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Abstract— In this note we discuss the problems of output
feedback stabilization for a class of cascaded systems and of
(approximate) output regulation for general nonlinear systems.
It is shown that (global) output feedback stabilization for
a class of systems in feedforward form can be achieved
with a dynamic feedback law, yielding bounded control, and
relying on the introduction of a reduced order observer. The
above result, together with standard tools borrowed from the
nonlinear output regulator theory, is instrumental to construct
dynamic control laws achieving (approximate) disturbance
rejection and output tracking in the presence of (bounded)
disturbance/reference signals generated by a known exosystem.

I. I NTRODUCTION

In this note we discuss the problems of global output
feedback stabilization and restricted output tracking for
a class of cascaded systems in feedforward form. These
results are based on recent developments on the global
asymptotic stabilization of such systems by means of satu-
rated partial state feedback control, see [17]. The problem
of output feedback stabilization of feedforward systems has
been widely addressed in the recent literature. Worth noting,
to put the present contribution in the proper context, are
the results in [22], where the output feedback stabilization
problem for a class of cascaded systems is solved using a
sort of separation principle,i.e. a state feedback control law
is combined with a full order observer. Note that the state
feedback stabilizing control law in [22] has to be arbitrarily
small, so that itsaction on the observer can be neglected.
More general results on the (semi-global) output feedback
stabilization of feedforward systems have been proposed,
seee.g. [1].

On the other hand, the problem of output regulation,
and robust output regulation, of nonlinear systems has
been exhaustingly dealt with, within the last three decades
[8], [12], [5], [18], [11], while extensions (to the case of
unknown exosystems) and special cases (e.g. systems with
input saturation) can be found in the more recent work
[26], [6] and references therein. On the basis of the seminal
works [8] and [12], it is nowadays apparent that, when a
disturbance generated by an exosystem is driving the plant
to be controlled, a controller that achieves stabilizationand
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disturbance rejection (or output tracking) necessarily needs
to incorporate a component constructed from a copy (or
multiple copies) of the exosystem, known as internal model,
together with a stabilizing component.

The application of this principle in the presence of
constant disturbances or constant references to be trackedis
at the basis of the use of the classicalintegral action, while
the extension to non-constant disturbances or references is
fairly involved. To begin with it is in general assumed that
the exosystem is – at least – Poisson stable. Then, it is noted
that the key ingredient in the study of nonlinear regulation
problems is the existence, for the system in closed loop
with a (dynamic) controller and driven by the exosystem,
of an output zeroing manifold. Goal of the controller is
to render such a manifold attractive, invariant, and such
that the (well-defined) dynamics on the manifold possess
specific properties. Necessary conditions for the existence
of such a manifold, and of a controller achieving the above
listed objectives, have been given by Isidori and Byrnes (see
e.g. [12]). Note that, unlike the case of linear systems, for
general nonlinear systems the construction of the internal
model is far from obvious. In the perspective of [9] (see
also [7], [11], [10]), the internal model is constructed from
the parallel connection of a copy of the exosystem (which
has to be linear) and a finite number of linear systems with
eigenvalues multiple of the eigenvalues of the exosystem.
This internal model, known as k-fold internal model, is able
to guarantee approximate regulation,i.e. the regulated out-
put will not contain frequency components corresponding to
eigenvalues of the exosystem, but will not go asymptotically
to zero. In the geometric perspective of Isidori-Byrnes, the
exosystem is constructed using an immersion condition.
This requires a realizability assumption, which holds for
linear exosystem and polynomial systems [26]. Notably, this
perspective allows to cope with an unknown exosystem and
to address in a simple way robustness issues [3]. Finally, in
the perspective of repetitive control (see [29] and references
therein) the internal model is constructed using an infinite
dimensional component (in general a delay line) in positive
feedback with a low pass filter. As this internal model is
able to potentially generate all periodic signals of a given
fixed frequency, it can be interpreted as an asymptotic
version of the k-fold internal model of [9]. Once the internal
model is constructed, the main difficulty in the solution
of global output regulation problems is the design of the
stabilizing component. This design requires the construction
of a (dynamic) output feedback stabilizing control law for
an extended system, namely the system to be controlled in



cascaded connection with the internal model. This problem
can sometimes be resolved relaxing the global stability
requirement and using semi-global stabilization tools [26],
or restricting the class of systems under consideration, see
e.g. [18].

On the basis of the above considerations, the contri-
bution of the present note is twofold. Firstly, the output
feedback stabilization problem for a class of feedforward
systems is solved by means of a dynamic output feedback
control law, yielding bounded control action (as in [22])
and (unlike [22]) relying on a reduced order observer. The
stability analysis of the closed loop system is performed
using the generalization of the small gain theorem given
in [24] and the design tools developed in [17] (see also
some preliminary results in [16]). Secondly, the problem
of restricted and approximate output regulation for gen-
eral nonlinear systems, satisfying specific properties, is
addressed and solved. The term restricted refers to the fact
that the disturbances to be rejected or the references to be
tracked have to be sufficiently small, so that the control law
achieving exact regulation is smaller, in amplitude, than the
stabilizing control. The term approximate refers to the fact
that the regulated output will not vanish asymptotically, but
only certain harmonic components will be cancelled. It is
therefore obvious that, in the construction of the internal
model we follow the perspective of the k-fold internal
model, which allows to pose the output feedback regulation
problem in a convenient form (see Section III). The paper
is organized as follows. In Section II the global output
feedback stabilization problem for a class of cascaded
systems is addressed and solved. In Section III the restricted
and approximate output regulation problem for a class
of nonlinear systems is solved. Note that, for simplicity,
we consider only a disturbance rejection problem, as the
tracking problem can be posed and solved using similar
considerations. Finally, Sections IV and V contain the
discussion of a case study and concluding remarks.

II. OUTPUT FEEDBACK STABILIZATION

Consider a nonlinear cascaded system described by equa-
tions of the form

ż = Jz + h(ξ) + r(ξ)u

ξ̇ = f(ξ) + g(ξ)u,
(1)

with state(z, ξ) ∈ R
p × R

n and inputu ∈ R. Assume that
the origin is an equilibrium point of the system withu = 0,
that the linear approximation around zero is controllable,
that theξ subsystem is input-to-state-stable (ISS) and LES
for u = 0, and thatJ is a stable matrix,i.e. JTP +PJ ≤ 0
for someP > 0. System (1) falls into the category of
systems in block feedforward form, and as such can be
asymptotically stabilized following one of the available
constructive methodologies, seee.g. [25], [21], [27], [20].
Besides, under the above assumptions the state feedback
stabilization problem for system (1) has been solved in [17]
by means of a simple bounded control law, that requires

information of theupper statez only. This design is based
on a generalization of the nonlinear small gain theorem and
has, as a starting point, the approximation of system (1) for
small ‖ξ‖.

In this section we extend the result of [17] considering
system (1) together with the output

y = Dz, (2)

and showing that global asymptotic stabilization by dy-
namic output feedback is achievable provided that a simple
(and natural) detectability condition is added to the assump-
tion used to achieve stabilization by (partial) state feedback.

Proposition 2.1: Consider system (1) with the output (2).
Assume the following.
(H1) The linear approximation of system (1) around the
origin is controllable.
(H2) The systemξ̇ = f(ξ) + g(ξ)u is ISS andξ̇ = f(ξ) is
locally exponentially stable.
(H3) The pair{D,J} is observable.
(H4) J + JT ≤ 01.
Then there exist matricesL andK and a positive constant
ε? such that for allε ∈ (0, ε?) the dynamic controller

˙̂z = Jẑ + L(Dẑ − y) +Ru

u = −εσ( 1
ε
Kẑ),

(3)

whereσ(·) is a saturation function2 belonging to the sector
(0, 1], globally asymptotically stabilizes system (1).

Proof: To begin with note that|u| ≤ ε, hence by
Assumption (H2), and selectingε sufficiently small, the
stateξ enters, in some finite timeto, the region‖ξ‖ ≤ δξ,
where δξ > 0 can be made arbitrarily small by choosing
a small enoughε, and stays therein for allt ≥ to, i.e. the
region‖ξ‖ ≤ δξ is positively invariant and can be arbitrarily
shrunk. Consider now the approximation of system (1) in
such a region, namely

ż = Jz +Hξ +Ru

ξ̇ = Fξ +Gu,
(4)

whereH = ∂h(ξ)
∂ξ

∣

∣

∣

ξ=0
, F = ∂f(ξ)

∂ξ

∣

∣

∣

ξ=0
, R = r(0) and

G = g(0), together with thė̂z equation given in (3), define
the error variablee = ẑ − z and notice that

ė = (J + LD)e−Hξ.

By assumption (H3) there exists a matrixL such thatJ +
LD is Hurwitz. Consider now the system

ė = (J + LD)e−Hξ

ξ̇ = Fξ +Gu,
(5)

which is globally asymptotically stable foru = 0 and ISS
with respect to the inputu and define the matrices

F =

[

J + LD −H
0 F

]

, G =

[

0
G

]

, H = [LD 0].

1This assumption can be replaced byJT P +PJ ≤ 0, for someP > 0.
2A number of such functions can be chosen, the simplest of which is

σ(s) = sign(s)max{1, |s|}.



As a result, system (5) rewrites in compact form as

ζ̇ = Fζ + Gu,

whereζ = [e′ ξ′]′. Note that the overall closed loop system
with state(ẑ, ζ) is described, in the region‖ξ‖ ≤ δξ, by
the equations

˙̂z = Jẑ + Hζ +Ru

ζ̇ = Fζ + Gu,
(6)

i.e. it is a system of the same form as system (1), satisfying
Assumptions (H1), (H2) and (H4), whereaŝz is now a
measured state. As a result, the equilibrium[ẑ, ζ] = [0, 0]
can be asymptotically stabilized, as detailed in [17], by a
saturated feedback of the stateẑ, i.e.

u = −εσ(
1

ε
Kẑ), (7)

for some appropriately chosen matrixK. We have thus
concluded that the closed loop system (4)-(3) is globally
asymptotically and locally exponentially stable.

To complete the proof it is necessary to show that the
same properties hold for the closed loop system (1)-(3). This
can be shown using standard converse Lyapunov arguments
together with Assumption (H2), as detailed in [17].
The result of Proposition 2.1 can be improved showing
that system (1) in closed loop with the controller (3), in
which u is replaced byu = −εσ( 1

ε
Kẑ) + v, is ISS with

respect to the new inputv and with restriction|v| < ε, see
[16], [17]. Thus, Proposition 2.1 can be applied iteratively
to construct output feedback stabilizing control laws for a
more general class of systems in feedforward form, namely
systems described by equations of the form

ż1 = J1z1 + h1(z2, · · · , ξ) + r1(z2, · · · , ξ)u
ż2 = J2z2 + h2(z3, · · · , ξ) + r2(z3, · · · , ξ)u

...
żm = Jmzm + hm(ξ) + rm(ξ)u

ξ̇ = f(ξ) + g(ξ)u
yi = Dizi, i = 1, · · · ,m

(8)

as detailed in the following statement, the proof of which
is trivial hence omitted.

Proposition 2.2: Consider the system described by equa-
tions (8) and assume the following holds.
(H1′) The linear approximation of system (8) is control-
lable.
(A2′) The systemξ̇ = f(ξ) + g(ξ)u is ISS andξ̇ = f(ξ) is
locally exponentially stable.
(A3′) The pairs{Di, Ji}, for i = 1, · · · ,m, are observable.
(A4′) Ji + JT

i ≤ 03.
Then, there exist matricesLi andKi, for i = 1, · · · ,m,
and a positive constantε? such that for allε ∈ (0, ε?) the

3This assumption can be replaced byJT

i
Pi + PiJi ≤ 0, for some

Pi > 0.

dynamic controller

˙̂z1 = J1ẑ1 + L1(D1ẑ1 − y1) +R1u
˙̂z2 = J2ẑ2 + L2(D2ẑ2 − y2) +R2u

...
˙̂zm = Jmẑm + Lm(Dmẑm − ym) +Rmu

u = − ε
2σ( 2

ε
Kmẑm) − · · · − ε

2m
σ( 2m

ε
K1ẑ1),

(9)

globally asymptotically stabilizes system (8).
Remark 2.1: The results of Proposition 2.1 and Propo-

sition 2.2 have to be compared with the results in [22],
where a similar problem is solved using bounded control
laws and a full order observer. Following the procedure
presented therein, the construction of an output feedback
stabilizing control law for system (8) requires at each step
the construction of a full order observer,i.e. the stateξ has
to be reconstructedm times, the statezm m − 1 times,
and so on. This redundancy does not arise in our design.
However, similar to [22], the computation of the stabilizing
gainsKi in the construction of the observer (9), needs to
be performed in steps,i.e. the gainsKm to Ki need to be
assigned beforeKi−1 can be calculated. Also, the results
in [22] apply to a slightly more general class of system,i.e.
the matricesJi are allowed to have multiple eigenvalues on
the imaginary axis. It is fair to say, though, that the design
proposed therein leads to more complex formulae than the
one proposed in the present paper.

III. D ISTURBANCE REJECTION WITH BOUNDED

CONTROL

In this section we consider systems described by equa-
tions of the form

ẋ = f(x) + g(x)u+ β1(x)w
y = h(x),

(10)

with statex ∈ R
n, control u ∈ R, output y ∈ R and

disturbancew ∈ R
p, which is generated by an exosystem

of the form
ẇ = Sw, (11)

and we address the problem of restricted approximate
output regulation by bounded feedback,i.e. the problem
of determining a bounded control law such that the effect
of w on y is attenuated (in a way that will be specified)
provided that‖w‖ is sufficiently small.

For simplicity, throughout the section the following as-
sumptions are made.
(A1) System (10) is ISS with respect tou andw and ẋ =

f(x) is locally exponentially stable.
(A2) System (11) isneutrally stable, i.e. without loss of

generality,S + S′ = 0.
Remark 3.1: With assumption (A1) we put emphasis on

the problem of disturbance rejection, when stabilization
is not an issue. It must be pointed out, however, that
the problem of disturbance rejection for more general,i.e.
unstable, systems can be tackled with the tools presented in
the paper.



A. Linear systems

This section is aimed at providing intuitive explanations
of the results of the next session. Note that comprehensive
results on the output regulation problem for linear systems
with bounded control can be found, for example, in [6].
Consider a linear system described by equations of the form

ẋ = Ax+Bu+B1w

y = Cx,
(12)

wherey is considered to be the measured output and at the
same time the output to be regulated to zero. It is assumed
that A is a Hurwitz matrix, i.e. system (12) is globally
exponentially stable foru = 0 andw = 0.

It is well-known that in the presence of a constant distur-
bancew, integral action leads to dynamic laws that achieve
regulation of the outputy. Accordingly, for disturbances
generated by an exosystem of the form (11) theinternal
model paradigm [12], [14], [4] gives directions for the
design of control laws achieving disturbance rejection. In
In particular, consider a system driven by the outputy,

ż = Sz + Ly, (13)

where the matrixL is chosen so that the pair{S,L} is
controllable, and the control lawu = −Kz. Note that there
existsK such that the system

ż = Sz + LCx

ẋ = Ax−BKz +B1w
(14)

with w = 0, is globally exponentially stable. Next, observe
that the system (14) is a globally exponentially stable
system perturbed by the signalw, which is a linear com-
bination of sinusoidal signals. The perturbed system has
a well-defined, unique and attractive steady state response,
which can be computed directly considering the (combined)
system of (11) and (14) and invoking the center manifold
theory, which yields that the steady state response is de-
scribed by equations of the form

zss(t) = πz(w(t)), xss(t) = πx(w(t)),

where πz(w) and πx(w) are such thatπz(0) = 0 and
πx(0) = 0 and satisfy

∂πz(w)

∂w
Sw = Sπz(w) + LCπx(w)

∂πx(w)

∂w
Sw = −BKπz(w) +Aπx(w) +B1w.

(15)
Settingz(w) = Πzw and x(w) = Πxw, the set of partial
differential equations (15) reduces to the set of algebraic
matrix equations

ΠzS = SΠz + LCΠx

ΠxS = −BKΠz +AΠx +B1
(16)

which has always a solution, provided that the original sys-
tem does not have transmission zeros which are eigenvalues
of the exosystem (11). Moreover, as explained in [13], [19],

the first of the equations (16) implies thatCΠx = 0. There-
fore yss(t) = Cxss(t) = CΠxw(t) = 0. We conclude, by
attractivity of the steady state response, that, for any initial
conditionw(0), z(0) andx(0), limt→∞ y(t) = 0.

The above discussion highlights the well-known fact that
for linear systems a control law yielding output regulation
in the presence of disturbances generated by a known, linear
exosystem can be designed using very simple arguments.

B. Nonlinear systems

Consider now the system (10). Assumption (A1) implies
that, for eachδ > 0, there exist constantsε?u > 0 and
ε?w > 0 such that if|u(t)| ≤ ε?u and ‖w(t)‖ ≤ ε?w for all
t > 0, then, in finite time, the state of the nonlinear system
(10) enters in finite time the region‖x‖ ≤ δ. In this region,
system (10) can be approximated by system (12) where

A =
∂f(x)

∂x

∣

∣

∣

∣

x=0

, B = g(0), B1 = β1(0).

Moreover, according to the generalized small gain theorem
of [24], as exploited in [16], [17], there exists a matrixK
such that the system

ż = Sz + LCx

ẋ = Ax− εBσ( 1
ε
Kz)

with σ(s) = sign(s)min{1, |s|}, is also globally asymptot-
ically (locally exponentially) stable for allε > 0.

The above discussion motivates the following result.
Proposition 3.1: Consider the system (10) and suppose

that the disturbancew is generated by the exosystem (11).
Suppose that Assumptions (A1) and (A2) hold. Suppose
moreover that the linear approximation of the system around
the origin has no transmission zeros on the imaginary axis4.

Then there exist positive constantsε?w, ε?u and δy and
matricesL and K such that for allε ∈ (0, ε?u) and for
all disturbances such that‖w(t)‖ ≤ ε?w for all t ≥ 0, the
bounded dynamic output feedback control law

ż = Sz + Ly

u = −εσ
(

1
ε
Kz

) (17)

yields closed loop trajectories with the following properties.

(P1) ‖y(t)‖ ≤ δy for all t ≥ 0 and for a constantδy > 0.
(P2) There exists a periodic functionyss(t), independent

from the initial conditions, such that, for any initial
condition, one haslimt→∞(y(t)− yss(t)) = 0. More-
over yss(t) does not contain frequency components
corresponding to eigenvalues of the matrixS.

Sketch of the proof. According to the result in [17] there
exists a positive constantε?u and a matrixK such that, for
w = 0 and allε ∈ (0, ε?u), the closed loop system (10)-(17),
which is given by the cascade

ż = Sz + Lh(x)
ẋ = f(x) − g(x)εσ

(

1
ε
Kz

)

4This assumption may be relaxed requiring only that the transmission
zeros are not eigenvalues of the exosystem.



is globally asymptotically and locally exponentially stable.
By the discussion above note that for small enough

disturbancesw the well-defined steady state trajectories of
the closed loop system (10)-(17) will be given by

zss(t) = πz(w(t)), xss(t) = πx(w(t)),

where the functionsπz(w) andπx(w) are such thatπz(0) =
0 and πx(0) = 0 and solve the set of partial differential
equations

∂πz(w)

∂w
Sw = Sπz(w) + Lh(πx(w))

∂πx(w)

∂w
Sw = −g(πx(w))εσ

(

1
ε
Kπz(w)

)

+f(πx(w)) + b1(πx(w))w.

The first approximation of the above partial differential
equations yields equations (16), hence the claim is a conse-
quence of the discussion in Section III-A and of the general
results in [9].

Remark 3.2: The suggested design is based on a linear
way of thinking, hence, for general nonlinear systems and as
pointed out in [11], there is no guarantee that theresonant
frequencies of the steady state output will be unaffected
by the disturbance. A way to overcome this problem is to
use the k-fold internal model of [9]. For example, if the
exosystem generating the disturbance is such that

S =

[

0 ω

−ω 0

]

,

then a controller that uses the dynamic compensatorż =
Shz + Ly with Sh = blockdiag{S, 2S, 3S}. is such that
the steady state output response is periodic and has no
components at angular velocitiesω, 2ω and3ω.

Remark 3.3: The combination of the results in Propo-
sition 2.1 and 3.1 can provide a solution to the problem
of approximate and restricted output regulation by means
of error feedback for some class of feedforward systems,
namely systems of the form

ż = Jz + h(ξ) + r(ξ)u+ r1(ξ)w

ξ̇ = f(ξ) + g(ξ)u+ g1(ξ)w
y = Cz

(18)

where y represents the measured output, that needs to
be regulated to zero, andw ∈ R

p a disturbance that is
generated by an exosystem of the form (11). Under the
standard controllability and observability assumptions,the
assumption on the LES-ISS of theξ-subsystem with respect
to both u and w, and the assumption thatJ + J ′ ≤ 0
andS + S′ ≤ 0, it is possible to achieve approximate and
restricted regulation of the outputy by means of a bounded
dynamic output feedback law of the form

ζ̇ = Sζ + L2y
˙̂z = J ẑ − L1y +Ru

u = −εσ

(

1

ε
K1ẑ

)

−
ε

2
σ

(

2

ε
K2ζ

)

.

(19)

IV. OUTPUT REGULATION OF THETORA

In this section we illustrate the contribution of the paper
considering the disturbance rejection problem for a non-
linear benchmark system: theTranslational Oscillator with
a Rotational Actuator, commonly referred to as TORA
[2]. The disturbance rejection problem for such a system
has also been studied in [28], whereas various constructive
nonlinear control methodologies have been tested on this
system, see for example [15], [25], [23]. The system is
four-dimensional, with states the translational and angular
positions xd and φ, respectively, and the corresponding
velocitiesvd andω. In the coordinates

x1 = xd + ε̄ sinφ
x2 = vd + ε̄ω cosφ
x3 = φ

x4 = ψ(x3)ω

(20)

and for some appropriate functionψ(x3), the system can be
written in block feedforward form. The available measure-
ments for control are the positionsxd andφ, or equivalently
the statesx1 andx3. In [17] the (global) output feedback
stabilization problem has been solved by means of a dy-
namic controller and a saturated feedback. According to the
construction therein, and following [28] for the introduction
of disturbances into the closed loop, the model of the
“controlled” TORA, subject to a sinusoidal disturbancew
acting on the translational movement, is described by

ẋ1 = x2

ẋ2 = −x1 + ε̄ sinx3 − γ(x3)ε̄ cos(x3)w
ẋ3 = α(x3)x4

ẋ4 = −x3α(x3) − x4 − z − εσ
(

1
ε
kx1

)

+v − γ(x3)ψ(x3)w
ż = −λ(x3)z − bεσ

(

1
ε
kx1

)

+ bv + γ(x3)ψ(x3)w,
(21)

whereα(x3), ψ(x3), λ(x3) andγ(x3) are known functions,
and ε̄, b, k, ε are known parameters of the system and of
the stabilizing controller. The output to be regulated is the
horizontal position of the system given by

y = xd = x1 − ε̄ sin(x3). (22)

System (21) is ISS with respect tow andv. To attenuate the
effect of the disturbance on the output (22) we introduce
an ‘internal model’ based dynamic compensator with a
bounded regulator action, namely

ż = Sz + Ly, v = −
ε

2
σ

(

2

ε
Kz

)

. (23)

The response of the closed loop system is shown in Fig-
ure 1. Note the asymptotic behavior of the regulated output
xd. In Figure 2 we plot the spectrum decomposition of the
signal y(t) when no regulation of the output is engaged
(top graph) and when the controller (23) is used (graph in
the middle). Note the different scale of the magnitude in
the two cases. When the primary oscillation frequencyω is
attenuated (by means of the dynamic feedback (23)) it is



possible to detect a harmonic at3ω. This second harmonic
can also be attenuated if a2-fold internal model is used,
as explained in Remark 3.2. The result is illustrated in the
bottom graph of figure 2.
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Fig. 1. Response of the TORA system, driven by a sinusoidal disturbance,
in closed loop with the control law (23).
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Fig. 2. Spectrum decomposition of the signaly(t) when no regulation of
the output is engaged (top graph), when the controller (23) is used (graph
in the middle) and when a controller with a2-fold internal model is used.
Note the different scale on the|Y (jω)| axis.

V. CONCLUSIONS

The problem of global asymptotic stabilization of a class
of feedforward systems has been addressed and solved using
dynamic output feedback control laws delivering a bounded
action. This result has been exploited to solve the problem
of approximate and restricted output regulation for general
nonlinear systems, provided that the exogenous signals are
generated by a linear exosystem.
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