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Controller and Observer Design for Lipschitz Nonlinear Sysems

Prabhakar R. Pagilla and Yongliang Zhu

Abstract— We consider three related problems for stabilization of a  [11], it was shown that global stabilization of nonlinear systems is
class of Lipschitz nonlinear systems: (1) full-state feedirk controller  possible using linear feedback for a class of systems which have

design, (2) observer design, and (3) output feedback contler design. 5 q\1ar structure and nonlinearities satisfy certain norm bounded
Sufficient conditions are developed for the design of an expentially

stable linear full-state feedback controller and an exponetially stable ~ 9rowth conditions. A backstepping design procedure for dynamic
nonlinear observer. Given that the sufficient conditions of he con-  feedback stabilization for a class of triangular Lipschitz nonlinear
troller and o_bserV(_ar problem are satisfied, we show that the pposed  systems with unknown time-varying parameters was given in [12].
controller with estimated state feedback from the proposecbbserver g tnt feedback control of nonlinear systems has been extensively
will achieve exponential stabilization. Simulation resuls on an example tudied i t literat 131, 141, [15]. [16
are given to numerically verify the proposed designs. Studied in recen_ ltera ure_[ 1, [14], [_ 8 [. 1 )

Observer design techniques for Lipschitz nonlinear systems

|. INTRODUCTION were considered in [17], [18], [19], [20], [21]. The observer

Th feedback | broblem f i h design techniques proposed in these papers are based on quadratic
e output feedback control problem for nonfinear systems has apunov functions and thus depend on the existence of a positive

received, and continues to receive, considerable attention in ﬂa finite solution to an algebraic Ricatti equation. In [19], insights

literature due to its importance in many practlcal appllcatlonﬁ]to the complexity of designing observers for Lipschitz nonlinear
where measurement of all the state variables is not possible. Out% tems were given: it was discussed that in addition to choosing

feedback control design usually involves two related problem%e observer gain in their nonlinear Luenberger-like observer, one

observer design and contro_ller _de5|gn which uses est_|mate_d S_t % to make sure that the eigenvectors of the closed-loop observer
and output as feedback. Unlike linear systems, separation princi stem matrix must also be well-conditioned to ensure asymptotic

does not generally hold for nonlinear SYStemS' Therefpre, t ability. The existence of a stable observer for Lipschitz nonlinear
output feedbagk control pro.b.lem. for npnllnear Systems Is MUCl 1o ms was addressed in [20]; a sufficient condition was given on
more challenging than stabilization u_slng full-state feedba_ck. |trhe Lipschitz constant. Some of the results of [20] were recently
is well known that the observer design problem for nonllnea[:orrected by [21]. For the nonlinear observer of [20], it was shown

syste_ms by itself is qw_te challenging. One has to often considg 21] that two sufficient conditions are required to guarantee that
special classes of nonlinear systems to solve the observer desm observer is exponentially stable

problem as well as the output feedback control problem. Due to In this paper, we provide a solution to the output feedback

s e rens s s o il preem for Lipsi roninear systems under some
4 ufficient conditions on the Lipschitz constant. First, we design

a linear full-state feedback controller and derive a sufficient con-
i ¢ ven in 111 i dinate t %Yition under which exponential stabilization is achieved with full-
nonlinear systems was given in [1]; a nonlinear coordinate "ANate feedback. Second, we propose a Luenberger-like observer,

folrmatlon wtas usc?t?] ttﬁ trang?rm trf1e Orlgltnaltr?o.nllr:feartsyste?ht\?’hich is shown to be an exponentially stable observer under only
a |r1|§ar systetm \:" fe a t'l ion of an olu pu 'm?c |odn .ern;. 3%ne sufficient condition. Given that the sufficient conditions of
nonlinear state transformations were also employed in [2], [ lhe controller and observer problem are satisfied, we show that

[d4] t_o Obfm linear i_anontlcgl fO;’TS thta t Eaf‘ be uffdt for obser(;/%e proposed controller with estimated state feedback from the
esign. A comparative study of tour techniques that appeare oposed observer will achieve exponential stabilization, that is,

_the 1980's for observing the states .Of nonlinear sys_tems was giv proposed controller and observer designs satisfy the separation
in [5]. In [6], a new approach was given for the nonlinear Observeﬁrinciple

design problem; a general set of necessary and sufficient corgdition
was derived using the Lyapunov’s auxiliary theorem.

In [7], counterexamples were given to discuss the problem
global asymptotic stabilization by output feedback; a phenomenq
called “unboundedness unobservability” was defined; it means th
some unmeasured state components may escape in finite fi

. Shirol problem are considered in Sections Ill, IV, and V, respec-
whereas the measurements remain bounded. Recent research

focused on considering a selective class of nonlinear systems h}/ . Section VI gives an algorithmic procedure for computing
; 9 o . Al Sy e controller and observer gains while satisfying the sufficient
placing some structural conditions on the nonlinearities to solv:

nditions. An illustrative example is given in ion VII. ion
the output feedback problem. Global stabilization by dynami(§0 ditions ustrafive example Is give Sectio Sectio

) . (JII gives conclusions and some relevant future research.
output feedback of nonlinear systems which can be transforme
to the output feedback form was given in [8]. Output feedback I
control of nonlinear systems in triangular form with nonlinearities
satisfying certain growth conditions was considered in [9], [10]. In  We consider the problem of controller and observer design for

the following class of Lipschitz nonlinear systems:
This work was supported by NSF under the CAREER Grant CMS-

a triangular structure and Lipschitz nonlinear systems.
A systematic approach to the development of observers fi

The rest of the paper is organized as follows. In Section II,

e give the class of Lipschitz nonlinear systems, the assumptions,
e notation used, and some prior results that will be useful for
He developments in the paper. The full-state feedback control
oblem, the observer design problem, and the output feedback
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wherex € R"u € RP, andy € RY are the system state, input, andwhere the first inequality is a consequence of assumption A2 and
output, respectively. We assume, without loss of generality, thdhe second inequality is obtained by completlng squares on the

x =0 is the equilibrium point of the system.

We use the following notation throughout the papgM||
denotes the Euclidean norm of the matrix or vedtoM™ denotes
the complex conjugate transpose of the maixomin(M) denotes
the smallest singular value of the mati&. The square of the
singular values of the matrik are the eigenvalues of the matrix
MHM. de{M) represents the determinant of the matvix

Assumption A1:®(x,u) is Lipschitz with respect to the staxe
uniformly in the controlu, that is, there exists a constapsuch
that

[®(x1,u) — P, U) || < Vi[x1 — X2, x1,% € R",ue RP.
Assumption A2:|d(x,u)|| < y||x||, Yu e RP.
Assumption A3:The pair(A,B) is controllable.
Assumption A4:The pair(C,A) is observable.
Definition D1: The numberd(M,N) is defined as

)

wherei = /-1 and | is an identity matrix with appropriate
dimension. See [21] for a discussion of the number
Lemma 1:[21] Consider the Algebraic Ricatti Equation

)

. iwl —M
6(M,N>:arggﬂgomm< ¥ 3)

ATP+PA+PRP+Q=0. 4)

If R=R" >0, Q=Q" >0, A is Hurwitz, and the associated

Hamiltonian matrixH = A is hyperbolic, i.e.H has

AT

no eigenvalues on the imaginary axis, then there exists a unlque( 1

P=P' >0 to be the solution of (4).
Lemma 2:[20], [21] Let y > 0 and define

o A [
Y=lcTc—ya1 —-AT|"
Theny < 6(A,C) if and only if Hy is hyperbolic.

I1l. FULL-STATE FEEDBACK CONTROLLER DESIGN

In this section we consider the regulation problem for the systefd1: it is seen that, if (13) holds, detiwl —

term 2/|[Px|[[[x||. For anyne > 0, Ve < —nexx, if

AP+ PAc+ PeRe V21 = —1el. 9)
The choice of the control gain matrix in (9)
K=B'R/2 (10)

results in the following ARE:
AP+ Ponc+ P (1~ BBT/|[BJ2) o+ (y2+ o)l =0. (11)

Now we consider the problem of the existence of a symmetric
positive definite matri¥%, which is the solution to the ARE (11).
Since Anc is Hurwitz, (I —BB' /||B||?) >0, and (y?> +nc)l >0
by Lemma 1, the problem reduces to showing that the associated
Hamiltonian matrix

-[.

is hyperbolic.
Lemma 3: H is hyperbolic if and only if

VY2 Hne<s (AIC, \/v2+r7cBT/HBH> ~
Proof: The determinant of the matrik—iwl —Hc) is

—iwl — Anc
(V2 +ne)l

Anc

| BBT/|BJ?
(P +no)l } (12)

~Anc

(13)

—14+BB"/|B|]?

—iwl + Al }
(V+ne)l  —iwl +Al
—iwl —Anc —1+BB"/|B|]?

“det( (V+ne) —I+BBT/HBH )= (10l + Anc) (il — AL))
det(GH iw)G(iw) — (Y +ne)l )

iwl — Al

A . -
where G(iw) ( ) and the third equality is
_ Vy2+ncB'/|B| _ .
obtained by using the formula for determinant of block matrices

[22, p. 650] becausg/ + ne)! is non- singular. Using the definition
Hc) # 0 which implies

det—iwl —H¢) = det[

r‘det[

(1a) with full-state linear feedback under the assumptions A2 arfffat jw,Vw € R is not an eigenvalue dfic, which in turn implies

A3. Consider the control input:

= —Kx/|1B||” — Kax (5)

that H¢ is hyperbolic. The necessary part of the proof is similar

to that of Lemma 2; we refer the readers to [21] for detaildl
Theorem 1:For the nonlinear system given by (1), with the

assumptions A2, A3, and with the control input given by (5), the

whereK1 is the pre-feedback gain matrix and is chosen such th%‘qunlbnumx 0 is exponentially stable if the condition given by

Anc_ A—BK; is stable anK is the feedback gain matrix to be

(13) is satisfied.

determined later. With this control input, the closed-loop dynamics

of (1a) is
= (Ancf BK/HBHZ) X+ ®(x,U) 2 Ax+D(xU).  (6)

Consider the following Lyapunov function candidate

Ve(x) =x"Px, P.=P; >0. @
The time derivative oW:(x) along the trajectories of (6) is

Ve(x) =x" <Azr Pe+ PCKC> X+ 2x" P®(x, u)
< X7 (AL Po-+ PeAc ) x-+ 2y P x|
< x" (Al P+ Pohc+ Poe 1 )x ®)

IV. OBSERVER DESIGN
Consider the following observer for the system (1):

Y+ &

X = A%+ BU+ (X,
ICJI2

U)+ Lly—CR) +Li(y—CR)  (14)

wheregy > fyz, L4 is chosen such than, éAf L,C is Hurwitz,
andL is the observer gain matrix.

— A L
Let the estimation erroX= x—X. The error dynamics is

(Ano P ig

Icl|?
AoX+ D(x,U) —

LC) X+ ®(x,u) — P(X,u),

d(X,u). (15)
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Consider the following Lyapunov function candidate SinceP. is the solution to the ARE (11), we have

Vo(X) =X PoX. (16) Ve(x) < =nex" x+ &[] X (26)
The time derivative o¥/,(X) along the trajectory of (15) is where e = ||PoPs|| + || 2P-BKy]|.
\-/0(50 5 (PTOT Pyt PoKo> R+ 207 By (D(x, 1) — DR ). arn Now consider the function

W(X,X) = {Ve(X) +Vo(X) (27)

L=PR,icT)2 18 . . . -

° /2 (18) where{ > 0 andVy(X) is as given by (16). The time derivative of
using Assumption Al, and simplifying along the same lines a®/(x,X) is given by
done in the full-state feedback controller case, we have

Choosing

. W (%, %) < =Znel|X||? + Z ZeXI[IX]| = no1%1%. (28)
Vo(X) < —noX' X, (19) ) .
Choosing? = ncno/ZZ results in
R R -0 sanses V(eR) < 2?2 nolI%/2 9)
W(x,R) < —Znc|[X|[*/2— no|[X||*/2.
AoPo+ PoAno + PoPo + (V2 + o)l — (V2 + SO)CTC/HC”Z =0 (20
Therefore x andX exponentially converge to zero. |

for someny > max(&p,0). Since Ano is Hurwitz and the matrix
(Y2 +no)l — (Y2 +&)/]IC|>)CTC > 0, by lemma 1, the above
ARE has a uniqué® = P] > 0 as the solution if the following
associated Hamiltonian is hyperbolic:

Remark 2:The numberd is realization dependent, that is, its
value depends oA, B, C. If Ais unstable to begin with, then any
preliminary control used to stabiliz& will affect d. Sinced andy
depend on the realization, appropriate coordinate transformations

Ano | as discussed in [20], in some cases, can be used to incdemse:

Ho = T 2 Tl (21

{—(v2+no)l +(Y+&)C'C/|C| —AnJ reducey. o _ o
Lemma 4: H is hyperbolic if and only if Remark 3:The bisection algorithm given in [21] can be used to
’ computed; it was suggested that O afié\|| be used as the initial

> > guess for the lower and upper bounds, respectively,d{@,C).
\VYVe+Ne<o </-\no, VYVt é C/||CH) : (22) It is possible that the value o¥ may be greater thaﬂA|(\. The
Proof: Similar to lemma 3. A
The following theorem summarizes the results of this sectionUPPer bound must be changeddgin (c) because
Theorem 2:For the nonlinear system given by 1, with the )
assumptions Al anq A4, if the condition given by (22) is satisfied, 5(A,C) = min Gimin (lecf A) < G (}A) — G (é) '
(14) is an exponentially stable observer for the system. weR
Remark 1:Notice that the proposed observer, (14), requires Remark 4:Sinced (A, yB' /|[B||) is a continuous function of
only one sufficient condition, (22), as opposed to the two sufficienf, f(y) £ y—35(Ane,¥B'/|[B|)) is also a continuous function of
conditions for the observer given in [21]. The two conditionsy. Therefore, if f(y) < 0, then there exists g > y such that
are required in [21] because: (1) the observer structure does nfiy;) < 0. Hence, iff (y) < 0, then there exists af > 0 such that
guarantee that the “Q” matrix in the ARE (4) is positive definitef(« /V2+nc) <0, that is, (13) holds. Same arguments hold for
and (2) the associated Hamiltonian matrix must be hyperboligondition (22) withe, = 0. Hence, instead of checking conditions
The proposed observer, (14), guarantees that the “Q” matrix iiven by (13) and (22), one can respectively check the following
the ARE (4) is positive definite. two conditions

V. OUTPUT FEEDBACK CONTROLLER DESIGN y<o (Arch VBT/HBII) . Y < 3 (Ano, YC/IICI). (30)

Combining the full-state feedback control design of Section . . . .
Il and the observer design of Section IV, we design an Outpd}lotlce that the conditions given by (30) guarantees the existence

feedback controller for the system (1). of nc > 0 andne > 0, but not their values. Conditions (13) and

Theorem 3:Consider the system (1) with assumptions Al, A2,(22) with specifiedn. and o give the rate of convergence of

A3, and A4. If conditions (13) and (22) hold, then the equilibriumcontm”er and observer, respect_ively. .
x— 0 of the system (1) is exponentially stable, with Remark 5:The three results given by theorems 1, 2, and 3 will

be applicable locally or globally depending on whetk¥Kk, u) is
u=—Kx/||B|?> — KX (23)  locally or globally Lipschitz.

where X is the estimate ok generated by (14)K is the gain V1. | MPLEMENTATION PROCEDURE
matrix given by (10), Further, the observation errge= X — X,
exponentially converges to zero.

Proof: Substituting the output feedback control law given by (23
in (1) and simplifying we obtain

In the following, we give a systematic procedure to compute the
)observer and controller gain matrices with respect to the original
system (1) in the event of the use of the preliminary control and
coordinate transformations.
x= (Anc— BB R/2/BI” ) x-+ D(x,u)+ BB ReX/2]BJ* + BKaX.  (24) _ _

A. Observer gain matrix
The time derivative of the Lyapunov function candidégéx) given

g : - 1) Pole placement
by (7) along the trajectories of (24) is

Rewrite (1) in the following form

Ve(x) <x' (ArTcPﬁPcAnﬁPc(' —BBT/HBHZ) Pc+V2')X %= (A— LiC)x+ Bu+ Ly + d(x, u), (31a)
+x"P.BB" PeX/||B||% + 2x" P.BK1X. (25) y=Cx (31b)
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wherel; is chosen such thgiA—L,C) is stable.
2) Similarity transformation
Let x = ToX, (31) becomes

X =Ty H(A—L1C)ToX + Ty H(Bu+L1y) + Ty 1d(ToX, )
(32a)
(32b)

2 A 4 BU+ Tty + Ty Lo (TeX, u),
y=CToX 2C'¥

whereT, € R™" is a nonsingular matrix. The new Lipschitz

gain y is obtained from the following inequality

[Ty 10(Toxe, U) — To *O(Toxz, W) | < ¥ [xa —Xol|  (33)
for all x1,% € R" andu € RP.
The observer for (32) is given by
X = AX +BU+Tg Wy +Tg 1o(Tox, u)
+(y2 + &)L (y - CX)/IC'|1%, (342)
y=CX. (34b)

After choosings, > —yr? and o > max&,0), check the
condition

VP4 no < &2 (A’,\/y/2+eo C’/||C’H)

for the existence of the solutio®, to the ARE

(35)

A TP+ PoA +PoPo+ (Y2 + o)l — (Y2 +€,)CC'/|IC|? = 0. (36)

If (35) is satisfied, the observer gain is chosen tolLbe-
P 1C'T /2 whereP, is the solution of the above ARE.

Notice that if one define®= To)? as the estimate of, the system

(34) can be rewritten in terms of by the following equations.

X = AR+ Bu+ ®(X,u) + L(y—Cx), (37a)
y=CxX (37b)
where L="L1+ (v +&)Tol'/||ICTo|1%. (38)
B. Controller gain matrix
1) Pole placement
Rewrite (1) in the following form
X = (A—BKz)x+ B(u+ Kix) + ®(x,u) (39)

whereKj is chosen such thdiA— BKj) is stable.
Similarity transformation
Let x=TcX, (39) becomes

2

~

X =T, HA—BKy)TeX + g 1Bu+ Ky TX) + T 1 (TeX 1)
£ AX 4B/ (u+ Ky TeX) + Ty 1 (ToX ) (40)

whereT; € R™" is a nonsingular matrix. The new Lipschitz

gainy is obtained from the following inequality
[Te b (Texa, u) = T 1 (Toxg, )| < yrllxa — %l (42)

for all x;,x € R" and u € RP. Choosingu = —K;TeX' —
K'X /|[B'||? results in the following closed-loop system
X = (A —BK/|B|P)X + T, 1o(TexX,u).  (42)

Choosen¢ > 0 and check the condition

VP +ne < 82 (A’T,./y/2+nc B’T/||B’H) (43)

for the existence of the solutio®, to the ARE
ATR+PA + P, (l - B’B’T/||B’\|2) P+ (y2+1c) 1 =0. (44)
If (43) is satisfied, the control gain is chosen to Ké=
B'TP./2 whereP. =P} > 0 is the solution of (44).
The gain matrix used in the full-state feedback controller or output
feedback controller is

2
K=Ky +K'T7Y/|T578)" (45)

VII. AN ILLUSTRATIVE EXAMPLE: A FLEXIBLE LINK ROBOT

In this section, we consider the observer and controller design
for a flexible link robot [18], [20], [21], [23]. The dynamics of the
robot is described by the following state space representation:

X = Ax+ bu+ d(x,u), (46a)
y=Cx (46b)
where
[ Om 0 1 0 0 0
| wm | -486 —125 486 0 | 216
X=1g |"A= 1] o 0 o 11'B7 o |
| Wy 195 0 -1950 0
0
(1 0 0 O 0
€=lo 1 0 o PXxU= 0 ’
—3.33sinx3)

and 6y, is the angular position of the motoe)y, is the angular

velocity of the motor;6; is the angular position of the link; and
wy is the angular velocity of the link.

Observer design: Since A is not stable, we design a pre-
liminary gain L; such that(A—L;C) is stable with poles at
—9.3275-8.9203 —9.6711 and—4.7722. The gairL; is

9.3275 10000
L. _ | —487804 221136
171 _00524 31994

19.4066 —0.9032

The Lipschitz constant ofP(x,u) with respect tox is y = 3.33.
Using the similarity transformatiox = ToX, transform the sys-
tem (46) withTo=diag[ 1 1 1 10]). The new Lipschitz
constant isyr = 0.333. Choose constant, = 0.1111 andne =
0.1211, and check the condition given by (35). It is computed that
6<A’,\/y/2+£0 C’/HC’H) =0.8389, so (35) is satisfied. Solving
the ARE (36) results in

186546 —0.0234 00396 00012
b _ | —00234 59522 125731 19503
°= | 00396 -125731 308320 —8.8656
0.0012 19503 —8.8656 97302
0.0268 00003
, 1__1 ., | 00003 11392
L'=35F C =1 00001 05405
0.0000 02641

The observer for the flexible link robot (46) is in the form of (37)
with

9.3334 10001
L —48.7804 223665
—0.0524 33194
194066 —0.3167
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where (38) is used. matrix which was obtained in the design of the full-state linear
The simulation results of the observer, (46), are shown ifeedback controller can be used with the estimated state, where

Figures 1 and 2. In the simulation, the initial value xfx(0), the estimates are obtained from the proposed observer.

ischosentobd 1 1 1 1 ]T; the initial value ofx, X(0), Systems with Lipschitz nonlinearity are common in many prac-

is chosen to be[ 0 0 0 O ]T_ The system is assumed to tical applications. Many nonlinear systems satisfy the Lipschitz
be under no control, that isj = 0. Fig. 1 shows the motor Property at least locally by representing them by a linear part plus
angular position, motor angular velocity, and their estimates. Fig.2 Lipschitz nonlinearity around their equilibrium points. Hence,
shows the link angular position, the link angular velocity and theithe class of systems considered in this paper cover a fairly large
estimates. From both the figures, one can see that the estimafggnber of systems in practice.

converge to the true states. There are some challenging problems that need to be addressed
Output feedback control: As done in the observer design case,in the future. It is clear that the numbéris realization dependent.

we first use a preliminary control to maké — BK;) stable with So, a natural question to ask is which realization gives the
poles at—5.8989, —5.6390, —4.9245 and—8.9109. The gairK; maximum value ford and further, how does one transform the

is found to be system given in any arbitrary form to this particular realization.
Moreover, it is also not clear as to how one can, in general, find
Ky=[ 78092 11168 -43436 112 |. transformations that increageand decreasg simultaneously.

Then, a similarity transformation = TeX, is used to reduce the 't IS @lso emphasized here that the conditions for both full-
Lipschitz gain withT, =diag [ 1 1 1 10]). The new Lips- state feedback and output feedback stabilization are sufficient
chitz constant ig7 = 0.333. Choose constant = 3.7947(10~4), ~ conditions; how to satisfy these two sufficient conditions is a
and check the condition given by (43). It is computed thafhallenging problem which needs to be investigated in the future.

6<A’T, VY2 + g B’T/||B’\|> =0.3552, so (43) is satisfied. Solv-

ing the ARE (44) results in REFERENCES
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