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Robust Output Regulation with Nonlinear Exosystems
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Abstract— For over a decade, the solvability of the nonlinear Clearly, such exosystems can only produce signals which
robust output regulation problem relies on the assumptionthat gre a combination of finitely many step functions and
the exosystem is linear and neurally stable. Thus the only i spidal functions. Thus, assumption AO severely limits
exogenous signal that can be accommodated by the existing . . .
theory is a combination of finitely many step functions and the appl'cab'"t_y O_f the robust output regulation theorgr F
sinusoidal functions. In this paper, we will show that it is €xample, the limit cycle generated by the well known Van
possible to find controllers that can admit exogenous signals der Pol oscillator cannot be handled due to assumption AO.
produced by nonlinear exosystems. An example with the well  The major objective of this paper is to replace assumption
known Van der Pol oscillator as the exosystem is given 10 ag py some much less restrictive assumption. For this
illustrate our approach. e ) . . .

purpose, we will first generalize, in Section I, the notidn o
. INTRODUCTION the steady state generator and the internal model intraduce

Consider the plant described by in [9] to allow the inclusion of the exogenous sigmah the

control law. Then, in Section lll, we will give the existence

(t) = flz(t),u(?),v(t),w), z(0) =m0 conditions of the steady state generator and the internal
e(t) = h(z(t),u(t),v(t),w), t>0 (1.1) model. In Section IV, we will establish a set of solvability

] conditions of the robust output regulation problem when

and an exosystem described by the exosystem is nonlinear. In Section V, we will use an
o(t) = a(v(t)), v(0)= v (1.2) example with the well known Van der Pol oscillator as the

exosystem to illustrate our approach. The paper is closed in

where z(t) is the n-dimensional plant statey(t) the m-  Section VI with some concluding remarks.
dimensional plant inpute(t) the p-dimensional plant out-
put representing the tracking error(t) the g-dimensional !l GENERALIZATION OF STEADY STATE GENERATOR
exogenous signal representing the reference input,«.and AND INTERNAL MODEL
the N-dimensional plant unknown parameter with nominal |t is known that a necessary condition for the solvability
value 0. For simplicity, all the functions involved in the of the robust output regulation problem is the existence of
setup are sufficiently smooth, vanishing at their origimg] a the solution of the following equations [14].
m = p. Al: There exist sufficiently smooth functiongv, w) and

Briefly, the robust output regulation problem is aimed tax(v,w) with x(0,0) = 0 andu(0,0) = 0 satisfying the
design a control law such that, for all sufficiently smalt  following equations for alb € V, w € W with V and W
R and all sufficiently smalw € R, the solution of the open neighborhoods of the origins of respective Euclidean
closed-loop is bounded and the tracking error approaghesspaces,
asymptotically. Various versions of this problem have been

extensively studied via the dynamic state feedback [10], W a(v) = fx(v,w),ulv,w),v,w)

[11], dynamic output feedback [1], [11], [12], [13], [15], v -

[16], and the dynamic state/output feedback control with 0 = Ax(v,w),ulv,w),v,w). (2.1)
the feedforward control [6], and [8]. Equations (2.1) are called regulator equations. Unfortu-

Among other conditions, a key solvability condition ofnately, unlike the linear case [4] and [5], the solvability
the robust output regulation problem is that the exosystest (2.1) is not sufficient for the solvability of the robust
is linear and neurally stable, or what is the same, output regulation problem for nonlinear systems. In order
A0: The exosystem (1.2) i&inear, i.e., a(v) = Ajv for  to guarantee the solvability of the robust output regufatio
some matrixA,, and all eigenvalues o, are simple with problem, additional assumptions have to be imposed on the
zero real parts. solution of the regulator equations, and on the exosystem.

It is shown in [11] that if the solution of the regulator
The work described in this paper was partially supportedheyHong [ ] 9

Kong Research Grant Council under Grant CUHK4209/00E, dred t equations Is polynomlal 'm(t)' and the exosystem satisfies
National Natural Science Foundation of China under Gras78038 assumption AQ, then the robust output regulation problem
Z. Chen is with the Department of Automation and Computer-Aidedg gglyable provided that the linear approximation of syste

Engineering, Chinese University of Hong Kong, Shatin, NFfong Kong, L -
Chinazychen@cae. cuhk. edu. hk (1.1) at the origin is stabilizable and detectable. Other
J. Huang is with the Department of Automation and Computer-ide Similar conditions are given in [1], [7] and [15], respeetiy.

Engineering, Chinese University of Hong Kong, Shatin, NHong Kong, More recently, a more genera| framework is established
China, also a Cheung Kong Scholar Award Program Professtr te hich ai t t th bust output lati bl
School of Automation Science and Engineering, South Chinaddsity which aims 10 convert the robust output regulation problem

of Technology, Guang Zhou, Chinshuang@cae. cuhk. edu. hk  for a given plant into a robust stabilization problem for
0-7803-8335-4/04/$17.00 ©2004 AACC 2403



an augmented system [9]. This framework relies on two Now, as in [9], we can attach the internal model to the
important concepts, namely, the steady state generator agiden plant to yield the following augmented system
the internal model. Existence of the steady state generator

and the internal model is guaranteed under assumption x = J@uow)
A0, and the polynomial assumption on the solution of the n = vmuev)
regulator equations. In order to remove assumption AO, e = h(z,u,v,w). (2.4)

we will resort to the feedforward control of the exogenou%erforming on (2.4) the following coordinate and input
signalv. For this purpose, we need to extend the definitiong ;- sformation
of the steady state generator and the internal model to the
following. n = n—0(v,uw)
Definition 2.1: Let g : R*+t™ — R! be a mapping for T, = x—0Bi(n) ,i=1,---,d
some positive integet < I < n + m. Under assumption Z o= zi-xi(vw) ,i=d+1,-n
Al, the nonlinear system (1.1) and (1.2) is said to have T
a (generalized) steady state generatsith output g(z, ) i = u—[Bayr (1), Barm (M =u—Bu ()
if there exists a triple{f, a, 3}, wheref : RITN — R®, gives a new system denoted by
a: R R, and g R — R for some integer are .

sufficiently smooth functions vanishing at the origin, such i] 7,<7Z’f’%’v’w)

that, for all trajectories)(t) € V of (1.2), and allw € W, ro= «f(nvmvuvvvw)
do (v (1), w) e h(n,z,a,v,w) (2.5)
T = « (9 (U (t) 7’LU) ,7}) where

glx(v(t). wh (D). w)) = FE@Ew)- @2 555,6,0,0) = y0zue0) - ad(v,w),)

If, in addition, the pair %(j)‘ owro’ % owo fi(m,z,0,0,w) = fi(z,u,v,w)— %(n)’y(n,x,me,v),

is observable, thefd, o, 3} is called a linearly observable i=1,---,d

steady state generator with outpp(te, u). 1 Foo . .

Definition 2.2: Assume the nonlinear system (1.1) andfl(n’x’u’v’w) N fz(x’u’v’w) filx (v, w), uv, w), v, w),

(1.2) has a steady state generator with ougut u). Let i=d+1l,--n

v @ JEFrEmArta L RS pe a sufficiently smooth function h(7, Z, @, v,w) = h(z,u,v,w) — h(x(v,w),u(v,w),v,w).

vanishing at the origin. Then we call the following system 5, important property of system (2.5) is stated as fol-

0= (n2,u,e0) (2.3) lows.

_ _ _ _ Theorem 2.1:Suppose Al, and assume the system (1.1)
a(generalized) internal modelith outputg(xz,v) if, for all  and (1.2) has a steady state generator with oufptitu) =

veV,and allwe W, col(zy, - -+, x4,u) and an internal model described by (2.3).
v (8 (v, w) , % (v, w) ,u (v, w),0,0)) = & (8 (v, w),v). Then the augmented sys'tem descrlbed' by (2.5) has the
property that, for all sufficiently small trajectoriegt) of
] the exosystem, and all sufficiently small
In the sequel, we assume g(z,u) = _ ) _
(i), Ty, - iy u)” Wherel < iy <ip < -+ <ig<mn 7,(0’0’0’ v(t),w) = 0
for some integerd satisfying0 < d < n, and, without f(O,(),O,v(t),w) = 0
loss of generality, we can always assumje = j for h(0,0,0,v(t),w) = 0. (2.6)
j =1,---,d since the index of the state variable can beé p,qt The proof is very similar to what was given in

relabelled to have this assumption satisfied. [3], and is omitted herex
Remark 2.1:The major difference between Definitions™ 11,4 significance of Theorem 2.1 is that it allows the

2.1 and 2.2 and previous definitions given in [9] is thaj,,,qt output regulation problem of system (1.1) and ex-
both the steady state generator and the internal model g stem (1.2) to be converted into a robust stabilization
allowed to depend on the exogenous signalt will be problem of the augmented system (2.5) as shown by the
seen later that this generalization will allow the exogemo“following result.

signal v to appear in the control law, too. Such a C?ﬂtr0| Corollary 2.1: Suppose system (1.1) and (1.2) satisfies
scheme can handle the case where the exogenous signal assumption Al, and has a steady state generator with
a reference input and/or a measurable disturbance. 'tdhowutputg(x ) = col(z1, -+, xq,u) and an internal model

be noted that the notion of the steady state generator iSjagcriped by (2.3). Assume there exists a controller of the

generalization of the notion of the (generalized) system inyy,

mersion introduced in [1], [2]. The connection of the steady

state generator and the system immersion was detailed in k(Z1,--,%a,€,€)

o » £ = ((@1,,7a,& ) (2.7)
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where¢ € R?, and k, { are sufficiently smooth functions 1ll. | NTERNAL MODEL WITH NONLINEAR EXOSYSTEM

vanishing at their origins, that locally exponentially -sta ) ) ] ] N
bilizes the equilibrium(7,z) = (0,0) of the augmented As mentioned in the last section, the existence conditions

system (2.5). Then the following controller of the steady state generator and the internal model were
given in [9] for the case where the exosystem satisfies
u = Bun)+k@— i), x4 —Baln), & e) assumption AO. In this section, we will further present the
n = v(n,z,ue0) existence conditions of the steady state generator and the
£ = Clar— Bi(n), - xa — Ba(n), & ) (2.8) internal model with outpuy(x,u) = u for the case where

. the exosystem does not satisfy assumption AQ.
solves the robust output regulation for system (1.1) and Let us first note that the exosystem (1.2) can always be
(1.2) in the sense that the equilibrium of the closed-loogyritten as follows
system composed of the plant (1.1) and the controller (2.8)

is exponentially stable, and for all sufficiently small iait ) 5
statepof the clgsed-loop system, all sufficien){ly small), 0= A+ Z Aflvalfl(v) (3.1)
andw, the errore approaches zero asymptotically. k=2
Proof: Consider the closed-loop system composed of thgy: some integers > 1, and AM € R9%9, k= 1,-.. K,
plant (1.1) and the controller (2.8) and denote its state Byhere [kl . R7 — R is sufficiently smooth function
e = col(n, z,&). Then satisfying al*1(0) = 0. In particular, whena(v) is linear,
2. = o+ col@(v,w), (7 + O(v,w)), -, (3.1) is reduced ta = Ayv.

Now, as in [9], assume the solutiom(v(t),w) of the

Ba( + 0(v,w), Xaga (v, ), -+, Xn (v, ), 0), regulator equations is a polynomial irft). Then, fori =

with z. = col(7, z,£). Thus, whenv = 0 andw = 0, the 1,---,m, it is known that there exist a set of real numbers

statez. of the closed-loop system composed of (2.5) and;, as, - - -, a,, such that

(2.7) and the state. of the closed-loop system composed

of (1.1) and (2.8) are related by a diffeomorphism Ly ui(v,w) = arui(v,w) + azLa, (v, w) + -

T’ifl

xc:jc""COl(Oyﬁl(ﬁ),"'75d(77]),07"'7070)- +aTiLA1U lli(’U,U)), (32)

Thus the closed-loop system composed of (1.1) anghereL ,,u;(v,w) = WAW and LY  wi(v,w) =

(2.8) is also exponentially stable. Next let.(v,w) = oL/} wi(v,w) '

col(f(v,w),x(v,w),0). Then it can be verified that v Ay, 1=2,3,--- [1], [8]. Denote

x.(v,w) is a zeroing output center manifold of the closed-, _ . ‘ i1,

loop system (1.1) and (2.8), thus, the errompproaches 0i(v,w) = col (w;(v, w), Laywi(v,w), -+, LET i (v, w))

zero asymptotically. As a result, the proof is completad.

Remark 2.2:It is known that if the equilibrium of the Then there exist matriceB; = 0(”;1)“ la I.r’.’._; ]
closed-loop _s_ys_tem at the origin is exponenti_al_ly .StableandE,; _ [ Lo o ] such thatl 2 T
and the equilibrium of the exosystem at the origin is neu-
rally stable, then the equilibrium of the composite system 90; (v, w)
composed of the closed-loop system and the exosystem TAW = ©;0;(v,w)
is stable. Thus, the trajectory of the closed-loop system w(v,w) = Ei;(v,w). (3.3)

exists and is bounded for all sufficiently small(0), v(0),

andw. When the exosystem is linear, the neutral stability The following result gives sufficient conditions for the
of the equilibrium of the exosystem is necessary in ordesxistence of the steady state generator.

to guarantee the boundednessagft) for all sufficiently Lemma 3.1:Under assumption A1, if

smallz.(0), v(0), andw. Nevertheless, when the exosystenyiy v, (y(¢),w),i = 1,---,m, is polynomial inv(t) with

is nonlinear, the trajectory of the exosystem may Sg}:oefficients depending om, and

be bounded even if the equilibrium of the exosystem i
unstable. A typical case is the Van Der Pol equation whic
has an asymptotically stable limit cycle. When the size of 99, (v, w L
the limit cycle is sufficiently small such that the trajegtor %AMU =09, (v,w), k=2, K,

of the closed-loop system (2.5) and (2.7) starting from i=1,---.m (3.4)
sufficiently smallz.(0) and w is contained in domain of

the attraction of the closed-loop system [17], Corollary 2.then the system (1.1) and (1.2) has a linearly observable
can still guarantee the boundednessegft). Therefore, in  steady state generator with output

the statement of the Corollary 2.1, we have not required the Proof: Let éi(v,w) = T;6;(v,w) whereT; is any non-
neutral stability of the equilibrium of the exosystem at thesingular matrix with same dimension as thatdaf Under
origin. 1 assumptions (i) and (i), the Lie derivative @;f(v,w) along
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(1.2) satisfies Consequently, the dynamics

8@2‘(1}7’111) CL(U 771 = fyi(n’ia'rau7eav)
ov = Mn; + Ti¢£2] ()T, ' + Nju; - (3.5)
K
_ Tiaei(v,w) Ay + ZA[k]w[kJ (v) is an internal model of the plant (1.1) and exosystem (1.2)
v = with outputu;, since
B K ~
S @iaxv,w)+Z<I>£"’]ez-<v,w>a“ﬂ<v>] % (010, w),x(0, w), u(v,w), 0,0)
- K k=2 = Miéi(v, w) + TZ¢£2] (’U)T;léi(’()7 w) + NZ‘Einléi(U, w)
- T @i+2©£k]a[k](v)] : (v, w) = LT 0i(0,0) + T (0) 1630, w)
L k=2 = T’iqbi(v)iriilei(vvw) = ai(ei(v: w),v). (36)
B K
- T o +Zq)[k]a[k](v) T [T30: (v, w)] As a resAuIt, system (1.1) and £1.2) has a steady state
L 2 generator{&(v, w),a(ﬁ(v,w),v),ﬁ(&(v,w))} with output
= Tii(0)T; " 0s(v, w) u, where
wheres, (v) = @, + 42 (v) andg (v) = YK, Halkl (1) 0w = ool (01(00), 0a(v, w), G0, )

with ¢*(0) = 0 and ¢;(0) = ;. On the other hand, a(@(v,w),v) = To)T '0(v,w)
= ET '9(v,w),

ui(v,w) = Eﬁl(v,w) = EiTi_lTi@i(v,w) = EZ‘T;_léi(UﬂU). 6(9(0711}))
) and an internal model

It is ready to show that system (1.1) and (1.2) has a steady ) )

state generator 0=,z u,e,v) = My + TP ()T~ + Nu

. . A with
(0w, w), 0u(Bi(0,w), ), 6,01 (v, 0)) }
: n = col(n,m, -, 0m)
with outputu;, where T = diag(Ti,Ts, -, Tpn)
a;(0;(v,w),v) = Tigi(v)T; 0;(v, w) E = diag(Er, B, -, En)
Bi(0i(v,w)) = ET70:(v,w). M = diag(My, Ma,---, M,,)
1 1 . N = diag(vaNQa"'aNm)
Moreover, (E;, ®;), hence, (E,T; ", T;®,T; "), is ob- _ i
servable, that is, the steady state generator is lin- ov) = diag(ei(v), ¢2(v), -, dm(v))
early observable. Finally, let) = col(fy, - -,0,), o (v) diag ¢[f](v),¢[22](v),.--,qsfj(v)).

a(f,v) = diagai(01,v),, m(0m,v)), and B(f) = , ,
diag(B1(61), - - - B (6,)). Then the triple(d, o, 3) gives a  OPViously, ¢(0) = & = diag(®1, &z, -+, D).
steady state generator for system (1.1) and (1.2) with outpu IV. SOLVABILITY OF THE MAIN PROBLEM

u. W In this section, we will give the solvability conditions of

Rgmark 3.1:Condition (i) of Lemma 3.1-is standard in the robust output regulation problem without assuming that
the literatures of the robust output regulation problem mthe exosystem is linear. To this end, let us list two more
[7], and [11]. Condition (ii) automatically holds when theassumptions

exosystem is linear under condition (i). Of course, the Define the following notation
interest of Lemma 3.1 is that conditions (i) and (ii) may '

hold in many cases even when the exosystem is nonlinear 4 _ ﬁ(o 0,0,0), B= %(0 0,0,0)

as shown by the example in Section W Qx> 77 7 ou T
With the steady state generator ready, we can definea ¢ = @(0707070), D= %(070,0,0),

nonlinear internal model as follows. FoE 1, - - -, m, pick O u

any controllable pair(M;, N;) with M; € ®*" N; € A2: The pair(A, B) is stabilizable, and the pa(C, A) is
g1 where M; is Hurwitz and has disjoint spectra with detectable.

@i.. Then there exists a uni_que, nonsingular matfix A3: For all A € o(®), rank AE)‘I g } =n+m,
satisfying the Sylvester equation wheres (®) = {\ det(® — AIJ = 0}.
T,®, — M;T; = N;E; Theorem 4.1:Suppose assumptions Al to A3 and the

conditions (i) and (ii) in Lemma 3.1, the robust output
since the spectra of the matricés and M; are disjoint, regulation problem is solvable by an output feedback cdntro
and the pair(E;, ®;) is observable. law in the sense described in the statement of Corollary 2.1.
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Proof: Under the assumption Al and the conditions (isolves the robust output regulation problem for the origina
and (i), the system (1.1) and (1.2) has a steady state gesystem (1.1) and (1.2)n
erator and an internal model with output Now, applying Remark 4.1:Condition (i) can be somehow relaxed. As-
the following state and input transformation sume the solutiom(v, w) of the regulator equations can be

R written as follows
= COI(ﬁl7ﬁ27"'7ﬁm):n_e(v7w)

n
z = z—x(v,w) u(v,w) = uc(v) + a(v, w) (4.5)
a = u—p0(n) for some sufficiently smooth function.(v) vanishing at

the origin, and some polynomial functiai(v, w). Then it

on th? au_gmented Sy?’t?”] givesia tran§formed_system Wh9§%hown in [8] that the regulator equations of the system
linearization at the origir{; = 0,z = 0,2 = 0) with v and

w being set to zero is (t) = fz(t),a(t) + uc(v(t)), v(t), w), z(0)=zo
i (M + NETY)ij+ Na is given byu(v, w). Clearly, system (4.6) satisfies assump-
e, = CI+Du+DET'j (4.1) tions A1-A3 if and only if system (1.1) satisfies assumptions

A1-A3. Thus, if a(v,w) also satisfies condition (ii), then
By Corollary 2.1, it suffices to stabilize the equilibrium atthere exists an output feedback control law
the origin of (4.1).

First, consider the decomposition, vo= Z(n) - Kfz] L N K
)7 = + T ()T "+ -
AT BET-! B 7= Ln ¢7 ()T 0+ N(B(n) - K&)
0 M+NET'-X N £ = Li+Qe
I 0 0 that solves the robust output regulation problem for system
= { A—Al 0 B ] 0 I 0 (4.6). Consequently, the following output feedback cdntro
0 M-—-X N 0 ET-1 I law
Since(A4, B) is stabilizable, and/ is Hurwitz, we conclude u = uc(v)+pB(n) — K¢
that (4.1) is stabilizable_ using PBH tes_t. n = Mn+ T2 ()T~ '+ N(B(n) — K¢)
To show that (4.1) is detectable, first note that + ¢ = L&+ Qe
NET—' = T®T~1, and (C, A) is detectable. Thus the
following matrix solves the robust output regulation problem for the origina
B system (1.1). Note that evenif(v, w) is already a polyno-
A— Al BET! - : o ;
. mial in v, making use of the decomposition (4.5) sometimes
0 M+ NET_l — A (4.2) may reduce the order of the steady state generator, thus
¢ DET simplifying the design of control laws as shown by the
has full rank for allA ¢ o(®) and R&A} > 0. example in the next sectiona
Next co_n_S|der the case where € o(®). Using the V. AN EXAMPLE
decomposition ) )
Consider the following plant
A— NI 0 B I 0 . )
(4.2) = 0 M-X N 0 I , 1 = Tyt wie” +rg
C 0 D 0 ET! To = woTy + SlIl[(l + wg)exg] +u
together with A3 and the fact that/ is Hurwitz, we € = I1—u
conclude that (4.2) has full rank. Thus, the detectabilityyhere the reference inpuy is produced by the following
As a result, system (4.1) can be stabilized by a line i v
L - 2 — (2],,412)
control law of the form a[ . ] { —avy + b(1 — v2)v ] Av + A¥va* (v)(5.1)
u = —K¢ with
£ f‘f’Q@ ( ) A:[ 0 1],A[2]:|:0 0 :|7a[2](v)=1)%.
By Corollary 2.1, the following output feedback control —a b 0 —b

law It is well known that, for alla > 0 andb > 0, the Van der
Pol oscillator will produce an asymptotically stable limit

= B - Ki] . cycle. In what follows, we will design a regulator for the
) = Mn+T¢ ()T~ n+ N(B(n) — KE) casea = b = 1, and the result shows this limit cycle size
& = L&+ Qe (4.4) is small enough to be tracked by the plant output.
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First, Iet us note that the system satisfies assumption Al. VI. CONCLUSION

regulator equations for this system is

xi(v,w) = v
xo(v,w) = —vi 4 vy
u(v,w) = —wvy—v; + (1 —0¥)vy — wyvy.

Next, it is ready to see thai(v,w) satisfies conditions (i)

and (ii) of Lemma 3.1. In order to reduce the order of the

steady state generator, decompose

u(v, w) = u.(v) + a(v, w)

with u.(v) = —vy — v +(1—v?)ve, andi(v, w) = —wav;.
It can be verified thafi(v, w) still satisfies the condition (i)
and (ii) of Lemma 3.1 withK' = 2, andtb[f] = 8 _01

Corresponding tax(v,w), we can obtain a steady state
generator with9; (v, w) = col(—wqvy, —wavs),

cpl:[ol H,El:[l 0.

Clearly, this steady state generator is linearly obseevabl
To construct an internal model, pickM; =

Rt

e Then, solving the Sylvester
0 -2
equation givesl; = { 1
3

3

W=

Noting ¢[12] (v) = ‘I>[12]a[2 (v) gives the internal model as
follows

= M+ TePT 'e? + Nya.

To verify A2 and A3, note thatd = [ i é ] B =
(1) ,C=[1 0] andD = 0. Thus A2 is obviously

satisfied. A3 is also satisfied by noting th&®,) = {0.5+
0.5v/3i,0.5 — 0.5v/3i}. Thus the output regulation problem

robust output regulation problem without the longstanding

restrictive assumption that the exosystem is linear and neu

rally stable. A set of sufficient conditions for the solvitlil

of the problem are given. The results of this paper allow

the robust output regulation problem to admit a much larger
class of exogenous signals such as the limit cycle produced
by the Van der Pol oscillator.

Our control law relies not only on the error output, but
also on the exogenous signals. Such a control law applies
to the case where the exogenous signals are reference
input and/or measurable disturbance, but not unmeasurable
disturbance. It is interesting to further investigate thegi-
bility of constructing dynamic output feedback contradler
to solve the problem.
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