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Output feedback stabilization and restricted tracking for cascaded
systems with bounded control

Georgia Kaliora, Zhong-Ping Jiang and Alessandro Astolfi

Abstract—In this note we discuss the problems of output disturbance rejection (or output tracking) necessarilydse
feedback stabilization for a class of cascaded systems and of tg incorporate a component constructed from a copy (or

(approximate) output regulation for general nonlinear systems. . itip| i f the ex m. known internal m |
It is shown that (global) output feedback stabilization for ¢ Uttﬂe Co.[ihes)ot tb?(.a osystem, (: as internal model,
a class of systems in feedforward form can be achieved ogetner with a stabilizing component.

with a dynamic feedback law, yielding bounded control, and The application of this principle in the presence of
relying on the introduction of a reduced order observer. The constant disturbances or constant references to be traxked

above result, together with standard tools borrowed from the  at the basis of the use of the classicdbgral action, while
nonlinear output regulator theory, is instrumental to construct the extension to non-constant disturbances or referesces i

dynamic control laws achieving (approximate) disturbance s : e
rejection and output tracking in the presence of (bounded) fairly involved. To begin with it is in general assumed that

disturbance/reference signals generated by a known exosystem. the exosystem is — at least — Poisson stable. Then, it is noted
that the key ingredient in the study of nonlinear regulation
problems is the existence, for the system in closed loop
. INTRODUCTION with a (dynamic) controller and driven by the exosystem,
In this note we discuss the problems of global outpuef an output zeroing manifold. Goal of the controller is
feedback stabilization and restricted output tracking foto render such a manifold attractive, invariant, and such
a class of cascaded systems in feedforward form. The##at the (well-defined) dynamics on the manifold possess
results are based on recent developments on the glotsgecific properties. Necessary conditions for the exigtenc
asymptotic stabilization of such systems by means of sataf such a manifold, and of a controller achieving the above
rated partial state feedback control, see [17]. The problelisted objectives, have been given by Isidori and Byrnes (se
of output feedback stabilization of feedforward systems ha.0. [12]). Note that, unlike the case of linear systems, for
been widely addressed in the recent literature. Worth gptingeneral nonlinear systems the construction of the internal
to put the present contribution in the proper context, argodel is far from obvious. In the perspective of [9] (see
the results in [22], where the output feedback stabilizatioalso [7], [11], [10]), the internal model is constructedrfro
problem for a class of cascaded systems is solved usinghe parallel connection of a copy of the exosystem (which
sort of separation principlé.e. a state feedback control law has to be linear) and a finite number of linear systems with
is combined with a full order observer. Note that the stateigenvalues multiple of the eigenvalues of the exosystem.
feedback stabilizing control law in [22] has to be arbitsari This internal model, known as k-fold internal model, is able
small, so that itsaction on the observer can be neglectedio guarantee approximate regulatio®, the regulated out-
More general results on the (semi-global) output feedbadkut will not contain frequency components corresponding to
stabilization of feedforward systems have been proposeeigenvalues of the exosystem, but will not go asymptotycall
seeeg. [1]. to zero. In the geometric perspective of Isidori-Byrneg, th
On the other hand, the problem of output regulatiorgXosystem is constructed using an immersion condition.
and robust output regulation, of nonlinear systems hahis requires a realizability assumption, which holds for
been exhaustingly dealt with, within the last three decadéiear exosystem and polynomial systems [26]. Notablg thi
[8], [12], [5], [18], [11], while extensions (to the case of perspective allows to cope with an unknown exosystem and
unknown exosystems) and special caseg 6ystems with to address in a simple way robustness issues [3]. Finally, in
input saturation) can be found in the more recent workhe perspective of repetitive control (see [29] and refegsn
[26], [6] and references therein. On the basis of the semintierein) the internal model is constructed using an infinite
works [8] and [12], it is nowadays apparent that, when glimensional component (in general a delay line) in positive
disturbance generated by an exosystem is driving the plai@edback with a low pass filter. As this internal model is
to be controlled, a controller that achieves stabilizato  able to potentially generate all periodic signals of a given
fixed frequency, it can be interpreted as an asymptotic
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cascaded connection with the internal model. This probleimformation of theupper statez only. This design is based
can sometimes be resolved relaxing the global stabilityn a generalization of the nonlinear small gain theorem and
requirement and using semi-global stabilization tools],[26 has, as a starting point, the approximation of system (1) for
or restricting the class of systems under consideration, semall ||£]|.
eg. [18]. In this section we extend the result of [17] considering

On the basis of the above considerations, the contrsystem (1) together with the output
bution of the present note is twofold. Firstly, the output y= Dz @
feedback stabilization problem for a class of feedforward ’
systems is solved by means of a dynamic output feedbaekd showing that global asymptotic stabilization by dy-
control law, yielding bounded control action (as in [22])namic output feedback is achievable provided that a simple
and (unlike [22]) relying on a reduced order observer. Théand natural) detectability condition is added to the agsum
stability analysis of the closed loop system is performetlon used to achieve stabilization by (partial) state fe®#b
using the generalization of the small gain theorem given Proposition 2.1: Consider system (1) with the output (2).
in [24] and the design tools developed in [17] (see alséssume the following.
some preliminary results in [16]). Secondly, the problenfH1) The linear approximation of system (1) around the
of restricted and approximate output regulation for gen- origin is controllable. '
eral nonlinear systems, satisfying specific properties, i412) The systent = f(£) + g(§)u is ISS andé = f(&) is
addressed and solved. The term restricted refers to the fd@tally exponentially stable.
that the disturbances to be rejected or the references to (43) The pair{D, J} is observable.
tracked have to be sufficiently small, so that the control layH4) J + J7 < 0.
achieving exact regulation is smaller, in amplitude, thaa t Then there exist matrices and K and a positive constant
stabilizing control. The term approximate refers to thet face* such that for alle € (0,€*) the dynamic controller
that the regulated output will not vanish asymptoticaliyt b_ P — J:4L(D:-y)+Ru
only certain harmonic components will be cancelled. It is _ 12 3)

: ) . i u = —eo(+K%),

therefore obvious that, in the construction of the internal €
model we follow the perspective of the k-fold internalwheres(-) is a saturation functichbelonging to the sector
model, which allows to pose the output feedback regulatiot?, 1], globally asymptotically stabilizes system (1).
problem in a convenient form (see Section Ill). The paper Proof: To begin with note thafu| < ¢, hence by
is organized as follows. In Section Il the global outpuAssumption (H2), and selecting sufficiently small, the
feedback stabilization problem for a class of cascadegates enters, in some finite time,, the region||{|| < o,
systems is addressed and solved. In Section Il the resdrictwhere s > 0 can be made arbitrarily small by choosing
and approximate output regulation problem for a clasg small enough, and stays therein for all > ¢,, i.e. the
of nonlinear systems is solved. Note that, for simplicityregion|||| < J¢ is positively invariant and can be arbitrarily
we consider only a disturbance rejection problem, as thghrunk. Consider now the approximation of system (1) in
tracking problem can be posed and solved using simil@uch a region, namely

considerations. Finally, Sections IV and V contain the 5 = Jz+ HE+ Ru
discussion of a case study and concluding remarks. ¢ = F¢+tGu 4)
Il. OUTPUT FEEDBACK STABILIZATION where H — 8}5(55) P = 82(55) , R = r(0) and

£=0 0

Consider a nonlinear cascaded system described by eq

tions of the form e ¢(0), together with theZ equation given in (3), define

the error variablee = Z — z and notice that
1) ¢ = (J+ LD)e — HE.
By assumption (H3) there exists a matdixsuch that/ +

z Jz+h(&) +7r(&)u
3 f(&) +9()u,

with state(z,£) € R? x R™ and inputu € R. Assume that . . :
the origin is an equilibrium point of the system with= 0, LD is Hurwitz. Consider now the system
that the linear approximation around zero is controllable, é (J+ LD)e — H¢
that the¢ subsystem is input-to-state-stable (ISS) and LES & = Fé&+ Gu,

for u = 0, and that/ is a stable matrixi.e. J"P+PJ <0 yphich is globally asymptotically stable far = 0 and 1SS
for some P > 0. System (1) falls into the category of it respect to the input and define the matrices
systems in block feedforward form, and as such can be 0

asymptotically stabilized following one of the available r — [ J+LD —H } G =
constructive methodologies, seq. [25], [21], [27], [20]. 0 B G
Besides, under the above assumptions the state feedbac}grhis assumption can be replaced B§ P+ P.J < 0, for someP > 0.
stabilization problem for system (1) has been solved in [17] 2A number of such functions can be chosen,ithé simplest of wisich i
by means of a simple bounded control law, that requires(s) = sign(s) max{1, |s|}.

(®)

y H=[LD 0.
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As a result, system (5) rewrites in compact form as dynamic controller

(= FC+ Gu, 21 = Jigr+ Li(DiZ — 1) + Ruu
Zy = JaZa+ La(DaZz — y2) + Rou
where¢ = [¢/ ¢']’. Note that the overall closed loop system . Q)
with state (2, () is described, in the regiofi| < d¢, by ) .
the equations Zm = Jmlm A Li(DimZm = ym) + B
u = 750(%Km2m) — = 2%0(2?[(1731),
2 = J:4+HC+Ru

(6) globally asymptotically stabilizes system (8).

¢ = F(+0u, Remark 2.1: The results of Proposition 2.1 and Propo-
ition 2.2 have to be compared with the results in [22],
here a similar problem is solved using bounded control

laws and a full order observer. Following the procedure
resented therein, the construction of an output feedback

stabilizing control law for system (8) requires at each step

the construction of a full order observée. the statef has

) to be reconstructedn times, the stater,, m — 1 times,

and so on. This redundancy does not arise in our design.

However, similar to [22], the computation of the stabilgin
ains K; in the construction of the observer (9), needs to

i.e. it is a system of the same form as system (1), satisfyin
Assumptions (H1), (H2) and (H4), wheredsis now a
measured state. As a result, the equilibriin¢] = [0, 0]
can be asymptotically stabilized, as detailed in [17], by
saturated feedback of the statgi.e.

1
u=—eo(-K2),
€

for some appropriately chosen matrix. We have thus
concluded that the closed loop system (4)-(3) is globall . . .
P Sy (“4)-G) is g e performed in steps.e. the gainsk,, to K; need to be

asymptotically and locally exponentially stable. )
ymp y y_ _p y assigned beford(;_; can be calculated. Also, the results
To complete the proof it is necessary to show that the

same properties hold for the closed loop system (1)-(3% Thi! [22] apply to a slightly more general class of system,

. h%e matrices/; are allowed to have multiple eigenvalues on
can be shown using standard converse Lyapunov argumeﬂ]s

together with Assumption (H2), as detailed in [17]. € imaginary axis. It is fair to say, though, that the design

The result of Proposition 2.1 can be improved showingromsed the(;e_lntlr?ads o mtore complex formulae than the
that system (1) in closed loop with the controller (3), in ne proposed in the present paper.

which u is replaced byu = —eo(1K2) + v, is ISS with I1l. DISTURBANCE REJECTION WITH BOUNDED

respect to the new input and with restrictionv| < ¢, see CONTROL

[16], [17]. Thus, Proposition 2.1 can be applied iteragvel | this section we consider systems described by equa-
to construct output feedback stabilizing control laws for §gns of the form

more general class of systems in feedforward form, namely

systems described by equations of the form z = ig; + g9(z)u+ fi(z)w (10)
ao= Szt alze 8 iz, u with statez € R”, controlu € R, outputy € R and
Zo = Joza+ha(zs, -, &) +ra(zs, -, §u disturbancew € RP, which is generated by an exosystem
: (®) of the form
Em = Imzm t hin(§) + rm(Qu W = Sw, (11)
£ = [+ u and we address the problem of restricted approximate
vi = Diz, i=1,--,m output regulation by bounded feedbadle. the problem

as detailed in the following statement, the proof of whichOf determining a bounded control law such that the effect

is trivial hence omitted of w on y is attenuated (in a way that will be specified)
P tion 2.2 C .'d th tem d ibed b provided that||w|| is sufficiently small.
tiongo?gfe:rfg a'ss.umc()anfklleefrollo?/v?rils EQ dSeSC” ed by equa- simplicity, throughout the section the following as-
: N ) . sumptions are made.
H1’) The linear approximation of system (8) is control- . .
I(ablez PP y ® (A1) System (10) is ISS with respect toandw andz =
A2") The svstent — wis ISS ands — is flx)is Iocally exponentially sta}ble. _
I(oca?ly expoynen?iglly Qfggg(m & = f(e) (A2) System (11) isneutrally stable, i.e. without loss of
. H ! __
(A3’) The pairs{D;, J;}, fori =1,---,m, are observable. generallty,S_ +5°=0. _ )
(A4 J;, + JT <03, Remark 3.1: With assumption (A1) we put emphasis on
Then, there exist matrices, and K;, for i = 1,..-,m, the problem of disturbance rejection, when stabilization
and a positive constant such that for alle € (0,¢*) the IS Not an issue. It must be pointed out, however, that
the problem of disturbance rejection for more geneiral,
SThis assumption can be replaced B P, + P;J; < 0, for some ~Unstable, systems can be tackled with the tools presented in
P> 0. B the paper.
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A. Linear systems the first of the equations (16) implies th@ail, = 0. There-

This section is aimed at providing intuitive explanationdore v°*(t) = Cz**(t) = Cll,w(t) = 0. We conclude, by
of the results of the next session. Note that comprehensi@dractivity of the steady state response, that, for artjaini

results on the output regulation problem for linear systenfeonditionw(0), z(0) anda(0), lim;—.oc y(t) = 0.
with bounded control can be found, for example, in [6]. The above discussion highlights the well-known fact that

Consider a linear system described by equations of the forff linear systems a control law yielding output regulation
. in the presence of disturbances generated by a known, linear
& = Az+ Bu+ Bw (12) exosystem can be designed using very simple arguments.
y = Cu,
) ) B. Nonlinear systems
wherey is considered to be the measured output and at the id h ) impli
same time the output to be regulated to zero. It is assumedCONSider now the system (10). Assumption (A1) implies

that A is a Hurwitz matrix,i.e. system (12) is globally tf:at, for eaﬁhf] >'f0, there e*X'St constants, f fO anltlj
exponentially stable for, = 0 andw = 0. €, > 0 such that iffu(f)] < € and |w(?)]| < €, for a

It is well-known that in the presence of a constant disturélz 0, then, _inffin_ite Fime,lf'he St"_ﬂe )Of<th§ Tonrl]i_near _system
bancew, integral action leads to dynamic laws that achievé ) enters in finite time the regidfx|| < 4. In this region,
regulation of the outpuy. Accordingly, for disturbances

system (10) can be approximated by system (12) where
generated by an exosystem of the form (11) thiernal _ Of(x) B B
model paradigm [12], [14], [4] gives directions for the A= O , B=4(0), Bi=7p1(0).

design of control laws achieving disturbance rejection. Irll/loreover accordig:]zoto the generalized small gain theorem
In particular, consider a system driven by the output ' o )
P y y U of [24], as exploited in [16], [17], there exists a matik

2= Sz+ Ly, (13) such that the system
where the matrixL is chosen so that the pa{iS, L} is ¢ = Sz+1LCx )
controllable, and the control law = — K z. Note that there & = Az —eBo(:Kz)
exists K such that the system with o(s) = sign(s) min{1, [s|}, is also globally asymptot-
i = Sz+LCzx ically (locally exponentially) stable for al > 0.
& = Ax— BKz+ Bjw (14) The above discussion motivates the following result.

. . ) Proposition 3.1: Consider the system (10) and suppose
with w = 0, is globally exponentially stable. Next, observey, ¢ yhe gisturbance is generated by the exosystem (11).
that the system (14) is a globally e>_<pone_nt|ally Stabl%uppose that Assumptions (A1) and (A2) hold. Suppose
system perturbed by the signal, which is a linear com- ,e0ver that the linear approximation of the system around

bination O,f smuso_ldal signals. The perturbed system ha}ﬁe origin has no transmission zeros on the imaginary*axis
a well-defined, unique and attractive steady state respoNS€Than there exist positive constant§, ¢ and 6, and
vty Y

which can be computed directly considering the (combinecp]atricesL and K such that for alle € (0,¢%) and for
system of (11) and (14) and invoking the center manifol%II disturbances such thdtw ()| < ¢, for a’"% > 0. the

theory, which yields that the steady state response is dﬁ()unded dynamic output feedback control law
scribed by equations of the form

z = Sz+L
25 (1) = ma(w(t), 2°() = m(w(b)), v = e (1K) (7

where 7. (w) and m,(w) are such thatr.(0) = 0 and yields closed loop trajectories with the following propest
72(0) = 0 and satisfy (P1) [jy(t)|| < 4, for all t > 0 and for a constani, > 0.

or.(w) (P2) There exists a periodic function(t), independent

WS’W = Sm(w)+ LCmy(w) from the initial conditions, such that, for any initial

O (w) condition, one hasim;_ .. (y(t) — yss(t)) = 0. More-

8—wa = —BKmr,(w)+ An,(w) + Byw. over y.s(t) does not contain frequency components

(15) corresponding to eigenvalues of the matfix

Setting z(w) = ,w and z(w) = I, w, the set of partial Sketch of the proof. According to the result in [17] there
differential equations (15) reduces to the set of algebraixists a positive constarf, and a matrixk" such that, for

matrix equations w = 0and alle € (0,¢}), the closed loop system (10)-(17),
LS = SIL + LCIL ) which is given by the cascade
II,S = —BKIL + All, + B, i = Sz+ Lh(x)

- 1
. . . - T = x)—g(r)eo (= Kz
which has always a solution, provided that the original sys- f(@) = g(w) (5 )
tem does not have transmission zeros Wh'_Ch ar_e e'gen\/aluesThis assumption may be relaxed requiring only that the trarsams
of the exosystem (11). Moreover, as explained in [13], [19keros are not eigenvalues of the exosystem.
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is globally asymptotically and locally exponentially siab IV. OUTPUT REGULATION OF THETORA

By the discussion above note that for small enough |, yis section we illustrate the contribution of the paper
disturbancesv the well-defined steady state trajectories OEonsidering the disturbance rejection problem for a non-

the closed loop system (10)-(17) will be given by linear benchmark system: tieanslational Oscillator with

2es(t) = (W (1)),  ss(t) = mo(w(t)), a Rotational Actuator, commonly referred to as TORA
[2]. The disturbance rejection problem for such a system
where the functions, (w) andr, (w) are such that.(0) =  has also been studied in [28], whereas various constructive
0 and 7,;(0) = 0 and solve the set of partial differential nonlinear control methodologies have been tested on this
equations system, see for example [15], [25], [23]. The system is
om.(w) four-dimensional, with states the translational and aagul
“5u SV = Sm.(w) + Lh(my(w)) positions z; and ¢, respectively, and the corresponding
Oy (w) velocitiesv; andw. In the coordinates
Em Sw = —g(my(w))eo (1Km.(w)) 21 = g+ Esing
+f(me(w)) 4 by (72 (w))w. Ty = g+ EwcosP (20)
The first approximation of the above partial differential T3 = ¢
equations yields equations (16), hence the claim is a conse- 2y = P(rz)w
quence of the discussion in Section 1lI-A and of the generglnq for some appropriate functiai(z), the system can be
results in [9]. written in block feedforward form. The available measure-

Remark 3.2: The suggested design is based on a linegfents for control are the positions ande, or equivalently
way of thinki_ng, hence, for.general nonlinear systems and @ge statesr; and zs. In [17] the (global) output feedback
pointed out in [11], there is no guarantee that teenant  stapjlization problem has been solved by means of a dy-
frequencies of the steady state output will be unaffectegamic controller and a saturated feedback. According to the
by the disturbance. A way to overcome this problem is teonstruction therein, and following [28] for the introdiact
use the k-fold internal model of [9]. For example, if thegf disturbances into the closed loop, the model of the

exosystem generating the disturbance is such that “controlled” TORA, subject to a sinusoidal disturbance
g 0 w acting on the translational movement, is described by
|: —w 0 :| 7 i’l = X2
then a controller that uses the dynamic compensater Z9 = —x1+Esinas — y(x3)€ cos(xs)w
Suz + Ly with S, = blockdiag{S, 25, 3S}. is such that &3 = o(x3)zs
the steady state output response is periodic and has ngs = —z3a(z3) — 21 —2— €0 (%k%)
components at angular velocities 2w and 3w. +v —y(z3)Y(z3)w
Remark 3.3: The combination of the results in Propo- % = —A(x3)z —beo (fha1) +bv +~(23)P(23)w,
sition 2.1 and 3.1 can provide a solution to the problem 21)

of approximate and restricted output regulation by mean¥éherea(zs), ¢:(x3), A(x3) andy(x3) are known functions,

of error feedback for some class of feedforward system&ndé, b, k, ¢ are known parameters of the system and of
namely systems of the form the stabilizing controller. The output to be regulated is th

horizontal position of the system given by

2 = Jz+h(+ru+m(§w .
£ = fO+9Ou+g(©w (18) y =4 =x1 — Esin(z3). (22)
y = Cz

System (21) is ISS with respect toandv. To attenuate the

where y represents the measured output, that needs effect of the disturbance on the output (22) we introduce

be regulated to zero, andd € RP a disturbance that is an ‘internal model' based dynamic compensator with a

generated by an exosystem of the form (11). Under thegounded regulator action, namely

standard controllability and observability assumptioting c /2

assumption on the LES-ISS of tijesubsystem with respect 2=52+Ly, v= —30 (—Kz) . (23)

to both v and w, and the assumption that + J' < 0 ¢

and S + S’ <0, it is possible to achieve approximate andThe response of the closed loop system is shown in Fig-

restricted regulation of the outpytby means of a bounded ure 1. Note the asymptotic behavior of the regulated output

dynamic output feedback law of the form xq4. In Figure 2 we plot the spectrum decomposition of the
. signal y(¢t) when no regulation of the output is engaged
§ = S0+ Lay (top graph) and when the controller (23) is used (graph in

2 = Ji-Liy+ Ru (19) the middle). Note the different scale of the magnitude in
U = —eo (l[ﬁg) _ % (2[{2() ) the two cases. When the primary oscillation frequendg
€ 2 € attenuated (by means of the dynamic feedback (23)) it is
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possible to detect a harmonic &b. This second harmonic
can also be attenuated if &fold internal model is used,
as explained in Remark 3.2. The result is illustrated in they,
bottom graph of figure 2.

(3]

0.5 0.5 [5]
(6]
X4 0 N Vg 0
(71
03 20 40 60 8 100 0% 20 40 60 80 100 (8]
time,(s) time,(s)
0.6 1 [9]
0.4
02 0.5 [10]
-0.2
-0.4 o5 [11]
-0.6
-08 a [12]
20 4(? 60 80 100 0 20 40_ 60 80 100
time,(s) time,(s) [13]
Fig. 1. Response of the TORA system, driven by a sinusoidalniance, [14]
in closed loop with the control law (23).
[15]
0.02 T T
1Y Gw)| no attenuation
0.01F : JL ] [16]
Oq( 107 D.‘l 0‘.2 0.3 0‘.4 O‘,S D.‘S 0‘.7 0.‘8 0‘.9 1
2 T T T T T T T T T
1Y)l attenuation with Sh:{s) [17]
1 ,
Dq( 10 7 0.‘1 0‘.2 0.‘3 0‘.4 O‘.S 0.‘6 0‘.7 0.‘8 0‘.9 1 [18]
4 T T T T T T T T T
Y (o) attenuation with S, =blockdiag{S,3S} [19]
2k ,
[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
frequency
[21]
Fig. 2. Spectrum decomposition of the signét) when no regulation of
the output is engaged (top graph), when the controller (238jsed (graph
in the middle) and when a controller with2afold internal model is used. [22]
Note the different scale on th& (jw)| axis.
[23]
V. CONCLUSIONS
[24]

The problem of global asymptotic stabilization of a class
of feedforward systems has been addressed and solved usin?
dynamic output feedback control laws delivering a boundeld®
action. This result has been exploited to solve the probles)
of approximate and restricted output regulation for gelnera
nonlinear systems, provided that the exogenous signals ¥
generated by a linear exosystem.
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