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Abstract— We consider three related problems for stabilization of a
class of Lipschitz nonlinear systems: (1) full-state feedback controller
design, (2) observer design, and (3) output feedback controller design.
Sufficient conditions are developed for the design of an exponentially
stable linear full-state feedback controller and an exponentially stable
nonlinear observer. Given that the sufficient conditions of the con-
troller and observer problem are satisfied, we show that the proposed
controller with estimated state feedback from the proposedobserver
will achieve exponential stabilization. Simulation results on an example
are given to numerically verify the proposed designs.

I. I NTRODUCTION

The output feedback control problem for nonlinear systems has
received, and continues to receive, considerable attention in the
literature due to its importance in many practical applications
where measurement of all the state variables is not possible. Output
feedback control design usually involves two related problems:
observer design and controller design which uses estimated state
and output as feedback. Unlike linear systems, separation principle
does not generally hold for nonlinear systems. Therefore, the
output feedback control problem for nonlinear systems is much
more challenging than stabilization using full-state feedback. It
is well known that the observer design problem for nonlinear
systems by itself is quite challenging. One has to often consider
special classes of nonlinear systems to solve the observer design
problem as well as the output feedback control problem. Due to
their practical significance, two special classes of systems that
were often considered in the literature are nonlinear systems with
a triangular structure and Lipschitz nonlinear systems.

A systematic approach to the development of observers for
nonlinear systems was given in [1]; a nonlinear coordinate trans-
formation was used to transform the original nonlinear system to
a linear system with the addition of an output injection term. The
nonlinear state transformations were also employed in [2], [3],
[4] to obtain linear canonical forms that can be used for observer
design. A comparative study of four techniques that appeared in
the 1980’s for observing the states of nonlinear systems was given
in [5]. In [6], a new approach was given for the nonlinear observer
design problem; a general set of necessary and sufficient conditions
was derived using the Lyapunov’s auxiliary theorem.

In [7], counterexamples were given to discuss the problem of
global asymptotic stabilization by output feedback; a phenomenon
called “unboundedness unobservability” was defined; it means that
some unmeasured state components may escape in finite time
whereas the measurements remain bounded. Recent research has
focused on considering a selective class of nonlinear systems by
placing some structural conditions on the nonlinearities to solve
the output feedback problem. Global stabilization by dynamic
output feedback of nonlinear systems which can be transformed
to the output feedback form was given in [8]. Output feedback
control of nonlinear systems in triangular form with nonlinearities
satisfying certain growth conditions was considered in [9], [10]. In
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[11], it was shown that global stabilization of nonlinear systems is
possible using linear feedback for a class of systems which have
triangular structure and nonlinearities satisfy certain norm bounded
growth conditions. A backstepping design procedure for dynamic
feedback stabilization for a class of triangular Lipschitz nonlinear
systems with unknown time-varying parameters was given in [12].
Output feedback control of nonlinear systems has been extensively
studied in recent literature [13], [14], [15], [16].

Observer design techniques for Lipschitz nonlinear systems
were considered in [17], [18], [19], [20], [21]. The observer
design techniques proposed in these papers are based on quadratic
Lyapunov functions and thus depend on the existence of a positive
definite solution to an algebraic Ricatti equation. In [19], insights
into the complexity of designing observers for Lipschitz nonlinear
systems were given; it was discussed that in addition to choosing
the observer gain in their nonlinear Luenberger-like observer, one
has to make sure that the eigenvectors of the closed-loop observer
system matrix must also be well-conditioned to ensure asymptotic
stability. The existence of a stable observer for Lipschitz nonlinear
systems was addressed in [20]; a sufficient condition was given on
the Lipschitz constant. Some of the results of [20] were recently
corrected by [21]. For the nonlinear observer of [20], it was shown
in [21] that two sufficient conditions are required to guarantee that
the observer is exponentially stable.

In this paper, we provide a solution to the output feedback
control problem for Lipschitz nonlinear systems under some
sufficient conditions on the Lipschitz constant. First, we design
a linear full-state feedback controller and derive a sufficient con-
dition under which exponential stabilization is achieved with full-
state feedback. Second, we propose a Luenberger-like observer,
which is shown to be an exponentially stable observer under only
one sufficient condition. Given that the sufficient conditions of
the controller and observer problem are satisfied, we show that
the proposed controller with estimated state feedback from the
proposed observer will achieve exponential stabilization, that is,
the proposed controller and observer designs satisfy the separation
principle.

The rest of the paper is organized as follows. In Section II,
we give the class of Lipschitz nonlinear systems, the assumptions,
the notation used, and some prior results that will be useful for
the developments in the paper. The full-state feedback control
problem, the observer design problem, and the output feedback
control problem are considered in Sections III, IV, and V, respec-
tively. Section VI gives an algorithmic procedure for computing
the controller and observer gains while satisfying the sufficient
conditions. An illustrative example is given in Section VII. Section
VIII gives conclusions and some relevant future research.

II. PRELIMINARIES

We consider the problem of controller and observer design for
the following class of Lipschitz nonlinear systems:

ẋ = Ax+Bu+Φ(x,u), (1a)

y = Cx (1b)



wherex∈ R
n,u∈ R

p, andy∈ R
q are the system state, input, and

output, respectively. We assume, without loss of generality, that
x = 0 is the equilibrium point of the system.

We use the following notation throughout the paper.‖M‖
denotes the Euclidean norm of the matrix or vectorM. MH denotes
the complex conjugate transpose of the matrixM. σmin(M) denotes
the smallest singular value of the matrixM. The square of the
singular values of the matrixM are the eigenvalues of the matrix
MHM. det(M) represents the determinant of the matrixM.

Assumption A1:Φ(x,u) is Lipschitz with respect to the statex,
uniformly in the controlu, that is, there exists a constantγ such
that

‖Φ(x1,u)−Φ(x2,u)‖ ≤ γ‖x1−x2‖, x1,x2 ∈ R
n,u∈ R

p. (2)
Assumption A2:‖Φ(x,u)‖ ≤ γ‖x‖, ∀u∈ R

p.
Assumption A3:The pair(A,B) is controllable.
Assumption A4:The pair(C,A) is observable.
Definition D1: The numberδ (M,N) is defined as

δ (M,N) = min
ω∈R

σmin

(
iωI −M

N

)
(3)

where i =
√
−1 and I is an identity matrix with appropriate

dimension. See [21] for a discussion of the numberδ .
Lemma 1: [21] Consider the Algebraic Ricatti Equation

A⊤P+PA+PRP+Q = 0. (4)

If R = R⊤ ≥ 0, Q = Q⊤ > 0, A is Hurwitz, and the associated

Hamiltonian matrixH =

[
A R
−Q −A⊤

]
is hyperbolic, i.e.,H has

no eigenvalues on the imaginary axis, then there exists a unique
P = P⊤ > 0 to be the solution of (4).

Lemma 2: [20], [21] Let γ ≥ 0 and define

Hγ =

[
A I

C⊤C− γ2I −A⊤

]
.

Then γ < δ (A,C) if and only if Hγ is hyperbolic.

III. F ULL -STATE FEEDBACK CONTROLLER DESIGN

In this section we consider the regulation problem for the system
(1a) with full-state linear feedback under the assumptions A2 and
A3. Consider the control input:

u = −Kx/‖B‖2−K1x (5)

whereK1 is the pre-feedback gain matrix and is chosen such that

Anc
△
= A−BK1 is stable andK is the feedback gain matrix to be

determined later. With this control input, the closed-loop dynamics
of (1a) is

ẋ =
(

Anc−BK/‖B‖2
)

x+Φ(x,u)
△
= Ācx+Φ(x,u). (6)

Consider the following Lyapunov function candidate

Vc(x) = x⊤Pcx, Pc = P⊤
c > 0. (7)

The time derivative ofVc(x) along the trajectories of (6) is

V̇c(x) = x⊤
(

Ā⊤
c Pc +PcĀc

)
x+2x⊤PcΦ(x,u)

≤ x⊤
(

Ā⊤
c Pc +PcĀc

)
x+2γ‖Pcx‖‖x‖

≤ x⊤
(

Ā⊤
c Pc +PcĀc +PcPc + γ2I

)
x (8)

where the first inequality is a consequence of assumption A2 and
the second inequality is obtained by completing squares on the
term 2γ‖Pcx‖‖x‖. For anyηc > 0, V̇c ≤−ηcx⊤x, if

Ā⊤
c Pc +PcĀc +PcPc + γ2I = −ηcI . (9)

The choice of the control gain matrix in (9)

K = B⊤Pc/2 (10)

results in the following ARE:

A⊤
ncPc +PcAnc+Pc

(
I −BB⊤/‖B‖2

)
Pc +(γ2 +ηc)I = 0. (11)

Now we consider the problem of the existence of a symmetric
positive definite matrixPc, which is the solution to the ARE (11).
Since Anc is Hurwitz, (I −BB⊤/‖B‖2) ≥ 0, and(γ2 + ηc)I > 0,
by Lemma 1, the problem reduces to showing that the associated
Hamiltonian matrix

Hc =

[
Anc I −BB⊤/‖B‖2

−(γ2 +ηc)I −A⊤
nc

]
(12)

is hyperbolic.
Lemma 3: Hc is hyperbolic if and only if

√
γ2 +ηc < δ

(
A⊤

nc,
√

γ2 +ηcB
⊤/‖B‖

)
. (13)

Proof: The determinant of the matrix(−iωI −Hc) is

det(−iωI −Hc) = det

[
−iωI −Anc −I +BB⊤/‖B‖2

(γ2 +ηc)I −iωI +A⊤
nc

]

=(−1)ndet

[
(γ2 +ηc)I −iωI +A⊤

nc
−iωI −Anc −I +BB⊤/‖B‖2

]

=(−1)ndet
(
(γ2 +ηc)(−I +BB⊤/‖B‖2)− (iωI +Anc)(iωI −A⊤

nc)
)

=(−1)ndet
(

GH(iω)G(iω)− (γ2 +ηc)I
)

where G(iω)
△
=

(
iωI −A⊤

nc√
γ2 +ηc B⊤/‖B‖

)
, and the third equality is

obtained by using the formula for determinant of block matrices
[22, p. 650] because(γ2+ηc)I is non-singular. Using the definition
D1, it is seen that, if (13) holds, det(−iωI −Hc) 6= 0 which implies
that jω,∀ω ∈ R is not an eigenvalue ofHc, which in turn implies
that Hc is hyperbolic. The necessary part of the proof is similar
to that of Lemma 2; we refer the readers to [21] for details.¥

Theorem 1:For the nonlinear system given by (1), with the
assumptions A2, A3, and with the control input given by (5), the
equilibrium x= 0 is exponentially stable if the condition given by
(13) is satisfied.

IV. OBSERVER DESIGN

Consider the following observer for the system (1):

˙̂x = Ax̂+Bu+Φ(x̂,u)+
γ2 + εo

‖C‖2 L(y−Cx̂)+L1(y−Cx̂) (14)

whereεo ≥−γ2, L1 is chosen such thatAno
△
= A−L1C is Hurwitz,

andL is the observer gain matrix.

Let the estimation error̃x
△
= x− x̂. The error dynamics is

˙̃x =

(
Ano−

γ2 + εo

‖c‖2 LC

)
x̃+Φ(x,u)−Φ(x̂,u),

△
= Āox̃+Φ(x,u)−Φ(x̂,u). (15)



Consider the following Lyapunov function candidate

Vo(x̃) = x̃⊤Pox̃. (16)

The time derivative ofVo(x̃) along the trajectory of (15) is

V̇o(x̃) = x̃⊤
(

Ā⊤
o Po +PoĀo

)
x̃+2x̃⊤Po (Φ(x,u)−Φ(x̂,u)) . (17)

Choosing
L = P−1

o CT/2, (18)

using Assumption A1, and simplifying along the same lines as
done in the full-state feedback controller case, we have

V̇o(x̃) ≤−ηox̃⊤x̃, (19)

if Po = P⊤
o > 0 satisfies

A⊤
noPo +PoAno+PoPo +(γ2 +ηo)I − (γ2 + εo)C

⊤C/‖C‖2 = 0 (20)

for someηo > max(ε0,0). SinceAno is Hurwitz and the matrix
(γ2 + ηo)I − ((γ2 + εo)/‖C‖2)C⊤C > 0, by lemma 1, the above
ARE has a uniquePo = P⊤

o > 0 as the solution if the following
associated Hamiltonian is hyperbolic:

Ho =

[
Ano I

−(γ2 +ηo)I +(γ2 + εo)C⊤C/‖C‖2 −A⊤
no

]
. (21)

Lemma 4: Ho is hyperbolic if and only if
√

γ2 +ηo < δ
(

Ano,
√

γ2 + εo C/‖C‖
)

. (22)

Proof: Similar to lemma 3. ¥

The following theorem summarizes the results of this section.
Theorem 2:For the nonlinear system given by 1, with the

assumptions A1 and A4, if the condition given by (22) is satisfied,
(14) is an exponentially stable observer for the system.

Remark 1:Notice that the proposed observer, (14), requires
only one sufficient condition, (22), as opposed to the two sufficient
conditions for the observer given in [21]. The two conditions
are required in [21] because: (1) the observer structure does not
guarantee that the “Q” matrix in the ARE (4) is positive definite
and (2) the associated Hamiltonian matrix must be hyperbolic.
The proposed observer, (14), guarantees that the “Q” matrix in
the ARE (4) is positive definite.

V. OUTPUT FEEDBACK CONTROLLER DESIGN

Combining the full-state feedback control design of Section
III and the observer design of Section IV, we design an output
feedback controller for the system (1).

Theorem 3:Consider the system (1) with assumptions A1, A2,
A3, and A4. If conditions (13) and (22) hold, then the equilibrium
x = 0 of the system (1) is exponentially stable, with

u = −Kx̂/‖B‖2−K1x̂ (23)

where x̂ is the estimate ofx generated by (14),K is the gain
matrix given by (10), Further, the observation error,x̃ = x− x̂,
exponentially converges to zero.
Proof: Substituting the output feedback control law given by (23)
in (1) and simplifying we obtain

ẋ=
(

Anc−BB⊤Pc/2‖B‖2
)

x+Φ(x,u)+BB⊤Pcx̃/2‖B‖2+BK1x̃. (24)

The time derivative of the Lyapunov function candidateVc(x) given
by (7) along the trajectories of (24) is

V̇c(x) ≤ x⊤
(

A⊤
ncPc +PcAnc+Pc

(
I −BB⊤/‖B‖2

)
Pc + γ2I

)
x

+x⊤PcBB⊤Pcx̃/‖B‖2 +2x⊤PcBK1x̃. (25)

SincePc is the solution to the ARE (11), we have

V̇c(x) ≤−ηcx
⊤x+ζc‖x‖‖x̃‖ (26)

whereζc = ‖PcPc‖+‖2PcBK1‖.
Now consider the function

W(x, x̃) = ζVc(x)+Vo(x̃) (27)

whereζ > 0 andVo(x̃) is as given by (16). The time derivative of
W(x, x̃) is given by

Ẇ(x, x̃) ≤−ζ ηc‖x‖2 +ζ ζc‖x‖‖x̃‖−ηo‖x̃‖2. (28)

Choosingζ = ηcηo/ζ 2
c results in

Ẇ(x, x̃) ≤−ζ ηc‖x‖2/2−ηo‖x̃‖2/2. (29)

Therefore,x and x̃ exponentially converge to zero. ¥

Remark 2:The numberδ is realization dependent, that is, its
value depends onA, B, C. If A is unstable to begin with, then any
preliminary control used to stabilizeA will affect δ . Sinceδ andγ
depend on the realization, appropriate coordinate transformations
as discussed in [20], in some cases, can be used to increaseδ and
reduceγ.

Remark 3:The bisection algorithm given in [21] can be used to
computeδ ; it was suggested that 0 and‖A‖ be used as the initial
guess for the lower and upper bounds, respectively, forδ (A,C).
It is possible that the value ofδ may be greater than‖A‖. The

upper bound must be changed toσmin

(
A
C

)
because

δ (A,C) = min
ω∈R

σmin

(
iωI −A

C

)
≤ σmin

(
−A
C

)
= σmin

(
A
C

)
.

Remark 4:Sinceδ
(
A⊤

nc,γB⊤/‖B‖
)

is a continuous function of

γ, f (γ)
△
= γ − δ

(
A⊤

nc,γB⊤/‖B‖
)

is also a continuous function of
γ. Therefore, if f (γ) < 0, then there exists aγ1 > γ such that
f (γ1) < 0. Hence, iff (γ) < 0, then there exists anηc > 0 such that
f (

√
γ2 +ηc ) < 0, that is, (13) holds. Same arguments hold for

condition (22) withεo = 0. Hence, instead of checking conditions
given by (13) and (22), one can respectively check the following
two conditions

γ < δ
(

A⊤
nc,γB⊤/‖B‖

)
, γ < δ (Ano,γC/‖C‖) . (30)

Notice that the conditions given by (30) guarantees the existence
of ηc > 0 andηo > 0, but not their values. Conditions (13) and
(22) with specifiedηc and ηo give the rate of convergence of
controller and observer, respectively.

Remark 5:The three results given by theorems 1, 2, and 3 will
be applicable locally or globally depending on whetherΦ(x,u) is
locally or globally Lipschitz.

VI. I MPLEMENTATION PROCEDURE

In the following, we give a systematic procedure to compute the
observer and controller gain matrices with respect to the original
system (1) in the event of the use of the preliminary control and
coordinate transformations.

A. Observer gain matrix

1) Pole placement
Rewrite (1) in the following form

ẋ = (A−L1C)x+Bu+L1y+Φ(x,u), (31a)

y = Cx (31b)



whereL1 is chosen such that(A−L1C) is stable.
2) Similarity transformation

Let x = Tox′, (31) becomes

ẋ′ = T−1
o (A−L1C)Tox′ +T−1

o (Bu+L1y)+T−1
o Φ(Tox′,u)

△
= A′x′ +B′u+T−1

o L1y+T−1
o Φ(Tox′,u), (32a)

y = CTox′
△
= C′x′ (32b)

whereTo ∈ R
n×n is a nonsingular matrix. The new Lipschitz

gain γ ′ is obtained from the following inequality

‖T−1
o Φ(Tox1,u)−T−1

o Φ(Tox2,u)‖ ≤ γ ′‖x1−x2‖ (33)

for all x1,x2 ∈ R
n andu∈ R

p.
The observer for (32) is given by

˙̂
x′ = A′x̂′ +B′u+T−1

o L1y+T−1
o Φ(Tox̂′,u)

+(γ ′2 + εo)L
′(y−C′x̂′)/‖C′‖2

, (34a)

ŷ = C′x̂′. (34b)

After choosingεo ≥ −γ ′2 and ηo > max(εo,0), check the
condition

γ ′2 +ηo < δ 2
(

A′,
√

γ ′2 + εo C′/‖C′‖
)

(35)

for the existence of the solutionPo to the ARE

A′⊤Po +PoA′ +PoPo +(γ′2 +ηo)I − (γ′2 + εo)C
′⊤C′/‖C′‖2

= 0. (36)

If (35) is satisfied, the observer gain is chosen to beL′ =
P−1

o C′⊤/2 wherePo is the solution of the above ARE.

Notice that if one defineŝx= Tox̂′ as the estimate ofx, the system
(34) can be rewritten in terms of̂x by the following equations.

˙̂x = Ax̂+Bu+Φ(x̂,u)+L(y−Cx̂), (37a)

ŷ = Cx̂ (37b)

where L = L1 +(γ ′2 + εo)ToL′/‖CTo‖2. (38)

B. Controller gain matrix

1) Pole placement
Rewrite (1) in the following form

ẋ = (A−BK1)x+B(u+K1x)+Φ(x,u) (39)

whereK1 is chosen such that(A−BK1) is stable.
2) Similarity transformation

Let x = Tcx′, (39) becomes

ẋ′ = T−1
c (A−BK1)Tcx′ +T−1

c B(u+K1Tx′)+T−1
c Φ(Tcx

′,u)

△
= A′x′ +B′(u+K1Tcx

′)+T−1
c Φ(Tcx

′,u) (40)

whereTc ∈ R
n×n is a nonsingular matrix. The new Lipschitz

gain γ ′ is obtained from the following inequality

‖T−1
c Φ(Tcx1,u)−T−1

c Φ(Tcx2,u)‖ ≤ γ ′‖x1−x2‖ (41)

for all x1,x2 ∈ R
n and u ∈ R

p. Choosingu = −K1Tcx′ −
K′x′/‖B′‖2 results in the following closed-loop system

ẋ′ = (A′−B′K′/‖B′‖2
)x′ +T−1

c Φ(Tcx′,u). (42)

Chooseηc > 0 and check the condition

γ ′2 +ηc < δ 2
(

A′⊤,
√

γ ′2 +ηc B′⊤/‖B′‖
)

(43)

for the existence of the solutionPc to the ARE

A′⊤Pc +PcA
′ +Pc

(
I −B′B′⊤/‖B′‖2

)
Pc +

(
γ ′2 +ηc

)
I = 0. (44)

If (43) is satisfied, the control gain is chosen to beK′ =
B′⊤Pc/2 wherePc = P⊤

c > 0 is the solution of (44).

The gain matrix used in the full-state feedback controller or output
feedback controller is

K = K1 +K′T−1
c /‖T−1

c B‖2
. (45)

VII. A N ILLUSTRATIVE EXAMPLE : A FLEXIBLE LINK ROBOT

In this section, we consider the observer and controller design
for a flexible link robot [18], [20], [21], [23]. The dynamics of the
robot is described by the following state space representation:

ẋ = Ax+bu+Φ(x,u), (46a)

y = Cx (46b)

where

x =




θm

ωm

θ1
ω1


 , A =




0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 0


 , B =




0
21.6

0
0


 ,

C =

[
1 0 0 0
0 1 0 0

]
, Φ(x,u) =




0
0
0

−3.33sin(x3)


 ,

and θm is the angular position of the motor;ωm is the angular
velocity of the motor;θ1 is the angular position of the link; and
ω1 is the angular velocity of the link.
Observer design: Since A is not stable, we design a pre-
liminary gain L1 such that(A− L1C) is stable with poles at
−9.3275,−8.9203,−9.6711 and−4.7722. The gainL1 is

L1 =




9.3275 1.0000
−48.7804 22.1136
−0.0524 3.1994
19.4066 −0.9032


 .

The Lipschitz constant ofΦ(x,u) with respect tox is γ = 3.33.
Using the similarity transformationx = Tox′, transform the sys-
tem (46) withTo = diag(

[
1 1 1 10

]
). The new Lipschitz

constant isγ ′ = 0.333. Choose constantsεo = 0.1111 andηo =
0.1211, and check the condition given by (35). It is computed that
δ
(

A′,
√

γ ′2 + εo C′/‖C′‖
)

= 0.8389, so (35) is satisfied. Solving
the ARE (36) results in

Po =




18.6546 −0.0234 0.0396 0.0012
−0.0234 5.9522 −12.5731 1.9503
0.0396 −12.5731 30.8320 −8.8656
0.0012 1.9503 −8.8656 9.7302


 .

L′ =
1
2

P−1
o C′⊤ =




0.0268 0.0003
0.0003 1.1392
0.0001 0.5405
0.0000 0.2641


 .

The observer for the flexible link robot (46) is in the form of (37)
with

L =




9.3334 1.0001
−48.7804 22.3665
−0.0524 3.3194
19.4066 −0.3167






where (38) is used.
The simulation results of the observer, (46), are shown in

Figures 1 and 2. In the simulation, the initial value ofx, x(0),
is chosen to be

[
1 1 1 1

]⊤
; the initial value of x̂, x̂(0),

is chosen to be
[

0 0 0 0
]⊤

. The system is assumed to
be under no control, that is,u = 0. Fig. 1 shows the motor
angular position, motor angular velocity, and their estimates. Fig. 2
shows the link angular position, the link angular velocity and their
estimates. From both the figures, one can see that the estimates
converge to the true states.
Output feedback control: As done in the observer design case,
we first use a preliminary control to make(A−BK1) stable with
poles at−5.8989,−5.6390,−4.9245 and−8.9109. The gainK1
is found to be

K1 =
[

7.8092 1.1168 −4.3436 1.12
]
.

Then, a similarity transformation,x = Tcx′, is used to reduce the
Lipschitz gain withTc = diag(

[
1 1 1 10

]
). The new Lips-

chitz constant isγ ′= 0.333. Choose constantsηc = 3.7947(10−4),
and check the condition given by (43). It is computed that
δ
(

A′⊤,
√

γ ′2 + εc B′⊤/‖B′‖
)

= 0.3552, so (43) is satisfied. Solv-
ing the ARE (44) results in

Pc =




13.4725 1.4496 −8.8421 17.387
1.4496 0.18736 −0.99393 1.8462
−8.8421 −0.99393 6.1806 −11.1047
17.387 1.8462 −11.1047 26.2607


 ,

which in turn results in

K′ =
1
2

B′⊤Pc =
[

15.6553 2.0235 −10.7345 19.9385
]
.

The control input for the flexible link robot (46) isu = −Kx̂ with

K =
[

7.8428 1.1212 −4.3666 1.1243
]

where (45) is used.
The simulation results for regulating the states of the flexible

robot (46) to zero are shown in Figures 3 and 4. In this simulation,
the initial values ofx and x̂ are chosen to be the same as those in
the simulation for the observer in the previous simulation. Fig. 3
shows the motor angular position, motor angular velocity, and their
estimates. Fig. 4 shows the link angular position, the link angular
velocity and their estimates. Comparing Figures 3 and 4 with
Figures 1 and 2, it is clearly seen that, under the output feedback
control, four states of the robot (θm,ωm,θ1 and ω1) converge to
zero rapidly; whereas, without control, the states converge to zero
very slowly. Also, the convergence of the estimated states to their
true values is observed.

VIII. C ONCLUSIONS

In this paper, we considered the full-state feedback control
problem, the observer design problem, and the output feedback
control problem for a class of Lipschitz nonlinear systems. We
proposed a linear full-state feedback controller and a nonlinear
observer and gave sufficient conditions under which exponential
stability is achieved. Generally, for nonlinear systems, stabilization
by state feedback plus observability does not imply stabilization
by output feedback, that is, separation principle usually does not
hold for nonlinear systems. However, for the class of nonlinear
systems considered in this paper, by using the proposed full-state
linear feedback controller and the proposed nonlinear observer,
we show that the separation principle holds; that is, the same gain

matrix which was obtained in the design of the full-state linear
feedback controller can be used with the estimated state, where
the estimates are obtained from the proposed observer.

Systems with Lipschitz nonlinearity are common in many prac-
tical applications. Many nonlinear systems satisfy the Lipschitz
property at least locally by representing them by a linear part plus
a Lipschitz nonlinearity around their equilibrium points. Hence,
the class of systems considered in this paper cover a fairly large
number of systems in practice.

There are some challenging problems that need to be addressed
in the future. It is clear that the numberδ is realization dependent.
So, a natural question to ask is which realization gives the
maximum value forδ and further, how does one transform the
system given in any arbitrary form to this particular realization.
Moreover, it is also not clear as to how one can, in general, find
transformations that increaseδ and decreaseγ simultaneously.

It is also emphasized here that the conditions for both full-
state feedback and output feedback stabilization are sufficient
conditions; how to satisfy these two sufficient conditions is a
challenging problem which needs to be investigated in the future.
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Fig. 1. Motor angular positionθm, motor angular velocityωm, and their
estimateŝθm and ω̂m are shown. The control isu = 0.
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Fig. 2. Link angular positionθ1, link angular velocity ω1, and their
estimateŝθ1 and ω̂1 are shown. The control isu = 0.
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Fig. 3. Motor angular positionθm, motor angular velocityωm, and their
estimateŝθm and ω̂m are shown. The control isu = −Kx̂.
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Fig. 4. Link angular positionθ1, link angular velocity ω1, and their
estimateŝθ1 and ω̂1 are shown. The control isu = −Kx̂.
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