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Abstract— In this paper we present our nonlinear flow control  in designing controller for a large scale network.
schemes based on a buffer management model with physical  \When considering the controller design for a single node in
constraints. It extends previous result of Pitsillides, l@annou  ihe network. we base our work on the same model as in [10]

and Rossides in [10] by improving the buffer management . . .
of a network to better serve a class of traffic. Extension to and modify their control law. When extending our controller

decentralized control of a large scale network is also congéred.  design to a large scale network composed of many nodes,
The proposed discontinuous controller asymptotically reglates  instead of only considering the disturbance traffic bounded
the buffer queue length at the output port of a router/switchto by a constant, we also address the case when the bound on
a constant value, in the face of unknown interfering trafficsand  {ne disturbance traffic is time varying, which is not addeelss

control input constraint. Its continuous approximation achieves . . . .
practical regulation with an ultimate bound on the regulation in [10]. In particular, we handle the disturbance traffic wao

error tunable by a design parameter. upper bound depends on the states of other interconnected
Keywords Congestion control, Capacity constraintsnodes. We use sliding mode control to achieve asymp-
Buffer management, Asymptotic regulation totic queue length regulation under certain assumptioas. T
l. INTRODUCTION eliminate possible undesirable controller behaviors sagh

, i _“chattering” due to the controller discontinuity, a contgus
Flow control is an important a_spept of.networ!( tra,ﬁ'capproximation of the discontinuous controller is givenngo
management. It has been heavily investigated in diffe(giy, stanility analysis. Practical regulation is achieveith

ent environments such as ATM, TCP/IP, wireless networ,o continyous controller where the ultimate bound on the

and mobile ad hoc network. While heuristic and emma(queue length is determined by a design parameter.

tion/experiment based approaches are popular among endiry r result and its comparison with the work in [10]

neers and researchers, model k?ased schemes_ have also k&?@%hown through theoretic analysis and simulations. One
largely explored. For example, linear and nonlinear anglys.ntribution of this paper is that we achieve asymptotic

and_control design tools have been proven gffective in 'A_‘BFr?Egulation as opposed to the bounded regulation in [10].
traffic control of ATM networks [6], cong_estlpn c_ontrol N The same type of control law can be applied to a large
TCP [4][8], network performance analysis with time delays;5je system to achieve asymptotic regulation in a paytiall

[1], and many other issues and references cited in recefilentralized manner, with different design parametersdu
literature. How control theory can be systematically used tat each node.

address new challenges in networks is of great interest. The physical constraints on the control input and state

We focus our attention on the application of nonlineag, japles is an important issue in many control systems.
control theory to the networking problems. Among the many;,ny results have been established on the stabilization of

publications in this area, we discuss some results that affiear systems with control input saturation constrairt [5

closely related to the topic of our paper. In [10], the aushor,hije |ess work is known for nonlinear systems. Another

proposed a nonlinear congestion controller for a buffegynuinution of our paper is that we specify the sufficient

management model. The control objective is constant buffeq, jitions under which asymptotic regulation is achieved

queue length regulation. Using feedback linearization angh,qer the physical constraints caused by limited capanity a

robust adaptive control ideas, the authors achieved balind&,, pufrer size.

regulation due to unknown interfering traffics. _ _ The rest of the paper is organized as follows: in Section 2,
Our work is in part inspired by the above discussion withye introduce a differential equation model that followsnfro

particular interest to improve the regulation when facing, o\ious work on this subject. Design objectives are given
disturbances and physical constraints. Instead of onlgiden \ith practical limitation in mind. The controller designrfo

ering a single network node as in [10], we are also 'mereSt‘Js%alar systems is addressed in Section 3. The control law is
Research supported partly by the National Science Fouwrdathder further eXtendeq to an 'me.rconneCted .network in Section 4.
grants ANI-0081527 and ECS-0093176. Our conclusion in summarized in Section 5.
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[I. PROBLEM FORMULATION AND CONTROL OBJECTIVES where
The following model uses the conservation law to establish Clx) = H=(az + Bsgn(z))

buffer queue length dynamic equation at the output port of a (6)

node in the network. By “node”, we refer to a router/switch in = Yla(z — zref) + 1],

the network for the rest of the paper. The operating comlitio

-+

" ‘

of the differential equation matches to the steady state of a sat(y) = min{| y |, 1}sgn(y), ()
M/M/1 queue; see [10] for more details. It should be noted 1 if 2>0
that certain normalization is used for model simplification sgn(z) =4 0 if 2=0. (8)
and unit match. (1) 1 ifz<0
#(8) 1+ a(t) ) +2) @ The choice of the above controller will be clear from
z(t) € [0, 2busser] (2) the analysis and synthesis shown belaw.3 are design
C(t) € [0,Cserver] (3) parameters to be determined.

Assumption 1 [ A(t)dt > xycp whena(ty) < wpes?

ueue lengthr is taken as the state variablé represents the o .
Q J P gor allt >t,0 < A(t) < b < b with b defined as follows:

capacity, it is chosen as the control input. These paramet

are subject to physical constraints such that they are non- b Cserver ©)
negative and upper boundedl.is the incoming traffic rate. ’ |:(wbuffer—;ref)(mbuffer‘f‘l) 4 1} I
It is a disturbance input. With practical considerationg, w Tregtres Fouffer

assume thai(¢) is essentially upper bounded and such that Theorem 1: Consider the system defined in (1)-(4). Sup-

sup;>o A(t) < Chusser- The model does not depend on ag(()tse)/\e s[gti:'csfies AjSZ??Etifn;(') Fxoz,vmlbigit;asl ?n“pe;;gteicge”r‘gth
icular type of network such as TCP/IP or ATM network g\ bufer N Y y
particu W egulated by control law (5)-(7) to the reference valye;
since no other conditions are assumed about the type of the(4) if choosinga and 3 according to:

incoming traffic. b
zres 1S iNtroduced as the reference queue length chosen by oy <a<
the designer. It should be chosen such that the switchiroute ref o " )
is sufficiently utilized while preserving certain capatyilto : server © mbuffei _ —~ , (10
handle additional traffic bursts. In practice, an empty or (14 @ouser)@busser = Tref)  Toupfer = Tres
extremely small steady state queue generally leads to link
under utilization and is thus undesirable. We choose the b < 8 < min {a(:cfef + Tref),
reference value according to

Oserver * Touf fer }
—_— — (T 3 — X . 11
1< zrer < Tougser: 4 1+ zpusser (@oug ser ref) (11)

. . Proof: From (9), we can verify that there exists
The lower bound could be an arbitrary positive value. We ©) fy

choose “1” for simplicity. Z := 2 — 2,/ is introduced to Satisfying (10). It follows
represent the regulation error between the queue state and
the reference value.

The general objective of network flow control is to sup- Cserver * Touf fer
press congestion and to meet certain performance require- 1+ Tougser

ments. As introduced in [10], the choice far..; relates Thus the choices of and 3 are valid. From (9) and (11)
to these requirements, including fairness among traffics,

min {a(x%ef + Tret),

— a(xbuffer — xref)} > b.

sufficient bandwidth utilization and bounded delay, etce Th 9€ — o — (B — azrey) -
design objective in our paper, as well as in [10] is to =a-— 1’%4—%
accomplish regulation task such that— 0 (z — zycs) > 4 Sfrel _ a(wief-;wref)
under the constraim < C < Cgerper, While unknown but - T z
bounded disturbancg is present. =a(l - =55 >0.
[1l. CONTROLLER DESIGN FOR SCALAR SYSTEMS Thus C is a monotonically increasing_function af on

In this section, we use the following controller to achievquf’xbuffer]. The maximum value of” is obtained by
the control objective. The same type of controller will beequatingz to Touf fer-

applied to interconnected systems in next section. We &oog| __ +1en = Crnaz Where G, is as follows:
" . . —Lbu er "
appropriate controller parameters in different cases.

1+
0 <z Cmaw = ﬂ [a(xbuffer - xref) + 5} . (12)
C = ot = tref (5) Touf fer
Cserver - sat{ﬁ} otherwise From (6),(12) and (11)
1if the reference value is less than “1”, the control laws ps®Ed in Zf:o A(t)dt > z,..p is a "persistent excitation”(PE) requirement. It

this paper can be modified to achieve asymptotic regulatidrenwthe assumes that there is enough ftraffic to utilize the netwotgch sthat
interference traffic satisfies a certain bounded conditiddfe omit the queuez will be regulated to the reference value by incoming trafficew
discussion due to space limitations. z(to) < Tyey-
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C

1+ u er . . . . . .
maz = %[a(%uﬁer — Tref) + 3] (13) raises theoretical as well as practical difficulties. Weeref

<C
< Cserver readers to [3] concerning the existence and uniqueness of
- solutions for differential equation with discontinuought
for all @ € [zrep, @yupser]. Thus C will not reach the anqg side. As for practical issues, instead of staying &t
capacity constrainCsc;v,. \We then analyze the regulation ;. . when the trajectory reaches = 0, chattering occurs
performance of our control law. due to imperfect switching and delay, which is a known
a) Whenz(to) > ey L _ . phenomenon in sliding mode control as shown by Figure
Consider functionV/ (z) = 32%. We calculate the derivative 4 |t may excite un-modelled high frequency dynamics and
of V" along the trajectory of the controlled system using .5 ;se instability [7]. We use a continuous approximation of
&, plant dynamics (1) and control law (5),(6) with parametef,e giscontinuous control law to overcome this phenomenon.
choices (10) and (11). Both the discontinuous control law and the continuous ap-

y A2 (A - proximation are schematically shown in Figure 1.

Vibe) s —afz [ -(B-b)[z]<0. (14) Proposition 1: Consider the systems defined in (1)-(3).
Thusz(t) is bounded ifx(to) € (@ref, Tousfer]- Denote by Suppose)(t) satisfies Assumption 1. For alk(ty) €
W(z(t)) :=a|z|*> +(3-0)| = |, using Barbalat’s lemma, [0, Zpuyrer] att = to > 0, the trajectoryz(t) is bounded
it can be shown thatV(z(t)) — 0, thus|z(t)] — 0 as forall ¢t >ty and is ultimately confined to
t — oo. (14) ensures that once the trajectory happens to be
at thez = 0, it will be confined atz = 0 for all future time. {Zres <@ <@rey +¢} (15)

b) Whenz(to) < Tpey

if the following control law is used
Z(to) < 0,C(t) = 0 as long asr(t) < xrer. The dynamic g

equation is simply: = A(t). Thus o { 0 &< ey (16)
" C otherwise
x(t) = z(to) + / A(T)dT. 1 _
to where ¢ =~ 1" [aT + ﬁsat(%)] (17)

With the PE condition for the incoming traffic such that that
ft"o At)dt > z,c5, there existsty < T < oo such that where o« and g are chosen the same with discontinuous
z(T) = x,e for any z(ty) < z,s. Thus the controller designin (10),(11) is a design parameter which determines
achieves asymptotic regulation®to 0, namelyx converges the ultimate bound on queue statelt is chosen to satisfy
t0 Ty [ |

From the above proof, we can also see that queue state 0 < €= Touffer = Tref (18)

x reaches its reference value_z _in finite time and remaing, q is chosen to be small in practice for a good approxima-
there, due to the property of sliding mode controller (5) anglq, of the discontinuous control law.

(6) . The control lawC' is an increasing function of on Proof: a) whenz(ty) > z,cr + €, € satisfies (18)

[@ref xbyffer]-_ o . A Lyapunov function candidat¥ (z) = 3z° satisfies
The simulation in Figure 2 showed that the buffer queue is

regulated asymptotically to the desired reference valomn fr V(t,z) < —aZ® — (8 —b)Z < 0.

full buffer size without control saturation wheh < X <

b < b. As a comparison, bounded regulation is shown ifhus| z(t) | will be strictly decreasing as long ast) >

Figure 3 where the control law in [10] is used. The simulatiofref + € N

parameters for both figures ar€se,ver = 5, (ty) = 25, D) Whenu(to) < z,;, due to the PE condition for the

Tref =B, Touffer =30, =01, F=2.1,b=2. incoming traffic in Assumption 1, there exigf < T < oo
Remark 1: The choice of discontinuous control law isSuch thate(T) = z..; with the same reasoning as the case

natural in face of the physical property of this problem. Théor discontinuous control law.

choice of C' = 0 whenz < z,.; is due to the fact that it  Thus the trajectory:(t) reaches the boundary layer (15)

is not necessary to assign further capacity when the buff8t finite time and remains there. - _ u

is under utilized. The assignment of capacity (control tpu  Remark 4 A similar analysis with the proof in Theorem

we design is an monotonic increasing function of the queuk "€veals that control input is not saturated. We omit this

length, since longer queue length represents that the rletw@nalysis due to space limitation.

is in higher congestion level thus more capacity is needed. |V. CONTROLLER DESIGN EOR INTERCONNECTED
Remark 2: (9-11) reveals the tradeoffs among perfor- SYSTEMS

mance (convergence rate), regulation objective (queue ref it js natural to first model the interconnected network as

erence) and traffic volume (bounds on disturbance). Thiggmposed by scalar systems:

tradeoff shows that the performance of the control system _

is subject to capacity constraint of the node (control input Ty = — i

saturation). L+
Remark 3: The above proposed control law is discontinwhere notations have the same meaning as introduced in

uous (sliding mode control) at = z,.¢. This discontinuity model (1-3) except for subscriptienoting theth subsystem.
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We will use subscripts, j in this sense for the rest of the determined. The following lemma is useful for the rest of
paper without further explanation. The model is valid for: the paper.
Lemma 1: Define an x n matrix S with its elements

r; € [0, Iz[iffer]v (20) being:

Ci (t) € [0 Cszerver} (21) §ii — { (673 1=7 (26)
1 R —_ g ) ]
wl e [Laphal, (22) Yig 07

fWherea, v;5, 4,7 = 1,...,n are nonnegative constants.is

with 27 andc” being the physical constraints o
buffer Semer g phy an M matrix® if o, vi; satlsfles

the ith subsystemx .; denote the reference value for the
ith subsystem.

The following notations are introduced for convenience, Qj > Z Vi - (27)
there meanings are clear according to the context. J=L,j#i )
T ~ - Proof: Denote byo(S) the set of all eigenvalues of
X = [z1..a0] X = [|71]...|za]] . the square matrixS. For VA € o(S), according to the
i is a nonlinear function denoting the incoming traffic to(;erschgorm disk theorem [2], there exists [1, ..., 7], such
nodei. It can be expressed as: that A > a; =325y sy i From (27)i =3 5y i vis >
. 0, Vi = 1,...,n. Thus all eigenvalues of matri are
Z N (t27) + v (£, X) positive, namelyS is an M matrix. |
1] bady] (2 I

Theorem 2: Consider the interconnected system defined
by (19)-(22). Suppose the incoming traffic for each subsys-
where );;, v; are unknown functions);; : [0,00) x  tem satisfies:

(0,21 ] — R* denotes the rate of traffic between twol) PE condition, i.e /" \;(t)dt > xmf whenz(to) < Tref.

j=1,j#i

buf fer
nodesZ : [0,00) xR% — R* denotes all other background 2) (23) and the following mequalltles
noise traffic. We use; to represents its upper bound, namely n il
0 < vi(t, X) < @i, ¥t > 19 > 0,X € R™. 2=t VidTres T Pi
We assume the queue stateis an indicator of the activity < _ Cle, (28)
level of each node. The interference between any two nodes {@%ﬂffefr[ilf“ “hupsert )+1} 1 +1’
is constrained by the activity of each other and factors such 2l Pl s fer

as position of the node, distance between them and power
constraint. These constraints are representeg oyl hus we

[4] [d]
assume); satisfies: (

n
Ibuffer - xref) ZjZl,j;éi Yij

n n 4] Ol er l[iiffew“
L s R e 29
0S NS DY i + i (23) T2t Viirey P (e o) 29)
jzl;l#i n Choose the control law (24-25) whedtg, 3; satisfy
D Tt D v+ e . .
ey iy X L Yig +pi
T = max{ Fl’éﬂ”ﬁ?"’f - 72?:1 Ji %‘J} < «a; (30)
, n ;
Ir_1 the above boun_d, t_he first terd(;_, ,_; vij2;) empha- _ Trep Tores
sizes that the major interference between any two nodes is Ol el )R vigol) s
constrained by each other’s activity level and factors sagh < Tl PN G B o) Mo )
. B ( + buffer)( buffer ch) buffer ref
distance between them and power constraint. Constgnt
represents these physical constraigis.> 0 is a constant
representing the upper bound for all other background noise S v bl 4 0 < B <
traffic which doesn’t satisfy the first bound. The equality is sl A
obtained byz; = z; + x[rje]f' min { a; (2! gy )
We first define the control law we will use. The reason for ref ref
choosing this control law will be revealed later. SNy
Cicrver® buffer _ . (x[l] _ (E[Z] ) (31)
0 [ ] 14l \“buf fer ref) (*
[2] T < ref buffer
Cserver * Sat{—} otherwise (i
Coerver For any X (tp) € {X ER™ [0 < @ < Tyypre,, Vi =
Al ; . . . . ' .
whereC,;" is defined by: 1,..., n} the above defined discontinuous controller achieves
5{[;‘] = L+ [uiZi + Bi] (25) asymptotic regulation of the output queue lengghto ar[:if
Li for every subsystem.

with subscript d” denoting “discontinuous control law”.
«y, (; are controller parameters whose choices are to be3Please refer to [9] for the definition and test techniquesiabé matrix.
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Proof: From inequality (28) and (29), we can easilySince «; satisfies (30), we can verify from Lemma 1 that

verify the choice ofa in (30) is valid. With o satisfying
(30), it can be shown that

S el 4 o < i { (@l 4 all ),

C.Ele]7 ver 1[71] [ i
uffer _ o ([i _ .l
1+zl[)iffcr @ (xbuffer Iref) :

Thus the choice ofj; in (31) is valid. It follows that3; <

O‘z(I[rlif + Tref).
Using this inequality and by d|fferent|at|ng'd

respect tar; on (z [Tzlf,xl[iffer] we have

with

dam 7
T == (B —aul) -
;- m[ ] ai(mm é+w )
2 o + Mg - S
v i
=a(l— =) > 0.
Thus ég] is a increasing function af; on (zyef, Touffer|-
Denote by
[d]
i 1+ Louffer i
C7[n]az = Tff [ (xl[;q]jfjer - xLij) + 5l:| . (32)
xbufjer
Since
Catrver * Tpups i i
5i < T - Z'(‘Tbuffer - ‘rref)’
1+ xbuffer
it follows that

for all z; € («),, 2} /.,]. Thus CJ) will not reach the

capacity constrain€server, i = 1,...,n

We then prove that asymptotic regulation is achieved f
every subsystem. Since,(t) satisfies the PE condition, i
according to the discussion of scalar case, we can assuH'Hmate Y,

without loss of generality that;(¢y) > ol

ref Vi=1,...,n
Consider function

where V;(x;) = % . d; > 0 are positive constants to be
determined. The fo IIowmg inequality holds naturally:
1 2 1 C 2
§dmzn||X|| §V§§dmam||X|| ’ (34)
maz = max{dy,...,d,},
Where{ din = min{dy, ..., dn}. (35)
Along the trajectory of the closed loop system,
V(t,X) <>t di{ —ai? — BiZi+
[Z?:I,j;éi %'jja} Z; + [Z,?:l,j;&i ’Yij'r[rje]f + %} z;
(36)

matrix S defined in (26) is anM matrix. According to

Lemma 9.7 in [7],S being anM matrix guarantees the

existence of matrixD = diag(dy,...,d,) > 0 such that

DS+ STD is a positive definite matrix. Also due to that

tﬁhi ? PR %j:c[fe]f + ¢; from (31), it follows from (36)
a

V(t,X) < %X (DS + STD)X
Z?:l { [ ( :12 Yij ref + ‘PZ)}} Z;
v;>0

< —$hminll X I3 = iy vi | %< 0
where \,,;, is the minimum eigenvalue of positive definite
matrix DS + ST D.

Using Barbalat's lemma, it can be shown from and (34)
and (37) thatlim;_.o >, | Z;(t) |— 0 whenz;(t)) €

el gld Combining the “PE” condition for\;(t)

(37)

(xref7xbuffer]
when z;(ty) < x[jif we conclude that system trajectory

converges to{X e R" | x = Lij,Vz = 1,...,n}
asymptotically for allz;(to) € [0 xbu ferl- n
Simulation in Figure 5 showed tée case when two nodes

are connected and interference between them satisfies (23).
The two nodes have different buffer sizes and capacity
constraints, different reference values and initial stathile
they both achieves asymptotic regulation without control
saturation.

We then present our continuous approximation controller
design for interconnected system.

Proposition 2: Consider the interconnected system de-
fined by (19-22). Supposg;satisfies (23) and inequalities
928) and (29). For anyz;(to) € [0,Zpusyer], the system
trajectory is bounded and will be confmed[tciif, ol +e]

i = 1,...,n, if the control law is chosen as
follows:
ol ) 5 S g 38
- Cﬁﬂmersat{ Sg] } otherwise (38)
Ciérver

~ 1 s i
C([f] = 1+m {Oéifi 4 ﬁisat(x—)}, (39)

T €;

«; and ; are chosen the same with discontinuous design in
Theorem 2¢; and sat function have the same definitions in
Proposition 1 for the scalar systems are design parameters
chosen according to (18) for every subsystem. The subscript
¢ denotes continuous control law.

The proof is omitted since it shares many features with the
proof for the discontinuous control case of the intercoiteec
system in Theorem 2 and the proof for the continuous
approximation of the scalar system case in Proposition 1.

Remark 5: The scalability of this control scheme is ev-
idenced by comparing the form of controller in (5)(6) and
(24)(25). The control law proposed for isolated system is
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scalable to large scale system, with changing of design

Koy X bugfer

Fig. 1. Control (capacity) vs. state (queue)

parametersy;s andg;s.

Remark 6: The above designs use robust control ideas
and requires that;;, i, xﬂf are known. They are patrtially

decentralized control schemes. Whe{},goi,xm
known or not locally available, adaptors may be built to
supplement the above control designs. Using decentralized
adaptive control techniques, we study totally decentedliz
controller designs for a large scale network modelled by (19

are un-

re

22) in another paper.

Through theoretic analysis and simulations, we show that
our sliding mode control law improves the queue regulation
result in [10] by achieving asymptotic regulation. Phykica
constraints on control input and state variable are handled
The same type of controller can be applied to large scale
networks in a partially decentralized manner. The typical
shapes of a discontinuous control law and of a continuous

V. CONCLUSIONS

approximation are both shown in Figureclis a designing

parameter which sets the ultimate bound of the regulation

error.
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(31
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Fig. 2. Asymptotic regulation for scalar system
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