
 1

Abstract1 -- In this paper, we present the design of a TCP

ACK pacer which regulates the downstream buffer occupancy
at an edge router in the Internet to avoid Quality of Service
(QoS) damaging congestion while maximizing the link
utilization. This technique has the advantage of requiring no
changes in existing TCP implementations. Based on a
feedback system representation of the network, a PI-type
controller is proposed to determine the aggregate ACK
releasing rate according to the buffer occupancy. This
approach is scalable in that it requires no per-flow state
information. The robustness of the controller is addressed
with respect to the system uncertainty such as the traffic
dynamics and the system delay. Generalizations of the control
objective are discussed as well. A special case of the
controller, corresponding to a proportional plus lag
compensator is analyzed and used to provide a systematic
approach for satisfying a given delay requirement. Numerical
examples to illustrate this approach are also given.

I. INTRODUCTION

Providing differentiated Quality of Service (QoS) is of
increasing importance in broadband networks. As
sustained congestion at a router may trigger excessive
packet dropping and render its QoS capability ineffective,
traffic control methods capable of minimizing such
damaging congestion occurrences are essential for the
router to deliver per-flow QoS. In this paper, we consider
the congestion control problem at an edge router that
connects an end-user access network to the core Internet.
In many cases, an edge router is able to control the
upstream traffic flows (from the access network to the core)
through the data link layer access control or flow control.
However, such techniques cannot be applied to the
downstream traffic (from the core to the access network)
that originates elsewhere in the Internet. Therefore,
congestion is more likely to occur in the downstream
direction as traffic bursts arrive at the edge router from the
high-speed ingress links and are directed to the lower-speed
access links. Consequently, it is desirable to have an
effective means of minimizing downstream congestion in
the QoS solution of the edge router.

An effective approach to prevent damaging congestion

1 This work was supported by the Motorola Center for Communications

at Northwestern University

and packet losses while maintaining high bandwidth
utilization is to properly manage the downstream traffic
flow by traffic shaping and/or packet buffering
mechanisms. Some well-known approaches in this area
include token bucket rate limiting [1] and Random Early
Detection (RED) [2]. The burstiness of Internet data traffic
today is caused largely by Transport Control Protocol
(TCP) traffic. The well-known TCP congestion control
mechanism maintains a dynamic congestion window at the
source node where the window size increases whenever an
acknowledgement (ACK) is received before its
retransmission timer goes off. Therefore, a logical means
for shaping TCP traffic flows on the downstream is to pace
the delivery of the ACK packets, as appropriate, on the
upstream [3], [4]. When the traffic load is low, the shaping
may not be necessary; however, the shaping ought to be
more aggressive when the edge router experiences an
increasing downstream traffic load. This is the rationale
behind the ACK pacer presented in this paper.

When compared to the per-flow token bucket algorithm
in the forward (downstream) path, ACK pacing has the
potential advantage of drastically reducing the buffer
requirement at the edge router since holding ACKs
typically requires much less buffer space than holding data
packets in the forward direction. The advantage of an ACK
pacer over approaches such as RED, is that the ACK pacer
seeks to proactively regulate TCP traffic at their sources
while RED reacts to emerging congestion by dropping
packets.2 The general idea of ACK pacing has been
introduced in [3], [4] and [9]. The present algorithm differs
from that of [3] and [4], in that it adapts to the aggregate
traffic load as represented by the downstream buffer
occupancy, rather than to individual flows states, and thus
leads to a more scalable implementation. In addition, since
the proposed ACK pacer does not need to write into the
ACK header, it is capable of controlling encrypted flows
and is thus different from the TCP rate controller proposed
in [3]. The approach in [9] is also based on the aggregate
traffic load, but uses a different type of controller and does

2 Packet dropping can be avoided in RED if Explicit Congestion

Notification (ECN) is used; however, this requires that the end-user TCP
implementation be modified to be ECN capable.

An Application of the Control Theoretic
Modeling for a Scalable TCP ACK Pacer

Yishen Sun, C. C. Lee, Randall Berry and A. H. Haddad
Department of Electrical and Computer Engineering, Northwestern University

Evanston, IL 60208, U.S.A.
Email: {yishen, cclee, rberry, ahaddad}@ece.northwestern.edu

 2

not offer a systematic approach for setting the parameters
or analyzing the performance. TCP pacing has been
considered in other contexts as well, such as improving the
initial transient performance in networks with large
bandwidth delay products [12].

Because of the feedback nature of the TCP congestion
control mechanism [5], adaptive control methods have the
potential to guide the design of an ACK pacing algorithm.
Starting from a state-space representation of the congestion
window dynamics, we proposed an α-tracking load-
adaptive ACK pacer in [6]. In this paper, a PI-type ACK
pacer is investigated. PI controllers have been used in other
networking problems including explicit rate control in
ATM networks [7], [11], Active Queue Management
(AQM) in TCP/IP networks [8], and QoS adaptation [13].
Compared to the heuristic algorithm presented in [6], the
control theoretic modeling of the network presented in this
paper is more rigorous so that the stability and robustness
of the controller can be mathematically analyzed.

The rest of the paper is organized as follows. The next
section describes the network model and the basic control
strategy of the ACK pacer. System dynamics are presented
in Section III. In Section IV, a PI-type ACK pacer is
characterized in both the time domain and the frequency
domain based on the feedback control representation of a
sampled data system. In addition, sufficient and necessary
conditions on the ACK pacer parameters for a stable system
are derived. The system’s robustness with respect to the
aggregate traffic uncertainty and the delay jitter is
investigated in the same section, and a generalization of the
control objective is discussed as well to include filtered
versions of the buffer occupancy. In Section V, a more
systematic design methodology for one example of the
controller is presented to guarantee a specified delay
requirement. Some numerical results are given in Section
VI. Finally Section VII summarizes the paper.

II. NETWORK MODEL

Consider a network where an edge router connects an
end-user access network to the core Internet. The ACK
pacing algorithm proposed here deals primarily with the
traffic control for the downstream traffic (i.e., traffic from
the core to the end-user) at the edge router. Assume that
the link capacity between the core network and the edge
router is sufficiently large so that it does not impose any
restrictions on how fast data packets and ACKs can flow
between TCP sources and the edge router. On the other
hand, the link between the edge router and the access
network, denoted as C (bps), imposes constraints on the
bandwidth available to TCP receivers, and hence may
develop a bottleneck. The objective of the ACK pacer is to
maximize TCP “goodput”, while controlling the
downstream buffer occupancy B(t) (bits) at the edge router
to reduce the latency and minimize packet losses. The

basic control strategy of the ACK pacer is as follows:
1) Activate the ACK pacer when the queue length B(t)

exceeds B1;

2) Deactivate the ACK pacer if B(t) falls below B2;

3) When activated, adjust the ACK releasing rate to keep
B(t) below a threshold Bth,

where 0 < B2 < B1 < Bth.
 The reason for setting the activation and deactivation

thresholds for the ACK pacer is to avoid over-controlling.
It is obvious that we do not need to hold upstream ACKs at
all if the bottleneck link is far from over-loaded. An
additional buffer increase should also be provisioned for,
before the ACK pacer takes effect. The threshold Bth,
which is the desired upper bound of B(t), is determined by
considering various network characteristics, such as packet
latency requirements and any AQM scheme for the
downstream buffer. For example, if the router buffer
implements a Tail Drop scheme, Bth may be set equal to the
physical buffer limit; if RED is used for the AQM, Bth may
be the threshold at which the random early dropping begins.

III. SYSTEM DYNAMICS

Consider the case where N unlimited TCP sources are
sending data through the edge router. Each of these sources
transmits constant sized segments as fast as its congestion
window allows and that the receiver advertises a consistent
flow control window throughout the TCP session. The
transmission rate of such a TCP source is determined by
both the number of ACKs received and the congestion
window size. We denote the traffic sending rate and the
ACK receiving rate of the i th flow at time t as ri(t) and ai(t)
respectively, both measured in bits per second (bps). Let
wi(t) denote the congestion window size (cwnd) of the ith
traffic source at time t; this is measured in TCP segments
where all segments are assumed to be of the same size. The
dynamics of a TCP connection can be approximated by the
following equation:

)()()(twLtLatr iDii &+= , (1)

where LD (bits) is the downstream data segment length, LA
(bits) is the upstream ACK segment length, and L= LD/LA.

The TCP congestion control algorithm dynamically
adjusts the congestion window according to the network
state. In its slow start phase, the sender increases the cwnd
by one segment upon the receipt of each ACK. In its
congestion control phase, however, the cwnd is increased
by one for every cwnd ACKs received. If the cwnd is
larger than the amount of data which the receiver is willing
to receive in the future, the connection enters its saturation
phase, and the cwnd stops increasing. Therefore the
evolution of the TCP congestion window of source i can be
summarized as follows:

 3









=

n. saturatioin if ,

avoidance; congestion in if twLta

 start; slowin if Lta

tw iAi

Ai

i

0

,))(/()(

,/)(

)(&
.(2)

Neglecting the delay between the source and the edge
router, we have










=








−

>−
=

∑

∑

=

=

0B(t) if ,Ctr

0B(t) if ,Ctr
tB N

i
i

N

i
i

1

1

)(,0max

)(
)(&

 . (3)

Equations (1) to (3) imply that both source transmission
rates and the buffer occupancy can be regulated implicitly
by adjusting the ACK releasing rate at the edge router.

IV. PI-TYPE ACK PACER

We consider a sampled-data control model shown in
Figure 1 for a system consisting of an ACK pacer and a
TCP/IP network where the bottleneck may develop in the
downstream access link. The input to the controller is
sampled every T seconds, and the discrete time index n
corresponds to the continuous time t=nT. In particular,
a(n) and a(t) (bps) are used to denote the aggregate
upstream ACK releasing rate at the output of the ACK
pacer in the edge router which is adjusted every T seconds.
The control target B0 (bits) is determined by dropping
thresholds of AQM schemes or the latency guarantee of
data packets. The error signal e(t) equals B0 -B(t), and the
input to the controller is e(n), the sampled value of e(t).

Figure 1 Time Domain System Block Diagram

A. Time Domain Characterization

The time domain response of the ACK pacer, a PI-type
controller, is given by

)()]1()([)1()(neKneneKnana yx +−−+−= , (4)

where Kx and Ky are gain parameters of the controller.
The function of the zero-order hold (ZOH) is to keep the

input value at the same level between two successive
adjustments, i.e., a(t)=a(n) for nT ≤ t < (n+1)T.

The network response can be considered to be consisted
of two concatenated components. The first component
characterizes the behavior of the traffic sources. The
second component describes the downstream buffer
occupancy fluctuation at the edge router.

Let r(t) (bps) denote the aggregate downstream traffic
arrival rate at the edge router at time t. Assume that the
delay between the edge router and the traffic source is
negligible, then we have r(t)=r 1(t)+…+r N(t) and
a(t)=a1(t)+…+ aN(t). The dynamic response of traffic
sources can be captured by a unitless parameter M, which is

the ratio between the aggregate source transmission rate
and the aggregate ACK receiving rate, i.e., r(t)=Ma(t). The
exact value of M depends on the congestion state of TCP
sources. From (1) and (2) it can be obtained that the
relation between ri(t) and ai(t) is:










+=

n. saturatioin if ,tLa

avoidance; congestion in if ,tLa
tw

 start; slowin if tLa

tr

i

i
i

i

i

)(

)()
)(

1
1(

,)(2

)(
.(5)

From (5) it follows that L≤ M≤ 2L. Thus, if all flows are
in slow start, we have M=2L. If all flows are in congestion
avoidance and have the same window size w, we have
M=(1+1/w)L. If all flows are in saturation, we have M=L.
Assume that the bottleneck link is overloaded, i.e., the
downstream buffer at the edge router is never empty. The
buffer occupancy B(t) then evolves as:

CtrtB −=)()(& . (6)

Note that the total delay of the network transmission is
usually time varying, and is not accounted for in (4)-(6). In
Section IV.E we will discuss the robustness of the system
with respect to different delays, and in Section V a more
systematic design procedure will be studied to meet certain
delay requirements.

B. Frequency Domain Transfer Function

It can be shown that the sampled-data system in Figure 1
is equivalent to the discrete-time feedback loop of Figure 2
in the frequency domain through the zero-order hold
equivalence transformation [10].

Figure 2 Zero-Order Hold Equivalent System

 Here {B0} and {C} are the Z-transform of step inputs of
magnitudes B0 and C respectively, and

()
11

1
)(

)(−−
+==

z
KK

ze

za
zH yx

, (7)

1

1

1
)(−

−

−
=

z

z
MTzG . (8)

The open-loop gain from {B0} to B(z) is given by

12

)(
)(

2 +−

−+
=

zz

XzYX
zGo

, (9)

where X=KxMT and Y=KyMT. Finally, the close-loop
transfer function from {B0} to B(z) is given by

)1()2(

)(
)(

2 XzYXz

XzYX
zG

−+−++

−+
= . (10)

C. Stable Region

A sufficient and necessary condition for the system to
remain stable is that the denominator polynomial of (10)
has no roots on or outside the unit circle. Based on Jury’s
stability test [10], input-output stability can be guaranteed if

+B0 e(t) e(n) B(t)T
ACK
Pacer

Network
Response

a(n)
ZOH

a(t)
{CT}

B(z)
H(z) G(z)

{B0} + e(z) a(z)

+

 4

and only if X and Y satisfy following conditions:
XYX 240,20 −<<<< . (11)

Therefore, gain parameters of the PI controller, Kx and
Ky, can be selected as follows. First, pick a pair (X, Y)
within the stable region. Then, for the given M and T, set

()MTXK x = , ()MTYK y = . (12)

Notice that the stable region of (X, Y) is convex, and is
independent of C, the bottleneck link capacity.

D. Robustness Analysis with respect to M

Equation (12) shows that M is directly related to the
design of controller gains Kx and Ky. However, M is time
varying and has to be estimated in a real system. We
propose to use a nominal M to determine values of Kx and
Ky instead of estimating it continually. The criterion for
choosing a nominal M is that the system should remain
stable regardless of the actual value of M. The following
lemma asserts that there exists a nominal value of M that
satisfies this criterion.
Lemma: Using M=2L as the nominal value can guarantee
the system stability under all possible values of M.

The proof is based on the fact that the stable region
characterized by Equation (11) is convex, and that the exact
value of M is bounded by L and 2L.

If we have a reliable estimate of the maximum value of
M and it is smaller than 2L, then larger values of Kx and Ky
can be used while still guaranteeing the stability. The
advantage of larger Kx and Ky is a better transient behavior
of B(t). Specifically, as the difference between the nominal
and the actual value of M increases, the overshoot and the
settle time increase as well.

E. Robustness Analysis with respect to Delay

Previous results are obtained based on assumptions that
the ACK pacer adjusts the aggregate ACK releasing rate
every T seconds, and that network delays are negligible.
However, in a practical environment, these delays may be
substantial and ignoring them may result in system
instability. Furthermore, the value of the total delay τ is
usually time varying. The amount of the delay that can be
tolerated in the system in Figure 2 can be predicted using
the standard control theory. The maximum tolerable delay
τmax for the close-loop system can be found from the phase
margin and the crossover frequency of the open-loop gain
G0(e

jω) [11]. Let ωc (rads/sec) denote the normalized
crossover frequency, and PM (rads) is the phase margin,
then the maximum delay that can be tolerated is given by

T
PM

cω
τ =max

. (13)

From (9) we can see that the value of (PM /ωc) is
completely determined by X and Y. Therefore, (13) implies
that increasing T while keeping X=KxMT and Y=KyMT
unchanged would make the system stability more robust to
larger delays. However, since a(t) is adjusted every T

seconds, a larger T will slow down the controller’s reaction
to a steep change in r(t). On the other hand, decreasing T
will shorten the time for the ACK pacer to respond to the
traffic congestion, but only up to the point where T is still
no smaller than the round trip delay RTD between the edge
router and traffic sources. Once T gets smaller than the
RTD, the adjustment in the ACK releasing rate from the
controller no longer effects the buffer occupancy after T
seconds, and the RTD becomes the limiting factor for the
response time of the system. Thus a trade-off exists
between the system responsiveness with respect to the
emerging congestion and the robustness with respect to
delays when choosing T.

Numerical results show that (PM /ωc) decreases as X and
Y increase, and the maximum tolerable delay for given X
and Y is readily calculated using Equation (13). Therefore,
for a specified delay requirement, different values of X and
Y may be tried until an appropriate choice is found. In
Section V, we will consider a more direct design procedure
in which the ACK pacer is the concatenation of a
proportional and a lag compensator. The controller
designed in this way is a special case of the ACK pacer of
the form (7), but with a structure that leads to a systematic
design to satisfy a given delay requirement.

F. Generalization of the Control Objective

In the previous analysis, the control objective is to keep
the instantaneous buffer occupancy B(t) at sample times
around a desired value B0, which is directly related to the
QoS delay requirement assuming that a simple first-in-first-
out queuing discipline is used at the edge router. We note
that a different control objective may be more appropriate if
a more sophisticated AQM scheme is used or if a QoS
requirement other than the queuing latency is of interest
instead. In this section, we consider a generalization of the
system to accommodate such variations.

The modified system is shown in Figure 3 where a
filtered version of the buffer occupancy is used, and a
superscript * is used in the figure to denote the generalized
quantities. In the figure we have G1(s)=M and G2(s)=1/s.
Here G3(s) represents a filter that averages the buffer
occupancy between sample data points, and F(z) represents
a filter that averages the buffer occupancy across sample
data points. For example, G3(s)=(1-e-sT)/(sT) if the average
buffer occupancy over T seconds, B*(t), rather than the
instantaneous value B(t) is used to specify the control
target. If RED is implemented as the AQM scheme, then
the packet dropping is based on a weighted average of the
queue size, and a reasonable control objective is to keep the
weighted average queue size B*(n)=(1-α)B*(n-1)+αB(n)
below the threshold at which the random early dropping
begins. This can be modeled by F(z)=α /(1-(1-α) z -1). For
this modified system, the stable region and the robustness
analysis with respect to M and/or delays can be obtained in
a similar way as in Section IV.B—IV.E.

 5

V. ACK PACER COMPOSED OF A PROPORTIONAL AND A

LAG COMPENSATOR

The discussion in Section IV.E enables us to calculate
the maximum tolerable delay τmax for given controller
parameters Kx and Ky. In this section, we focus on the
selection of Kx and Ky for the given τmax. We investigate a
special case of the PI controller in (7), which can be viewed
as a combination of a proportional and a lag compensator.
This leads to a more systematic approach for designing the
controller to meet a specified delay requirement.

A. Proportional Compensator

A simple choice for the ACK pacer H(z) in Figure 2 is to
use a proportional controller,

AneKna p +=)()(, (14)

where Kp is the proportional gain, and A is a constant to
assure that the output link is fully utilized. Hence, we have

pP KzHzH ==)()(. (15)

The frequency response of the open-loop gain of the
system with this proportional compensator is given by

)
2

()(

2
sin21

)(
ωπ

ω

ω
ω

+
−

−

−

=
−

=
j

j

j
pjP

o eωP

e

MTeK
eG

, (16)

where P=KpMT.
It is clear from examining the close-loop transfer

function that P should be between 0 and 2 to make the
entire system stable. For a given P with 0<P<2, the
maximum tolerable delay τmax can be calculated from (16)
as follows:

T
P

T
PM

c

)
2

1

2
arcsin4

(max −==
π

ω
τ . (17)

It can be seen from (17) that the maximum tolerable
delay τmax decreases monotonically as the proportional gain
Kp increases, if M and T remain the same. (17) also
suggests an analytical way to determine Kp for fixed M and
T to satisfy the robustness requirement with respect to
delays. However, the steady-state error of a proportional
controller is not zero, and is inversely proportional to the
controller gain. Therefore, a lag compensator HL(z) should
be included in H(z) to force the steady state error toward
zero.

B. Lag Compensator

In this section, the use of a lag compensator in H(z) is
examined. The complete controller to be considered then
has the form

)
1

)(
1

2
()()()(

−

−

+
==

z

z
KzHzHzH pLP

β
β

, (18)

where)
1

)(
1

2
()(

−

−

+
=

z

z
zH L

β
β

. (19)

Note that H(z) can be thought of as a proportional
compensator HP(z) in series with a lag compensator HL(z)

which, due to the normalizing factor 2/(1+β), has a high
frequency gain of one. The frequency response of the open
loop gain of the system with both proportional and lag
compensators is now given by










−

⋅









−

−
+

=
−

−

ω

ω

ω

ω
ω β

β j

j

j

j
j

o e

eP

e

e
eG

1
)

1
)(

1

2
()(. (20)

A standard design procedure for H(z) is to first design
the proportional compensator, HP(z), to achieve a basic
level of robustness with respect to delays as characterized
in (17). Second, if β, the zero of the lag compensator, is
properly chosen such that the corner frequency of HL(e

jω) is
sufficiently far below the crossover frequency of G0

(P)(ejω),
then little phase lag will be added at the crossover. This
will result in a system with the additional lag compensator,
G0(e

jω), having approximately the same robustness with
respect to delays as the system with just the proportional
compensator, G0

(P)(ejω), but having the added effect of
pressuring the steady-state queue size towards the control
target B0. Choosing the zero that is one decade below the
crossover results in the following value for β:

)10/(ce ωβ −= ,
2

arcsin2
P

c =ω . (21)

In comparison with the general form of (4), the ACK
pacer with a proportional and a lag compensator as in (19)
is a special case of (4) with

βγ=xK , γβ)1(−=yK , (22)

where γ=2Kp /(1+β). Thus, the robustness analysis of the
system stability with respect to the uncertainty of M still
applies.

Therefore, to design an ACK pacer of the form (18),
which guarantees the maximum tolerable delay requirement
for given M and T, (17) should be used to select Kp first.
Then β is calculated from (21), and Kx and Ky are derived
from (22) to complete the time domain representation of the
ACK pacer. Finally, the precise value of the maximum
tolerable delay τmax should be verified by checking the
actual phase margin and the crossover frequency using
values of Kx and Ky obtained.

VI. NUMERICAL RESULTS

In this section, we present some numerical results for the
system in Figure 1. In the following, L, the ratio of the data
segment size and the ACK segment size, is set to be
22.8125, reflecting a typical TCP data segment length of
1460 bytes and a typical ACK segment length of 64 bytes.
In the following figures, the x-axis is for the time index n,
which corresponds to the time instant nT, and the y-axis is
for the normalized buffer occupancy B/B0.

First we consider the delay robustness of the ACK pacer
in (4) with X=0.2378 and Y=0.0701. Three buffer
occupancy traces are shown in Figure 4. Trace 1 is for the
system in which the additional delay is exactly T seconds.

 6

Trace 2 is for the system in which delay is T seconds before
n=20, and increases to 2T seconds after that. Trace 3 is for
the system in which delay is T seconds before n<20,
increases to 3T seconds for 20≤ n≤ 60, and returns to T
seconds for n>60. Following the analysis in Section IV.E
we learn that τmax = 2.2234T seconds for X=0.2378 and
Y=0.0701. Therefore, the network is still stable for delays
of T or 2T seconds, as indicated by trace 1 and 2. However,
the stability cannot be achieved for the delay larger than
2.2234T seconds. The instability can be observed in trace 3
for 20≤ n≤ 60. The system is stabilized again after the
delay returns back to T seconds for n > 60.

0 5 0 1 00 1 5 0 2 00
0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

1 . 1

1 . 2

1 . 3

1 . 4

n

B
 /

B
0

t r ac e 1
trac e 2
trac e 3

Figure 4 System Response with Additional Delay (X=0.2378, Y=0.0701)

Figure 5 System Response with Additional Delay (X=0.4192, Y=0.0045)

Figure 5 is an example of the proportional and lag
compensator in Section V. We consider the design of an
ACK pacer that can tolerate delays up to 3T seconds.
Assume τmax=3.2T to provide the adequate robustness to
delays, then design procedures in Section V yield that
X=0.4192 and Y=0.0045. These values result in a system
with an actual delay tolerance of τmax=3.1396T. The buffer
occupancy trace 1 is for the system in which the additional
delay is 3T seconds. Trace 2 is for the system in which
delay is 3T seconds before n<20, increases to 4T seconds
for 20≤ n≤ 100, and returns to 2T seconds for n>100.

VII. SUMMARY

A control-theoretic TCP ACK pacing technique is
presented to regulate the downstream TCP traffic and to
avoid the QoS-damaging congestion. A sampled data
feedback control system representation is used to govern
the design and analysis of a PI controller for the ACK
pacer. The selection of controller parameters was
investigated with a main focus on the system stability. In
addition, the robustness of the system with respect to
variations in the aggregate traffic and round trip delays is
studied. Numerical results that verify functions and
properties of the ACK pacer are also provided.

REFERENCE
[1] A. L.-Garcia, and I. Widjaja, “Communication Networks:

Fundamental Concepts and Key Architecture”, McGraw-Hill, 2000
[2] S. Floyd, and V. Jacobson, “Random Early Detection Gateways for

Congestion Avoidance,” IEEE/ACM Transactions on Networking,
vol.1, no.4, pp.397-413, August 1993

[3] S. Karandikar, S. Kalyanaraman, P. Bagal, and B. Packer, “TCP Rate
Control”, Computer Communications Review, vol.30, no.1, pp.45-58,
January 2000

[4] P. Narvaez, and K. -Y. Siu, “An Acknowledgement Bucket Scheme
for Regulating TCP flow over ATM”, Computer Networks and ISDN
Systems, special issue on ATM traffic management, 1998

[5] S. H. Low, F. Paganini, and J. C. Doyle, “Internet Congestion
Control,” IEEE Control Systems Magazine, pp. 28-43, February
2002

[6] Y. Sun, C. C. Lee, R. Berry and A. H. Haddad, “A Load Adaptive
ACK Pacer for TCP Traffic Control”, Proc. of 40th Allerton
Conference on Communication, Control, and Computing, Oct. 2-4,
2002

[7] S. Kubo, T. Ushio, and S. Yamamoto, “PID Rate-Based Control with
Propagation Delay—An Application of Robust Stability Analysis”,
Internet Conference, November 2001, Osaka, Japan

[8] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “Analysis and
Design of Controllers for AQM Routers Supporting TCP Flows”,
Special issue of IEEE Transactions on Automatic Control on
"Systems and Control Methods for Communication Networks", vol.
47, pp. 945-959, June 2002

[9] J. Aweya, M. Ouellette, and D. Y. Montuno, “A Self-regulating TCP
Acknowledgement (ACK) Pacing Scheme”, International Journal of
Network Management, vol. 12, pp. 145-163, 2002

[10] C. L. Philips, and H. T. Nagle, “Digital Control System Analysis and
Design”, Prentice Hall, 1995

[11] C. E. Rohrs, R. A. Berry, “A Linear Control Approach to Explicit
Rate Feedback in ATM Networks”, Proc. IEEE Infocom '97, pp.
277-82, Kobe Japan, April 7-11, 1997.

[12] V. Visweswaraiah and J. Heidemann, “Improving Restart of Idle
TCP Connections,” Technical Report USC TR 97-661, University of
Southern California, November, 1997.

[13] B. Li and K. Nahrstedt, “A Control Theoretical Model for Quality of
Service Adaptations,” Proc. 6th International Workshop on Quality
of Service, pp. 145-153, May 1998.

Figure 3 Generalization of ACK Pacer Control Objective

H(z) G1(s)
{B0

*} +

B*(z)

a(z) a(s)

{C}

B*(s)

+
G2(s) ZOH

e(z) r(s)
G3(s)

F(z)

B(s)

T

0 1 0 0 2 00 3 00 40 0 5 00 600
0.5

0 .55

0.6

0 .65

0.7

0 .75

0.8

0 .85

0.9

0 .95

1

n

B
 /

B
0

tra c e 1
tra c e 2

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThA11.3
	Page0: 2316
	Page1: 2317
	Page2: 2318
	Page3: 2319
	Page4: 2320
	Page5: 2321

