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Abstract— For over a decade, the solvability of the nonlinear
robust output regulation problem relies on the assumption that
the exosystem is linear and neurally stable. Thus the only
exogenous signal that can be accommodated by the existing
theory is a combination of finitely many step functions and
sinusoidal functions. In this paper, we will show that it is
possible to find controllers that can admit exogenous signals
produced by nonlinear exosystems. An example with the well
known Van der Pol oscillator as the exosystem is given to
illustrate our approach.

I. I NTRODUCTION

Consider the plant described by

ẋ(t) = f(x(t), u(t), v(t), w), x(0) = x0

e(t) = h(x(t), u(t), v(t), w), t ≥ 0 (1.1)

and an exosystem described by

v̇(t) = a(v(t)), v(0) = v0 (1.2)

where x(t) is the n-dimensional plant state,u(t) the m-
dimensional plant input,e(t) the p-dimensional plant out-
put representing the tracking error,v(t) the q-dimensional
exogenous signal representing the reference input, andw
the N -dimensional plant unknown parameter with nominal
value 0. For simplicity, all the functions involved in the
setup are sufficiently smooth, vanishing at their origins, and
m = p.

Briefly, the robust output regulation problem is aimed to
design a control law such that, for all sufficiently smallv ∈
<q and all sufficiently smallw ∈ <N , the solution of the
closed-loop is bounded and the tracking error approaches0
asymptotically. Various versions of this problem have been
extensively studied via the dynamic state feedback [10],
[11], dynamic output feedback [1], [11], [12], [13], [15],
[16], and the dynamic state/output feedback control with
the feedforward control [6], and [8].

Among other conditions, a key solvability condition of
the robust output regulation problem is that the exosystem
is linear and neurally stable, or what is the same,
A0: The exosystem (1.2) islinear, i.e., a(v) = A1v for
some matrixA1, and all eigenvalues ofA1 are simple with
zero real parts.
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Clearly, such exosystems can only produce signals which
are a combination of finitely many step functions and
sinusoidal functions. Thus, assumption A0 severely limits
the applicability of the robust output regulation theory. For
example, the limit cycle generated by the well known Van
der Pol oscillator cannot be handled due to assumption A0.

The major objective of this paper is to replace assumption
A0 by some much less restrictive assumption. For this
purpose, we will first generalize, in Section II, the notion of
the steady state generator and the internal model introduced
in [9] to allow the inclusion of the exogenous signalv in the
control law. Then, in Section III, we will give the existence
conditions of the steady state generator and the internal
model. In Section IV, we will establish a set of solvability
conditions of the robust output regulation problem when
the exosystem is nonlinear. In Section V, we will use an
example with the well known Van der Pol oscillator as the
exosystem to illustrate our approach. The paper is closed in
Section VI with some concluding remarks.

II. GENERALIZATION OF STEADY STATE GENERATOR

AND INTERNAL MODEL

It is known that a necessary condition for the solvability
of the robust output regulation problem is the existence of
the solution of the following equations [14].
A1: There exist sufficiently smooth functionsx(v, w) and
u(v, w) with x(0, 0) = 0 and u(0, 0) = 0 satisfying the
following equations for allv ∈ V , w ∈ W with V andW
open neighborhoods of the origins of respective Euclidean
spaces,

∂x(v, w)

∂v
a(v) = f(x(v, w),u(v, w), v, w)

0 = h(x(v, w),u(v, w), v, w). (2.1)

Equations (2.1) are called regulator equations. Unfortu-
nately, unlike the linear case [4] and [5], the solvability
of (2.1) is not sufficient for the solvability of the robust
output regulation problem for nonlinear systems. In order
to guarantee the solvability of the robust output regulation
problem, additional assumptions have to be imposed on the
solution of the regulator equations, and on the exosystem.
It is shown in [11] that if the solution of the regulator
equations is polynomial inv(t), and the exosystem satisfies
assumption A0, then the robust output regulation problem
is solvable provided that the linear approximation of system
(1.1) at the origin is stabilizable and detectable. Other
similar conditions are given in [1], [7] and [15], respectively.
More recently, a more general framework is established
which aims to convert the robust output regulation problem
for a given plant into a robust stabilization problem for



an augmented system [9]. This framework relies on two
important concepts, namely, the steady state generator and
the internal model. Existence of the steady state generator
and the internal model is guaranteed under assumption
A0, and the polynomial assumption on the solution of the
regulator equations. In order to remove assumption A0,
we will resort to the feedforward control of the exogenous
signalv. For this purpose, we need to extend the definitions
of the steady state generator and the internal model to the
following.

Definition 2.1: Let g : <n+m 7→ <l be a mapping for
some positive integer1 ≤ l ≤ n + m. Under assumption
A1, the nonlinear system (1.1) and (1.2) is said to have
a (generalized) steady state generatorwith output g(x, u)
if there exists a triple{θ, α, β}, whereθ : <q+N 7→ <s,
α : <s+q 7→ <s, andβ : <s 7→ <l for some integers are
sufficiently smooth functions vanishing at the origin, such
that, for all trajectoriesv(t) ∈ V of (1.2), and allw ∈ W ,

dθ (v (t) , w)

dt
= α (θ (v (t) , w) , v)

g(x(v(t), w),u(v(t), w)) = β (θ (v (t) , w)) . (2.2)

If, in addition, the pair

(

∂β(θ)
∂θ

∣

∣

∣

v=0,w=0
, ∂α(θ,v)

∂θ

∣

∣

∣

v=0,w=0

)

is observable, then{θ, α, β} is called a linearly observable
steady state generator with outputg(x, u).

Definition 2.2: Assume the nonlinear system (1.1) and
(1.2) has a steady state generator with outputg(x, u). Let
γ : <s+n+m+p+q 7→ <s be a sufficiently smooth function
vanishing at the origin. Then we call the following system

η̇ = γ (η, x, u, e, v) (2.3)

a (generalized) internal modelwith outputg(x, u) if, for all
v ∈ V , and allw ∈ W ,

γ (θ (v, w) ,x (v, w) ,u (v, w), 0, v)) = α (θ (v, w) , v) .

In the sequel, we assume g (x, u) =
[xi1 , xi2 , · · · , xid

, u]
T where1 ≤ i1 < i2 < · · · < id ≤ n

for some integerd satisfying 0 ≤ d ≤ n, and, without
loss of generality, we can always assumeij = j for
j = 1, · · · , d since the index of the state variable can be
relabelled to have this assumption satisfied.

Remark 2.1:The major difference between Definitions
2.1 and 2.2 and previous definitions given in [9] is that
both the steady state generator and the internal model are
allowed to depend on the exogenous signalv. It will be
seen later that this generalization will allow the exogenous
signal v to appear in the control law, too. Such a control
scheme can handle the case where the exogenous signalv is
a reference input and/or a measurable disturbance. It should
be noted that the notion of the steady state generator is a
generalization of the notion of the (generalized) system im-
mersion introduced in [1], [2]. The connection of the steady
state generator and the system immersion was detailed in
[9].

Now, as in [9], we can attach the internal model to the
given plant to yield the following augmented system

ẋ = f(x, u, v, w)

η̇ = γ (η, x, u, e, v)

e = h(x, u, v, w). (2.4)

Performing on (2.4) the following coordinate and input
transformation

η̄ = η − θ (v, w)

x̄i = xi − βi (η) , i = 1, · · · , d
x̄i = xi − xi (v, w) , i = d + 1, · · · , n
ū = u − [βd+1 (η) , · · · , βd+m (η)]

T
= u − βu (η)

gives a new system denoted by

˙̄η = γ̄(η̄, x̄, ū, v, w)

˙̄x = f̄(η̄, x̄, ū, v, w)

e = h̄(η̄, x̄, ū, v, w) (2.5)

where

γ̄(η̄, x̄, ū, v, w) = γ(η, x, u, e, v) − α(θ(v, w), v)

f̄i(η̄, x̄, ū, v, w) = fi(x, u, v, w) − ∂βi(η)

∂η
γ(η, x, u, e, v),

i = 1, · · · , d
f̄i(η̄, x̄, ū, v, w) = fi(x, u, v, w) − fi(x(v, w),u(v, w), v, w),

i = d + 1, · · · , n
h̄(η̄, x̄, ū, v, w) = h(x, u, v, w) − h(x(v, w),u(v, w), v, w).

An important property of system (2.5) is stated as fol-
lows.

Theorem 2.1:Suppose A1, and assume the system (1.1)
and (1.2) has a steady state generator with outputg(x, u) =
col(x1, · · · , xd, u) and an internal model described by (2.3).
Then the augmented system described by (2.5) has the
property that, for all sufficiently small trajectoriesv(t) of
the exosystem, and all sufficiently smallw,

γ̄(0, 0, 0, v(t), w) = 0

f̄(0, 0, 0, v(t), w) = 0

h̄ (0, 0, 0, v(t), w) = 0. (2.6)

Proof: The proof is very similar to what was given in
[3], and is omitted here.

The significance of Theorem 2.1 is that it allows the
robust output regulation problem of system (1.1) and ex-
osystem (1.2) to be converted into a robust stabilization
problem of the augmented system (2.5) as shown by the
following result.

Corollary 2.1: Suppose system (1.1) and (1.2) satisfies
assumption A1, and has a steady state generator with
output g(x, u) = col(x1, · · · , xd, u) and an internal model
described by (2.3). Assume there exists a controller of the
form

ū = k (x̄1, · · · , x̄d, ξ, e)

ξ̇ = ζ (x̄1, · · · , x̄d, ξ, e) (2.7)



where ξ ∈ <z, and k, ζ are sufficiently smooth functions
vanishing at their origins, that locally exponentially sta-
bilizes the equilibrium(η̄, x̄) = (0, 0) of the augmented
system (2.5). Then the following controller

u = βu(η) + k (x1 − β1(η), · · · , xd − βd(η), ξ, e)

η̇ = γ(η, x, u, e, v)

ξ̇ = ζ (x1 − β1(η), · · · , xd − βd(η), ξ, e) (2.8)

solves the robust output regulation for system (1.1) and
(1.2) in the sense that the equilibrium of the closed-loop
system composed of the plant (1.1) and the controller (2.8)
is exponentially stable, and for all sufficiently small initial
state of the closed-loop system, all sufficiently smallv(t),
andw, the errore approaches zero asymptotically.

Proof: Consider the closed-loop system composed of the
plant (1.1) and the controller (2.8) and denote its state by
xc = col(η, x, ξ). Then

xc = x̄c + col(θ(v, w), β1(η̄ + θ(v, w)), · · · ,
βd(η̄ + θ(v, w)),xd+1(v, w), · · · ,xn(v, w), 0),

with x̄c = col(η̄, x̄, ξ). Thus, whenv = 0 and w = 0, the
statex̄c of the closed-loop system composed of (2.5) and
(2.7) and the statexc of the closed-loop system composed
of (1.1) and (2.8) are related by a diffeomorphism

xc = x̄c + col(0, β1(η̄), · · · , βd(η̄), 0, · · · , 0, 0).

Thus the closed-loop system composed of (1.1) and
(2.8) is also exponentially stable. Next letxc(v, w) =
col(θ(v, w),x(v, w), 0). Then it can be verified that
xc(v, w) is a zeroing output center manifold of the closed-
loop system (1.1) and (2.8), thus, the errore approaches
zero asymptotically. As a result, the proof is completed.

Remark 2.2:It is known that if the equilibrium of the
closed-loop system at the origin is exponentially stable,
and the equilibrium of the exosystem at the origin is neu-
rally stable, then the equilibrium of the composite system
composed of the closed-loop system and the exosystem
is stable. Thus, the trajectory of the closed-loop system
exists and is bounded for all sufficiently smallxc(0), v(0),
and w. When the exosystem is linear, the neutral stability
of the equilibrium of the exosystem is necessary in order
to guarantee the boundedness ofxc(t) for all sufficiently
smallxc(0), v(0), andw. Nevertheless, when the exosystem
is nonlinear, the trajectory of the exosystem may still
be bounded even if the equilibrium of the exosystem is
unstable. A typical case is the Van Der Pol equation which
has an asymptotically stable limit cycle. When the size of
the limit cycle is sufficiently small such that the trajectory
of the closed-loop system (2.5) and (2.7) starting from
sufficiently smallxc(0) and w is contained in domain of
the attraction of the closed-loop system [17], Corollary 2.1
can still guarantee the boundedness ofxc(t). Therefore, in
the statement of the Corollary 2.1, we have not required the
neutral stability of the equilibrium of the exosystem at the
origin.

III. I NTERNAL MODEL WITH NONLINEAR EXOSYSTEM

As mentioned in the last section, the existence conditions
of the steady state generator and the internal model were
given in [9] for the case where the exosystem satisfies
assumption A0. In this section, we will further present the
existence conditions of the steady state generator and the
internal model with outputg(x, u) = u for the case where
the exosystem does not satisfy assumption A0.

Let us first note that the exosystem (1.2) can always be
written as follows

v̇ = A1v +

K
∑

k=2

A[k]va[k](v) (3.1)

for some integerK ≥ 1, andA[k] ∈ <q×q, k = 1, · · · ,K,
where a[k] : <q 7→ < is sufficiently smooth function
satisfying a[k](0) = 0. In particular, whena(v) is linear,
(3.1) is reduced tȯv = A1v.

Now, as in [9], assume the solutionu(v(t), w) of the
regulator equations is a polynomial inv(t). Then, fori =
1, · · · ,m, it is known that there exist a set of real numbers
a1, a2, · · ·, ari

such that

Lri

A1vui(v, w) = a1ui(v, w) + a2LA1vui(v, w) + · · ·
+ari

Lri−1
A1v ui(v, w), (3.2)

whereLA1vui(v, w) = ∂ui(v,w)
∂v

A1v, andLl
A1vui(v, w) =

∂L
l−1

A1v
ui(v,w)

∂v
A1v, l = 2, 3, · · ·, [1], [8]. Denote

θi(v, w) = col
(

ui(v, w), LA1vui(v, w), · · · , Lri−1
A1v ui(v, w)

)

.

Then there exist matricesΦi =

[

0(ri−1)×1 Iri−1

a1 [a2 · · · ari
]

]

andEi =
[

1 0 · · · 0
]

such that

∂θi(v, w)

∂v
A1v = Φiθi(v, w)

ui(v, w) = Eiθi(v, w). (3.3)

The following result gives sufficient conditions for the
existence of the steady state generator.

Lemma 3.1:Under assumption A1, if
(i) ui(v(t), w), i = 1, · · · ,m, is polynomial in v(t) with
coefficients depending onw, and
(ii) there exists some matrixΦ[k]

i satisfying

∂θi(v, w)

∂v
A[k]v = Φ

[k]
i θi(v, w), k = 2, · · · ,K,

i = 1, · · · ,m (3.4)

then the system (1.1) and (1.2) has a linearly observable
steady state generator with outputu.

Proof: Let θ̂i(v, w) = Tiθi(v, w) whereTi is any non-
singular matrix with same dimension as that ofΦi. Under
assumptions (i) and (ii), the Lie derivative ofθ̂i(v, w) along



(1.2) satisfies

∂θ̂i(v, w)

∂v
a(v)

= Ti

∂θi(v, w)

∂v

[

A1v +

K
∑

k=2

A[k]va[k](v)

]

= Ti

[

Φiθi(v, w) +
K

∑

k=2

Φ
[k]
i θi(v, w)a[k](v)

]

= Ti

[

Φi +
K

∑

k=2

Φ
[k]
i a[k](v)

]

θi(v, w)

= Ti

[

Φi +

K
∑

k=2

Φ
[k]
i a[k](v)

]

T−1
i [Tiθi(v, w)]

= Tiφi(v)T−1
i θ̂i(v, w)

whereφi(v) = Φi+φ
[2]
i (v) andφ

[2]
i (v) =

∑K
k=2 Φ

[k]
i a[k](v)

with φ
[2]
i (0) = 0 andφi(0) = Φi. On the other hand,

ui(v, w) = Eiθi(v, w) = EiT
−1
i Tiθi(v, w) = EiT

−1
i θ̂i(v, w).

It is ready to show that system (1.1) and (1.2) has a steady
state generator

{

θ̂i(v, w), αi(θ̂i(v, w), v), βi(θ̂i(v, w))
}

with outputui, where

αi(θ̂i(v, w), v) = Tiφi(v)T−1
i θ̂i(v, w)

βi(θ̂i(v, w)) = EiT
−1
i θ̂i(v, w).

Moreover, (Ei,Φi), hence,(EiT
−1
i , TiΦiT

−1
i ), is ob-

servable, that is, the steady state generator is lin-
early observable. Finally, letθ̂ = col(θ̂1, · · · , θ̂m),
α(θ̂, v) = diag(α1(θ̂1, v), · · · , αm(θ̂m, v)), and β(θ̂) =
diag(β1(θ̂1), · · · , βm(θ̂m)). Then the triple(θ̂, α, β) gives a
steady state generator for system (1.1) and (1.2) with output
u.

Remark 3.1:Condition (i) of Lemma 3.1 is standard in
the literatures of the robust output regulation problem [1],
[7], and [11]. Condition (ii) automatically holds when the
exosystem is linear under condition (i). Of course, the
interest of Lemma 3.1 is that conditions (i) and (ii) may
hold in many cases even when the exosystem is nonlinear
as shown by the example in Section V.

With the steady state generator ready, we can define a
nonlinear internal model as follows. Fori = 1, · · · ,m, pick
any controllable pair(Mi, Ni) with Mi ∈ <ri×ri , Ni ∈
<ri×1, whereMi is Hurwitz and has disjoint spectra with
Φi. Then there exists a unique, nonsingular matrixTi

satisfying the Sylvester equation

TiΦi − MiTi = NiEi

since the spectra of the matricesΦi and Mi are disjoint,
and the pair(Ei,Φi) is observable.

Consequently, the dynamics

η̇i = γi(ηi, x, u, e, v)

= Miηi + Tiφ
[2]
i (v)T−1

i ηi + Niui (3.5)

is an internal model of the plant (1.1) and exosystem (1.2)
with outputui, since

γi

(

θ̂i(v, w),x(v, w),u(v, w), 0, v
)

= Miθ̂i(v, w) + Tiφ
[2]
i (v)T−1

i θ̂i(v, w) + NiEiT
−1
i θ̂i(v, w)

= TiΦiT
−1
i θ̂i(v, w) + Tiφ

[2]
i (v)T−1

i θ̂i(v, w)

= Tiφi(v)T−1
i θ̂i(v, w) = αi(θ̂i(v, w), v). (3.6)

As a result, system (1.1) and (1.2) has a steady state
generator

{

θ̂(v, w), α(β̂(v, w), v), β(θ̂(v, w))
}

with output
u, where

θ̂(v, w) = col
(

θ̂1(v, w), θ̂2(v, w), · · · , θ̂m(v, w)
)

α(θ̂(v, w), v) = Tφ(v)T−1θ̂(v, w)

β(θ̂(v, w)) = ET−1θ̂(v, w),

and an internal model

η̇ = γ(η, x, u, e, v) = Mη + Tφ[2](v)T−1η + Nu

with

η = col(η1, η2, · · · , ηm)

T = diag(T1, T2, · · · , Tm)

E = diag(E1, E2, · · · , Em)

M = diag(M1,M2, · · · ,Mm)

N = diag(N1, N2, · · · , Nm)

φ(v) = diag(φ1(v), φ2(v), · · · , φm(v))

φ[2](v) = diag
(

φ
[2]
1 (v), φ

[2]
2 (v), · · · , φ[2]

m (v)
)

.

Obviously,φ(0) = Φ = diag(Φ1,Φ2, · · · ,Φm).

IV. SOLVABILITY OF THE MAIN PROBLEM

In this section, we will give the solvability conditions of
the robust output regulation problem without assuming that
the exosystem is linear. To this end, let us list two more
assumptions.

Define the following notation,

A =
∂f

∂x
(0, 0, 0, 0), B =

∂f

∂u
(0, 0, 0, 0),

C =
∂h

∂x
(0, 0, 0, 0), D =

∂h

∂u
(0, 0, 0, 0).

A2: The pair(A,B) is stabilizable, and the pair(C,A) is
detectable.

A3: For all λ ∈ σ(Φ), rank

[

A − λI B
C D

]

= n + m,

whereσ(Φ) = {λ|det(Φ − λI) = 0}.
Theorem 4.1:Suppose assumptions A1 to A3 and the

conditions (i) and (ii) in Lemma 3.1, the robust output
regulation problem is solvable by an output feedback control
law in the sense described in the statement of Corollary 2.1.



Proof: Under the assumption A1 and the conditions (i)
and (ii), the system (1.1) and (1.2) has a steady state gen-
erator and an internal model with outputu. Now, applying
the following state and input transformation

η̄ = col(η̄1, η̄2, · · · , η̄m) = η − θ̂(v, w)

x̄ = x − x(v, w)

ū = u − β(η)

on the augmented system gives a transformed system whose
linearization at the origin(η̄ = 0, x̄ = 0, ū = 0) with v and
w being set to zero is

˙̄x = Ax̄ + Bū + BET−1η̄

˙̄η = (M + NET−1)η̄ + Nū

el = Cx̄ + Dū + DET−1η̄. (4.1)

By Corollary 2.1, it suffices to stabilize the equilibrium at
the origin of (4.1).

First, consider the decomposition,
[

A − λI BET−1 B
0 M + NET−1 − λI N

]

=

[

A − λI 0 B
0 M − λI N

]





I 0 0
0 I 0
0 ET−1 I



 .

Since(A,B) is stabilizable, andM is Hurwitz, we conclude
that (4.1) is stabilizable using PBH test.

To show that (4.1) is detectable, first note thatM +
NET−1 = TΦT−1, and (C,A) is detectable. Thus the
following matrix





A − λI BET−1

0 M + NET−1 − λI
C DET−1



 (4.2)

has full rank for allλ /∈ σ(Φ) and Re{λ} ≥ 0.
Next consider the case whereλ ∈ σ(Φ). Using the

decomposition

(4.2) =





A − λI 0 B
0 M − λI N
C 0 D









I 0
0 I
0 ET−1



 ,

together with A3 and the fact thatM is Hurwitz, we
conclude that (4.2) has full rank. Thus, the detectability
of (4.1) follows from PBH test.

As a result, system (4.1) can be stabilized by a linear
control law of the form

ū = −Kξ

ξ̇ = Lξ + Qe. (4.3)

By Corollary 2.1, the following output feedback control
law

u = β(η) − Kξ

η̇ = Mη + Tφ[2](v)T−1η + N(β(η) − Kξ)

ξ̇ = Lξ + Qe (4.4)

solves the robust output regulation problem for the original
system (1.1) and (1.2).

Remark 4.1:Condition (i) can be somehow relaxed. As-
sume the solutionu(v, w) of the regulator equations can be
written as follows

u(v, w) = uc(v) + û(v, w) (4.5)

for some sufficiently smooth functionuc(v) vanishing at
the origin, and some polynomial function̂u(v, w). Then it
is shown in [8] that the regulator equations of the system

ẋ(t) = f(x(t), û(t) + uc(v(t)), v(t), w), x(0) = x0

e(t) = h(x(t), û(t) + uc(v(t)), v(t), w), t ≥ 0 (4.6)

is given byû(v, w). Clearly, system (4.6) satisfies assump-
tions A1-A3 if and only if system (1.1) satisfies assumptions
A1-A3. Thus, if û(v, w) also satisfies condition (ii), then
there exists an output feedback control law

û = β(η) − Kξ

η̇ = Mη + Tφ[2](v)T−1η + N(β(η) − Kξ)

ξ̇ = Lξ + Qe

that solves the robust output regulation problem for system
(4.6). Consequently, the following output feedback control
law

u = uc(v) + β(η) − Kξ

η̇ = Mη + Tφ[2](v)T−1η + N(β(η) − Kξ)

ξ̇ = Lξ + Qe

solves the robust output regulation problem for the original
system (1.1). Note that even ifu(v, w) is already a polyno-
mial in v, making use of the decomposition (4.5) sometimes
may reduce the order of the steady state generator, thus
simplifying the design of control laws as shown by the
example in the next section.

V. A N EXAMPLE

Consider the following plant

ẋ1 = x1 + w1e
2 + x2

ẋ2 = w2x1 + sin[(1 + w3)ex2] + u

e = x1 − v1.

where the reference inputv1 is produced by the following
Van der Pol oscillator
[

v̇1

v̇2

]

=

[

v2

−av1 + b(1 − v2
1)v2

]

= A1v + A[2]va[2](v)(5.1)

with

A1 =

[

0 1
−a b

]

, A[2] =

[

0 0
0 −b

]

, a[2](v) = v2
1 .

It is well known that, for alla > 0 andb > 0, the Van der
Pol oscillator will produce an asymptotically stable limit
cycle. In what follows, we will design a regulator for the
casea = b = 1, and the result shows this limit cycle size
is small enough to be tracked by the plant output.



First, let us note that the system satisfies assumption A1.
In fact, it can be directly verified that the solution of the
regulator equations for this system is

x1(v, w) = v1

x2(v, w) = −v1 + v2

u(v, w) = −v2 − v1 + (1 − v2
1)v2 − w2v1.

Next, it is ready to see thatu(v, w) satisfies conditions (i)
and (ii) of Lemma 3.1. In order to reduce the order of the
steady state generator, decompose

u(v, w) = uc(v) + û(v, w)

with uc(v) = −v2−v1+(1−v2
1)v2, andû(v, w) = −w2v1.

It can be verified that̂u(v, w) still satisfies the condition (i)

and (ii) of Lemma 3.1 withK = 2, andΦ
[2]
1 =

[

0 0
0 −1

]

.

Corresponding tôu(v, w), we can obtain a steady state
generator withθ1(v, w) = col(−w2v1,−w2v2),

Φ1 =

[

0 1
−1 1

]

, E1 =
[

1 0
]

.

Clearly, this steady state generator is linearly observable.
To construct an internal model, pickM1 =

[

0 1
−1 −2

]

, N1 =

[

1
0

]

. Then, solving the Sylvester

equation givesT1 =

[

1.0 − 2
3

− 1
3

1
3

]

.

Noting φ
[2]
1 (v) = Φ

[2]
1 a[2](v) gives the internal model as

follows

η̇1 = M1η1 + T1Φ
[2]
1 T−1

1 η1v
2
1 + N1û.

To verify A2 and A3, note thatA =

[

1 1
1 0

]

, B =
[

0
1

]

, C =
[

1 0
]

and D = 0. Thus A2 is obviously

satisfied. A3 is also satisfied by noting thatσ(Φ1) = {0.5+
0.5

√
3i, 0.5− 0.5

√
3i}. Thus the output regulation problem

of the original system can be solved by an output feedback
control law as follows,

u = −v2 − v1 + (1 − v2
1)v2 − Kξ + ET−1η

η̇ = Mη + TΦ[2]T−1ηv2
1 + N(−Kξ + ET−1η)

ξ̇ = Lξ + Qe.

Computer simulation has been used to verify the de-
sign with w1 = 0.1, w2 = −0.2, w3 = 0.3, v1(0) =
0.1, v2(0) = 0, x1(0) = −1, x2(0) = 0.2, η(0) =
0, ξ(0) = 0, K = [140.50 − 98.25 113.25 93.75]

T , Q =
[15.00 76.75 45.50 9.75]

T , and

L =









−14.00 1.00 0 0
−216.25 98.25 −110.25 −87.75
−186.00 98.25 −110.25 −86.75
−9.75 0 −1.00 −2.00









.

The simulation results are removed due to the space limit.

VI. CONCLUSION

The paper has studied the solvability of the nonlinear
robust output regulation problem without the longstanding
restrictive assumption that the exosystem is linear and neu-
rally stable. A set of sufficient conditions for the solvability
of the problem are given. The results of this paper allow
the robust output regulation problem to admit a much larger
class of exogenous signals such as the limit cycle produced
by the Van der Pol oscillator.

Our control law relies not only on the error output, but
also on the exogenous signals. Such a control law applies
to the case where the exogenous signals are reference
input and/or measurable disturbance, but not unmeasurable
disturbance. It is interesting to further investigate the possi-
bility of constructing dynamic output feedback controllers
to solve the problem.
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