + Q1(Z1)] +
g1d

2gmin
z2
1 + W̃T

1 Γ−1
1

˙̂
W 1 (16)



Now, the stability analysis will be carried out in the
following two regions: (i) z1 ∈ Ω0

Z1
, and (ii) z1 ∈ Ωcz1

.
Region (i) z1 ∈ Ω0

Z1
: In this region, the control is

invoked. Substituting (10), (11)-(13) into (16) by noting the
following inequalities

−k11z
2
1 + z1ε1(Z1) ≤ −k11z

2
1 + |z1|ε∗z1

≤ ε∗
2

z1

4k11

−W̃T
1 (Ŵ1 − W 0

1 ) ≤ −1
2
‖W̃1‖2 +

1
2
‖W ∗

1 − W 0
1 ‖2

∫ t

t−τ1

1
2
x2

1(τ)�2
1(x1(τ))dτ ≤

∫ t

t−τmax

1
2
x2

1(τ)�2
1(x1(τ))dτ

we have

V̇1(t) ≤ −c1V1(t) + λ1 (17)

with positive constants λ1 := 1
2σ1‖W ∗

1 − W 0
1 ‖2 +

ε∗
2

z1
4k11

and c1 := min{2k∗
10gmin, ε10gmin, σ1

λmax(Γ−1
1 )

}. Let ρ1 :=
λ1/c1, it follows that

0 ≤ V1(t) ≤ ρ1 + [V1(0) − ρ1]e−c1t ≤ ρ1 + V1(0) (18)

Region (ii) z1 ∈ Ωcz1
: In this region, |z1| < cz1 , i.e., z1

is already bounded, and ˙̂
W 1 = 0. Since z1 = x1 − yd and

yd is bounded, x1 is bounded. In addition, the adaptation
for Ŵ1 has stopped and Ŵ1 is kept unchanged in bounded
value.

From (15) and (18), we have

z2
1 ≤ 2gmaxC01, ‖W̃1‖2 ≤ 2C01/λmin(Γ−1

1 ) (19)

with C01 := ρ1 + V1(0). Noting that (19) holds for |z1| >
cz1 , we readily have the compact set Ω0

Z1
speci£ed in (14),

over which the NN approximation is carried out with its
feasibility being guaranteed.

V. DIRECT NEURAL NETWORK CONTROL FOR

NTH-ORDER SYSTEM

In this section, adaptive neural control is extended the
higher-order system (1) using backstepping design and the
stability results of the closed-loop system are presented.
The n-step backstepping design procedure is based on the
change of coordinates: z1 = x1 − yd, zi = xi − αi−1,
i = 2, ..., n, where αi(t) is an intermediate control functions
developed for the ith-subsystem based on an appropriate
Lyapunov function Vi(t). The control law u(t) is designed
in the last step. Note that the controller design based on
such compact sets Ω0

Zi
will render αi not differentiable

at points |zi| = czi
. This problem can be easily £xed by

simply setting the differentiation at these points to be any
£nite value, say 0, and then every signal in the closed-
loop system can be shown to be bounded. Theoretically
speaking, by doing so, there is no much loss either as these
points are isolated with £nite energy and can be ignored.
For ease and clarity of presentation, we assume that all the
control functions are differentiable throughout this Section.
A modi£cation of the proposed design is provided in [21], in
which the control functions strictly meet the differentiable

condition required by backstepping design and much more
involved stability analysis is also given.

For uniformity of notation, throughout this section, de£ne
estimation errors W̃i = Ŵi − W ∗

i , compact sets Ωczi
and

Ω0
Zi

as Ωczi
:= {zi||zi| < czi

}, Ω0
Zi

:= ΩZi
− Ωczi

where
constants czi

> 0, Ŵi ∈ Rli are the estimates of ideal NN
weights W ∗

i ∈ Rli , and the integral Lyapunov functions
Vzi

(t), the Lyapunov-Krasovskii functionals VUi
(t), and the

Lyapunov function candidates Vi(t) as

Vzi
=

1
2gi(x̄i)

z2
i (20)

VUi
=

1
2gmin

∫ t

t−τi

Ui(x̄i(τ))dτ (21)

Vi = Vzi
+ VUi

+
1
2
W̃T

i Γ−1
i W̃i (22)

where positive functions Ui(x̄i) =
∑i

j=1 x2
j�

2
ij(x̄i).

In the following steps, the unknown functions Qi(Zi),
i = 1, ..., n, which will be de£ned later, will be approxi-
mated by neural networks as

Qi(Zi) = W ∗
i

T S(Zi) + εi(Zi),∀Zi ∈ Ω0
Zi

(23)

where ε∗zi
are the upper bounds of the NN approximation

errors, i.e., |εi(Zi)| ≤ ε∗zi
with Zi being the corresponding

inputs to be de£ned later.
The following adaptive neural control laws are proposed

αi =
{ −ki(t)zi − ŴT

i S(Zi), zi ∈ Ω0
Zi

0, zi ∈ Ωczi

(24)

ki(t) = ki0 + ki1 +
εi0

z2
i

∫ t

t−τmax

1
2

i∑
j=1

x2
j (τ)�2

ij(x̄i(τ))dτ(25)

˙̂
W i = Γi[S(Zi)zi − σi(Ŵi − W 0

i )], i = 1, ..., n (26)

with εi0 > 0, matrix Γi = ΓT
i > 0, W 0

i being con-

stant vector, constants ki0, ki1 > 0 satisfying k∗
i0

�
=

ki0 − gid/(2gmin) − 1/2 > 0, constant σi > 0 to
introduce σ-modi£cation to closed-loop systems (when
i = n, αn = u(t)). De£ne positive constants ci :=
min{2k∗

i0gmin, ε10gmin, σi

λmax(Γ−1
i

)
}, λi := 1

2σi‖W ∗
i −

W 0
i ‖2 +

ε∗
2

zi

4ki1
,

The unknown functions Qi(Zi) is de£ned by

Qi(Zi) =
1

gi(x̄i)
[fi(x̄i) − α̇i−1 +

1
2
zi]

+
1

2gminzi

i∑
j=1

x2
j (t)�

2
ij(x̄i(t)) (27)

with Zi = [x̄i, ˙̄xi−1,
∂αi−1
∂x1

, ∂αi−1
∂x2

, ..., ∂αi−1
∂xi−1

, ωi−1] ∈ Ω0
Zi

⊂ R3i−1, where

α̇i−1 =
i−1∑
j=1

∂αi−1

∂xj
ẋj + ωi−1

ωi−1 =
∂αi−1

∂x̄di

˙̄xdi +
i−1∑
j=1

∂αi−1

∂Ŵj

˙̂
W j



Step 1: Let us £rstly consider the z1-subsystem as z1 =
x1 − yd and z2 = x2 − α1

ż1(t) = g1(x1(t))[z2(t) + α1(t)] + f1(x1(t))
+h1(x1(t − τ1)) − ẏd(t) (28)

Consider the Lyapunov function candidate in (22). Fol-
lowing the same procedure as in Section IV by applying
Assumption A4) and Young’s inequality, we obtain

V̇1 ≤ z1[α1 + Q1(Z1)] +
g1d

2gmin
z2
1

+z1z2 + W̃T
1 Γ−1

1
˙̂

W 1 (29)

Applying Young’s inequality again for z1z2, i.e., z1z2 ≤
1
2z2

1 + 1
2z2

2 , we have

V̇1 ≤ (
g1d

2gmin
+

1
2
)z2

1+
1
2
z2
2+z1[α1+Q1(Z1)]+W̃T

1 Γ−1
1

˙̂
W 1

(30)
where Q1(Z1) is given in (9).

Considering the practical adaptive intermediate control
given in (24)-(26), the stability analysis is carried out in
the following two regions de£ned by the compact sets Ω0

Z1

and Ωcz1
respectively.

Region 1: z1 ∈ Ω0
Z1

. Substituting (24)-(26) into (30)
yields V̇1(t) ≤ −c1V1(t)+λ1 + 1

2z2
2 , from which we know

that if z2 can be regulated as bounded, the boundedness of
V1(t), z1, x1 and Ŵ1 can be obtained as can be seen from
Theorem 1. The regulation of z2 will be conducted in the
next steps.

Region 2: z1 ∈ Ωcz1
. In this region, |z1| < cz1 is already

bounded, and ˙̂
W 1 = 0. Hence, x1 = z1 + yd is bounded,

and Ŵ1 is kept unchanged in bounded values. As Vz1(t)
and VU1(t) are smooth functions, for bounded x1 and z1,
Vz1(t), VU1(t) andV1(t) are bounded.

Step i (2 ≤ i ≤ n− 1): Similar procedures are taken for
i = 2, · · · , n − 1 as in Step 1.

The dynamics of zi-subsystem is given by

żi(t) = gi(x̄i(t))[zi+1(t) + αi(t)] + fi(x̄i(t))
+hi(x̄i(t − τi)) − α̇i−1(t)

Consider the Lyapunov function candidate Vi(t) in (22).
Using Young’s inequality and noting Assumption A4), the
time derivative of Vi(t) is

V̇i ≤ −[
ġi(x̄i)
2g2

i (x̄i)
− 1

2
]z2

i (t) +
1
2
z2
i+1(t)

+zi[αi + Qi(Zi)] + W̃T
i Γ−1

i
˙̂

W i (31)

where Qi(Zi) is given in (27).
Consider the practical adaptive intermediate control given

in (24)-(26). Similarly as in Step 1, the stability analysis is
carried out in the two regions de£ned by the compact sets
Ω0

zi
and Ωczi

respectively as follows.
For zi ∈ Ω0

zi
, we have V̇i(t) ≤ −ciVi(t) + λi + 1

2z2
i+1,

from which it can be seen that the stability of zi-subsystem
in this case is dependent on zi+1, which will be dealt with

in the next steps. For zi ∈ Ωczi
, the boundedness of zi, xi

and Ŵi directly follows.
Step n: This is the £nal step, since the actual control u

appears in the dynamics of zn-subsystem as given by

żn = gn(x̄n(t))u + fn(x̄n(t)) + hn(x̄n(t− τn))− α̇n−1(t)

Consider the Lyapunov function candidate Vn(t) given in
(22). The time derivative of Vn(t) is

V̇n ≤ − ġn(x)
2g2

n(x)
z2
n(t) + zn[αn + Qn(Zn)] + W̃T

n Γ−1
n

˙̂
Wn

where Qn(Zn) is given in (27).
Considering the practical adaptive control given in (24)-

(26). Similarly as in the previous steps, the stability analysis
is carried out in the two regions de£ned by the compact sets
Ω0

Zn
and Ωczn

respectively as follows. For zn ∈ Ω0
zn

, the
£nal control u(t) is invoked and the time derivative of Vn(t)
is V̇n(t) ≤ −cnVn(t) + λn, from which we can conclude
that Vn(t) is bounded, hence zn, Ŵn are bounded. For zn ∈
Ωzn

, the boundedness of zn directly follows. Hence, zi, xi

and Ŵi, i = 1, ..., n − 1 are bounded. As ˙̂
Wn = 0, Ŵn is

kept £xed in a bounded value.
Theorem 2: Consider the closed-loop system consisting

of the plant (1) under Assumptions A1)-A5), the practical
adaptive neural control (24)-(26). For bounded initial con-
ditions, the following properties hold:

(i) all signals in the closed-loop system are semi-
globally uniformly ultimately bounded and the vector Z =
[ZT

1 , ..., ZT
n ]T remains in a compact set Ω0

Z := Ω0
Z1

∪ ... ∪
Ω0

Zn
speci£ed as

Ω0
Z =

{
Z

∣∣ n∑
i=1

z2
i ≤ 2gmaxC0,

n∑
i=1

‖W̃i‖2 ≤ 2C0

λmin(Γ−1
i )

,

x̄di ∈ Ωdi, i = 2, ..., n, zi /∈ Ωczi
, i = 1, ..., n

}
(32)

where C0 > 0 is a constant whose size depends on the
initial conditions (as will be de£ned later in the proof);

(ii) the closed-loop signal z(t) = [z1, ..., zn]T ∈ Rn will
eventually converge to a compact set de£ned by

ΩS := {z∣∣‖z‖2 ≤ µ} (33)

with µ > 0 is a constant related to the design parameters
and will be de£ned later in the proof, and ΩS can be made
as small as desired by an appropriate choice of the design
parameters.

Proof: Consider the following Lyapunov function
candidate

V (t) =
n∑

i=1

[Vzi
(t) + VUi

(t) +
1
2
W̃T

i Γ−1
i W̃i] (34)

where Vzi
(t) and VUi

(t) are de£ned in (20) and (21)
respectively. The following three cases are considered.

Case 1): zi ∈ Ωczi
, i = 1, ..., n. In this case, the controls

αi = 0 and ˙̂
W i = 0. Since z1 = x1−yd and yd is bounded,

x1 is bounded. For i = 2, ..., n, xi is bounded as xi =



zi +αi−1 and αi−1 = 0. In addition, Ŵi is kept unchanged
in a bounded value, i = 1, ..., n. Observing the de£nition for
Vzi

(t) and VUi
(t) and noting that gi(·), �ij(·) are smooth

functions, we know that for bounded xi, zi and Ŵi, Vzi
(t)

and VUi
(t) are bounded, i.e., there exists a £nite CB such

that V (t) ≤ CB .
Case 2): zi ∈ Ω0

Zi
, i = 1, ..., n. In Step n, we have

V̇n(t) ≤ −cnVn(t) + λn. Let ρn = λn/cn, it follows that

0 ≤ Vn(t) ≤ [Vn(0) − ρn]e−cnt + ρn ≤ Vn(0) + ρn (35)

From (22), we have z2
n ≤ 2gmax[Vn(0)+ρn], and ‖W̃n‖2 ≤

2[Vn(0) + ρn]/λmin(Γ−1
n ). Similarly, we can conclude that

for i = 1, · · · , n − 1, z2
i ≤ 2gmax(Vi(0) + ρi), ‖W̃i‖2 ≤

2(Vi(0) + ρi)/λmin(Γ−1
i ) with ρi = [λi + gmax(Vi−1(0) +

ρi−1)].
Case 3): Some zi ∈ Ω0

Zi
and some zj ∈ Ωczj

. In this
case, the corresponding αi or u and the adaptation law for
Ŵi will be invoked for zi ∈ Ω0

Zi
while αj = 0 or u = 0

and ˙̂
W j = 0 for zj ∈ Ωczj

. Let us de£ne VI(t) =
∑

i Vi

and VJ(t) =
∑

j Vj . For zj ∈ Ωczj
, we know that VJ(t)

is bounded, i.e., VJ(t) ≤ CJ with CJ being £nite, and
for zi ∈ Ω0

Zi
, we obtain that V̇i(t) ≤ −cI

i Vi(t) + λI
i +

1
2z2

i+1. Let us de£ne ρI
i = [λI

i + 1
2 max{z2

i+1}]/cI
i , we have

VI ≤ VI(0) + ρI with VI(0) =
∑

i Vi(0) and ρI =
∑

i ρI
i .

Therefore, it can be obtained that V (t) = VI(t) + VJ(t) ≤
VI(0) + ρI + CJ .

Thus, from Cases 1), 2) and 3), we can conclude that
V (t) ≤ C0 with C0 = max{CB ,

∑n
i=1(Vi(0)+ρi), VI(0)+

ρI + CJ}, from which we know that Vi(t), zi and Ŵi, i =
1, ..., n, are bounded, and the boundedness of the systems’
states xi, i = 1, ..., n directly follows.

Considering (34), we know that
∑n

i=1 z2
i ≤ 2gmaxV (t),∑n

i=1 ‖W̃i‖2 ≤ 2V (t)/λmin(Γ−1
1 , ...,Γ−1

n ) from which, we
readily have the compact set Ω0

Z de£ned in (32) over which
the NN approximation is carried out with its feasibility
being guaranteed.

In addition, in Case 1), as zi ∈ Ωczi
, i = 1, ...n, we know

that ‖z‖2 =
∑n

i=1 z2
i ≤ ∑n

i=1 c2
zi

. In Case 2), we have that
limt→∞ ‖z‖2 = 2gmax

∑n
i=1 ρi. In Case 3), we have that

limt→∞
∑

i z2
i = 2gmaxρI and

∑
j z2

j ≤ ∑
j c2

zj
. Therefore

as t → ∞, we can conclude that ‖z‖2 ≤ µ where µ =
max{2gmax

∑n
i=1 ρi, 2gmaxρI ,

∑n
i=1 c2

zi
}, i.e., the vector z

will eventually converge to the compact set ΩS de£ned in
(33). This completes the proof.

VI. CONCLUSION

Practical adaptive neural control has been addressed for
a class of nonlinear systems with unknown time delays in
strict-feedback form. The unknown time delays has been
compensated for through the use of appropriate Lyapunov-
Krasovskii functionals. Controller singularity problems have
been solved by employing practical neural network control
based on decoupled backstepping design. The proposed
design has been proven to be able to guarantee semi-
globally uniformly ultimate boundedness of all the signals

in the closed-loop system and the tracking error is proven to
converge to a small neighborhood of the origin. In addition,
the residual set of each states in the closed-loop systems has
been determined respectively.
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