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Abstract1 -- In this paper, we present the design of a TCP 

ACK pacer which regulates the downstream buffer occupancy 
at an edge router in the Internet to avoid Quality of Service 
(QoS) damaging congestion while maximizing the link 
utilization.  This technique has the advantage of requiring no 
changes in existing TCP implementations.  Based on a 
feedback system representation of the network, a PI-type 
controller is proposed to determine the aggregate ACK 
releasing rate according to the buffer occupancy. This 
approach is scalable in that it requires no per-flow state 
information.  The robustness of the controller is addressed 
with respect to the system uncertainty such as the traffic 
dynamics and the system delay.  Generalizations of the control 
objective are discussed as well.  A special case of the 
controller, corresponding to a proportional plus lag 
compensator is analyzed and used to provide a systematic 
approach for satisfying a given delay requirement.  Numerical 
examples to illustrate this approach are also given. 

I. INTRODUCTION 

Providing differentiated Quality of Service (QoS) is of 
increasing importance in broadband networks.  As 
sustained congestion at a router may trigger excessive 
packet dropping and render its QoS capability ineffective, 
traffic control methods capable of minimizing such 
damaging congestion occurrences are essential for the 
router to deliver per-flow QoS.  In this paper, we consider 
the congestion control problem at an edge router that 
connects an end-user access network to the core Internet.  
In many cases, an edge router is able to control the 
upstream traffic flows (from the access network to the core) 
through the data link layer access control or flow control.  
However, such techniques cannot be applied to the 
downstream traffic (from the core to the access network) 
that originates elsewhere in the Internet.  Therefore, 
congestion is more likely to occur in the downstream 
direction as traffic bursts arrive at the edge router from the 
high-speed ingress links and are directed to the lower-speed 
access links.  Consequently, it is desirable to have an 
effective means of minimizing downstream congestion in 
the QoS solution of the edge router.   

An effective approach to prevent damaging congestion 
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and packet losses while maintaining high bandwidth 
utilization is to properly manage the downstream traffic 
flow by traffic shaping and/or packet buffering 
mechanisms.  Some well-known approaches in this area 
include token bucket rate limiting [1] and Random Early 
Detection (RED) [2].  The burstiness of Internet data traffic 
today is caused largely by Transport Control Protocol 
(TCP) traffic.  The well-known TCP congestion control 
mechanism maintains a dynamic congestion window at the 
source node where the window size increases whenever an 
acknowledgement (ACK) is received before its 
retransmission timer goes off.  Therefore, a logical means 
for shaping TCP traffic flows on the downstream is to pace 
the delivery of the ACK packets, as appropriate, on the 
upstream [3], [4].  When the traffic load is low, the shaping 
may not be necessary; however, the shaping ought to be 
more aggressive when the edge router experiences an 
increasing downstream traffic load.  This is the rationale 
behind the ACK pacer presented in this paper. 

When compared to the per-flow token bucket algorithm 
in the forward (downstream) path, ACK pacing has the 
potential advantage of drastically reducing the buffer 
requirement at the edge router since holding ACKs 
typically requires much less buffer space than holding data 
packets in the forward direction.  The advantage of an ACK 
pacer over approaches such as RED, is that the ACK pacer 
seeks to proactively regulate TCP traffic at their sources 
while RED reacts to emerging congestion by dropping 
packets.2   The general idea of ACK pacing has been 
introduced in [3], [4] and [9].  The present algorithm differs 
from that of [3] and [4], in that it adapts to the aggregate 
traffic load as represented by the downstream buffer 
occupancy, rather than to individual flows states, and thus 
leads to a more scalable implementation.  In addition, since 
the proposed ACK pacer does not need to write into the 
ACK header, it is capable of controlling encrypted flows 
and is thus different from the TCP rate controller proposed 
in [3].  The approach in [9] is also based on the aggregate 
traffic load, but uses a different type of controller and does 
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not offer a systematic approach for setting the parameters 
or analyzing the performance.  TCP pacing has been 
considered in other contexts as well, such as improving the 
initial transient performance in networks with large 
bandwidth delay products [12]. 

Because of the feedback nature of the TCP congestion 
control mechanism [5], adaptive control methods have the 
potential to guide the design of an ACK pacing algorithm.  
Starting from a state-space representation of the congestion 
window dynamics, we proposed an α-tracking load-
adaptive ACK pacer in [6].  In this paper, a PI-type ACK 
pacer is investigated.  PI controllers have been used in other 
networking problems including explicit rate control in 
ATM networks [7], [11], Active Queue Management 
(AQM) in TCP/IP networks [8], and QoS adaptation [13].  
Compared to the heuristic algorithm presented in [6], the 
control theoretic modeling of the network presented in this 
paper is more rigorous so that the stability and robustness 
of the controller can be mathematically analyzed. 

The rest of the paper is organized as follows.  The next 
section describes the network model and the basic control 
strategy of the ACK pacer.  System dynamics are presented 
in Section III.  In Section IV, a PI-type ACK pacer is 
characterized in both the time domain and the frequency 
domain based on the feedback control representation of a 
sampled data system.  In addition, sufficient and necessary 
conditions on the ACK pacer parameters for a stable system 
are derived.  The system’s robustness with respect to the 
aggregate traffic uncertainty and the delay jitter is 
investigated in the same section, and a generalization of the 
control objective is discussed as well to include filtered 
versions of the buffer occupancy.  In Section V, a more 
systematic design methodology for one example of the 
controller is presented to guarantee a specified delay 
requirement.  Some numerical results are given in Section 
VI.  Finally Section VII summarizes the paper. 

II. NETWORK MODEL 

Consider a network where an edge router connects an 
end-user access network to the core Internet.  The ACK 
pacing algorithm proposed here deals primarily with the 
traffic control for the downstream traffic (i.e., traffic from 
the core to the end-user) at the edge router.  Assume that 
the link capacity between the core network and the edge 
router is sufficiently large so that it does not impose any 
restrictions on how fast data packets and ACKs can flow 
between TCP sources and the edge router.  On the other 
hand, the link between the edge router and the access 
network, denoted as C (bps), imposes constraints on the 
bandwidth available to TCP receivers, and hence may 
develop a bottleneck.  The objective of the ACK pacer is to 
maximize TCP “goodput”, while controlling the 
downstream buffer occupancy B(t) (bits) at the edge router 
to reduce the latency and minimize packet losses.  The 

basic control strategy of the ACK pacer is as follows: 
1) Activate the ACK pacer when the queue length B(t) 

exceeds B1; 

2) Deactivate the ACK pacer if B(t) falls below B2; 

3) When activated, adjust the ACK releasing rate to keep 
B(t) below a threshold Bth, 

where 0 < B2 < B1 < Bth. 
 The reason for setting the activation and deactivation 

thresholds for the ACK pacer is to avoid over-controlling.  
It is obvious that we do not need to hold upstream ACKs at 
all if the bottleneck link is far from over-loaded.  An 
additional buffer increase should also be provisioned for, 
before the ACK pacer takes effect.  The threshold Bth, 
which is the desired upper bound of B(t), is determined by 
considering various network characteristics, such as packet 
latency requirements and any AQM scheme for the 
downstream buffer.  For example, if the router buffer 
implements a Tail Drop scheme, Bth may be set equal to the 
physical buffer limit; if RED is used for the AQM, Bth may 
be the threshold at which the random early dropping begins. 

III. SYSTEM DYNAMICS 

Consider the case where N unlimited TCP sources are 
sending data through the edge router.  Each of these sources 
transmits constant sized segments as fast as its congestion 
window allows and that the receiver advertises a consistent 
flow control window throughout the TCP session.  The 
transmission rate of such a TCP source is determined by 
both the number of ACKs received and the congestion 
window size.  We denote the traffic sending rate and the 
ACK receiving rate of the i th flow at time t as ri(t) and ai(t) 
respectively, both measured in bits per second (bps).  Let 
wi(t) denote the congestion window size (cwnd) of the ith 
traffic source at time t; this is measured in TCP segments 
where all segments are assumed to be of the same size.  The 
dynamics of a TCP connection can be approximated by the 
following equation: 

)()()( twLtLatr iDii &+= ,    (1) 

where LD (bits) is the downstream data segment length, LA 
(bits) is the upstream ACK segment length, and L= LD/LA. 

The TCP congestion control algorithm dynamically 
adjusts the congestion window according to the network 
state.  In its slow start phase, the sender increases the cwnd 
by one segment upon the receipt of each ACK.  In its 
congestion control phase, however, the cwnd is increased 
by one for every cwnd ACKs received.  If the cwnd is 
larger than the amount of data which the receiver is willing 
to receive in the future, the connection enters its saturation 
phase, and the cwnd stops increasing.  Therefore the 
evolution of the TCP congestion window of source i can be 
summarized as follows: 
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Neglecting the delay between the source and the edge 
router, we have 
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Equations (1) to (3) imply that both source transmission 
rates and the buffer occupancy can be regulated implicitly 
by adjusting the ACK releasing rate at the edge router. 

IV. PI-TYPE ACK PACER 

We consider a sampled-data control model shown in 
Figure 1 for a system consisting of an ACK pacer and a 
TCP/IP network where the bottleneck may develop in the 
downstream access link.  The input to the controller is 
sampled every T seconds, and the discrete time index n 
corresponds to the continuous time t=nT.  In particular, 
a(n) and a(t) (bps) are used to denote the aggregate 
upstream ACK releasing rate at the output of the ACK 
pacer in the edge router which is adjusted every T seconds.  
The control target B0 (bits) is determined by dropping 
thresholds of AQM schemes or the latency guarantee of 
data packets.  The error signal e(t) equals B0 -B(t), and the 
input to the controller is e(n), the sampled value of e(t). 

 
 
 
 

Figure 1    Time Domain System Block Diagram 

A. Time Domain Characterization 

The time domain response of the ACK pacer, a PI-type 
controller, is given by 

)()]1()([)1()( neKneneKnana yx +−−+−= , (4) 

where Kx and Ky are gain parameters of the controller. 
The function of the zero-order hold (ZOH) is to keep the 

input value at the same level between two successive 
adjustments, i.e., a(t)=a(n) for nT ≤  t < (n+1)T. 

The network response can be considered to be consisted 
of two concatenated components.  The first component 
characterizes the behavior of the traffic sources.  The 
second component describes the downstream buffer 
occupancy fluctuation at the edge router. 

Let r(t) (bps) denote the aggregate downstream traffic 
arrival rate at the edge router at time t.  Assume that the 
delay between the edge router and the traffic source is 
negligible, then we have r(t)=r 1(t)+…+r N(t) and 
a(t)=a1(t)+…+ aN(t).  The dynamic response of traffic 
sources can be captured by a unitless parameter M, which is 

the ratio between the aggregate source transmission rate 
and the aggregate ACK receiving rate, i.e., r(t)=Ma(t).  The 
exact value of M depends on the congestion state of TCP 
sources.  From (1) and (2) it can be obtained that the 
relation between ri(t) and ai(t) is: 
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From (5) it follows that L≤ M≤ 2L.  Thus, if all flows are 
in slow start, we have M=2L.  If all flows are in congestion 
avoidance and have the same window size w, we have 
M=(1+1/w)L.  If all flows are in saturation, we have M=L.  
Assume that the bottleneck link is overloaded, i.e., the 
downstream buffer at the edge router is never empty.  The 
buffer occupancy B(t) then evolves as: 

CtrtB −= )()(& .    (6) 

Note that the total delay of the network transmission is 
usually time varying, and is not accounted for in (4)-(6).  In 
Section IV.E we will discuss the robustness of the system 
with respect to different delays, and in Section V a more 
systematic design procedure will be studied to meet certain 
delay requirements. 

B. Frequency Domain Transfer Function 

It can be shown that the sampled-data system in Figure 1 
is equivalent to the discrete-time feedback loop of Figure 2 
in the frequency domain through the zero-order hold 
equivalence transformation [10]. 

 
 
 
 

Figure 2    Zero-Order Hold Equivalent System 

  Here {B0} and {C} are the Z-transform of step inputs of 
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The open-loop gain from {B0} to B(z) is given by 
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where X=KxMT and Y=KyMT.  Finally, the close-loop 
transfer function from {B0} to B(z) is given by 
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C. Stable Region 

A sufficient and necessary condition for the system to 
remain stable is that the denominator polynomial of (10) 
has no roots on or outside the unit circle.  Based on Jury’s 
stability test [10], input-output stability can be guaranteed if 
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and only if X and Y satisfy following conditions: 
XYX 240,20 −<<<< .   (11) 

Therefore, gain parameters of the PI controller, Kx and 
Ky, can be selected as follows.  First, pick a pair (X, Y) 
within the stable region.  Then, for the given M and T, set 

( )MTXK x = ,  ( )MTYK y = .  (12) 

Notice that the stable region of (X, Y) is convex, and is 
independent of C, the bottleneck link capacity. 

D. Robustness Analysis with respect to M 

Equation (12) shows that M is directly related to the 
design of controller gains Kx and Ky.  However, M is time 
varying and has to be estimated in a real system.  We 
propose to use a nominal M to determine values of Kx and 
Ky instead of estimating it continually.  The criterion for 
choosing a nominal M is that the system should remain 
stable regardless of the actual value of M.  The following 
lemma asserts that there exists a nominal value of M that 
satisfies this criterion. 
Lemma: Using M=2L as the nominal value can guarantee 
the system stability under all possible values of M. 

The proof is based on the fact that the stable region 
characterized by Equation (11) is convex, and that the exact 
value of M is bounded by L and 2L.  

If we have a reliable estimate of the maximum value of 
M and it is smaller than 2L, then larger values of Kx and Ky 
can be used while still guaranteeing the stability.  The 
advantage of larger Kx and Ky is a better transient behavior 
of B(t).  Specifically, as the difference between the nominal 
and the actual value of M increases, the overshoot and the 
settle time increase as well. 

E. Robustness Analysis with respect to Delay 

Previous results are obtained based on assumptions that 
the ACK pacer adjusts the aggregate ACK releasing rate 
every T seconds, and that network delays are negligible.  
However, in a practical environment, these delays may be 
substantial and ignoring them may result in system 
instability.  Furthermore, the value of the total delay τ is 
usually time varying.  The amount of the delay that can be 
tolerated in the system in Figure 2 can be predicted using 
the standard control theory.  The maximum tolerable delay 
τmax for the close-loop system can be found from the phase 
margin and the crossover frequency of the open-loop gain 
G0(e

jω) [11].  Let ωc (rads/sec) denote the normalized 
crossover frequency, and PM (rads) is the phase margin, 
then the maximum delay that can be tolerated is given by 

T
PM

cω
τ =max

.     (13) 

From (9) we can see that the value of (PM /ωc) is 
completely determined by X and Y.  Therefore, (13) implies 
that increasing T while keeping X=KxMT and Y=KyMT 
unchanged would make the system stability more robust to 
larger delays.  However, since a(t) is adjusted every T 

seconds, a larger T will slow down the controller’s reaction 
to a steep change in r(t).  On the other hand, decreasing T 
will shorten the time for the ACK pacer to respond to the 
traffic congestion, but only up to the point where T is still 
no smaller than the round trip delay RTD between the edge 
router and traffic sources.  Once T gets smaller than the 
RTD, the adjustment in the ACK releasing rate from the 
controller no longer effects the buffer occupancy after T 
seconds, and the RTD becomes the limiting factor for the 
response time of the system.  Thus a trade-off exists 
between the system responsiveness with respect to the 
emerging congestion and the robustness with respect to 
delays when choosing T. 

Numerical results show that (PM /ωc) decreases as X and 
Y increase, and the maximum tolerable delay for given X 
and Y is readily calculated using Equation (13).  Therefore, 
for a specified delay requirement, different values of X and 
Y may be tried until an appropriate choice is found.  In 
Section V, we will consider a more direct design procedure 
in which the ACK pacer is the concatenation of a 
proportional and a lag compensator.  The controller 
designed in this way is a special case of the ACK pacer of 
the form (7), but with a structure that leads to a systematic 
design to satisfy a given delay requirement. 

F. Generalization of the Control Objective 

In the previous analysis, the control objective is to keep 
the instantaneous buffer occupancy B(t) at sample times 
around a desired value B0, which is directly related to the 
QoS delay requirement assuming that a simple first-in-first-
out queuing discipline is used at the edge router.  We note 
that a different control objective may be more appropriate if 
a more sophisticated AQM scheme is used or if a QoS 
requirement other than the queuing latency is of interest 
instead.  In this section, we consider a generalization of the 
system to accommodate such variations. 

The modified system is shown in Figure 3 where a 
filtered version of the buffer occupancy is used, and a 
superscript * is used in the figure to denote the generalized 
quantities.  In the figure we have G1(s)=M and G2(s)=1/s.  
Here G3(s) represents a filter that averages the buffer 
occupancy between sample data points, and F(z) represents 
a filter that averages the buffer occupancy across sample 
data points.  For example, G3(s)=(1-e-sT)/(sT) if the average 
buffer occupancy over T seconds, B*(t), rather than the 
instantaneous value B(t) is used to specify the control 
target.  If RED is implemented as the AQM scheme, then 
the packet dropping is based on a weighted average of the 
queue size, and a reasonable control objective is to keep the 
weighted average queue size B*(n)=(1-α)B*(n-1)+αB(n) 
below the threshold at which the random early dropping 
begins.  This can be modeled by F(z)=α /(1-(1-α) z -1).  For 
this modified system, the stable region and the robustness 
analysis with respect to M and/or delays can be obtained in 
a similar way as in Section IV.B—IV.E. 
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V. ACK PACER COMPOSED OF A PROPORTIONAL AND A 

LAG COMPENSATOR 

The discussion in Section IV.E enables us to calculate 
the maximum tolerable delay τmax for given controller 
parameters Kx and Ky.  In this section, we focus on the 
selection of Kx and Ky for the given τmax.  We investigate a 
special case of the PI controller in (7), which can be viewed 
as a combination of a proportional and a lag compensator.  
This leads to a more systematic approach for designing the 
controller to meet a specified delay requirement.   

A. Proportional Compensator 

A simple choice for the ACK pacer H(z) in Figure 2 is to 
use a proportional controller, 

AneKna p += )()( ,    (14) 

where Kp is the proportional gain, and A is a constant to 
assure that the output link is fully utilized.  Hence, we have 

pP KzHzH == )()( .    (15) 

The frequency response of the open-loop gain of the 
system with this proportional compensator is given by 
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where  P=KpMT. 
It is clear from examining the close-loop transfer 

function that P should be between 0 and 2 to make the 
entire system stable.  For a given P with 0<P<2, the 
maximum tolerable delay τmax can be calculated from (16) 
as follows: 
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It can be seen from (17) that the maximum tolerable 
delay τmax decreases monotonically as the proportional gain 
Kp increases, if M and T remain the same.  (17) also 
suggests an analytical way to determine Kp for fixed M and 
T to satisfy the robustness requirement with respect to 
delays.  However, the steady-state error of a proportional 
controller is not zero, and is inversely proportional to the 
controller gain.  Therefore, a lag compensator HL(z) should 
be included in H(z) to force the steady state error toward 
zero. 

B. Lag Compensator 

In this section, the use of a lag compensator in H(z) is 
examined.  The complete controller to be considered then 
has the form 
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Note that H(z) can be thought of as a proportional 
compensator HP(z) in series with a lag compensator HL(z) 

which, due to the normalizing factor 2/(1+β), has a high 
frequency gain of one.  The frequency response of the open 
loop gain of the system with both proportional and lag 
compensators is now given by 
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A standard design procedure for H(z) is to first design 
the proportional compensator, HP(z), to achieve a basic 
level of robustness with respect to delays as characterized 
in (17).  Second, if β, the zero of the lag compensator, is 
properly chosen such that the corner frequency of HL(e

jω) is 
sufficiently far below the crossover frequency of G0

(P)(ejω), 
then little phase lag will be added at the crossover.  This 
will result in a system with the additional lag compensator, 
G0(e

jω), having approximately the same robustness with 
respect to delays as the system with just the proportional 
compensator, G0

(P)(ejω), but having the added effect of 
pressuring the steady-state queue size towards the control 
target B0.  Choosing the zero that is one decade below the 
crossover results in the following value for β: 

)10/( ce ωβ −= , 
2

arcsin2
P

c =ω .   (21) 

In comparison with the general form of (4), the ACK 
pacer with a proportional and a lag compensator as in (19) 
is a special case of (4) with 

βγ=xK , γβ )1( −=yK ,   (22) 

where γ=2Kp /(1+β).  Thus, the robustness analysis of the 
system stability with respect to the uncertainty of M still 
applies. 

Therefore, to design an ACK pacer of the form (18), 
which guarantees the maximum tolerable delay requirement 
for given M and T, (17) should be used to select Kp first.  
Then β is calculated from (21), and Kx and Ky are derived 
from (22) to complete the time domain representation of the 
ACK pacer.  Finally, the precise value of the maximum 
tolerable delay τmax should be verified by checking the 
actual phase margin and the crossover frequency using 
values of Kx and Ky obtained. 

VI. NUMERICAL RESULTS 

In this section, we present some numerical results for the 
system in Figure 1.  In the following, L, the ratio of the data 
segment size and the ACK segment size, is set to be 
22.8125, reflecting a typical TCP data segment length of 
1460 bytes and a typical ACK segment length of 64 bytes.  
In the following figures, the x-axis is for the time index n, 
which corresponds to the time instant nT, and the y-axis is 
for the normalized buffer occupancy B/B0. 

First we consider the delay robustness of the ACK pacer 
in (4) with X=0.2378 and Y=0.0701.  Three buffer 
occupancy traces are shown in Figure 4.  Trace 1 is for the 
system in which the additional delay is exactly T seconds.  
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Trace 2 is for the system in which delay is T seconds before 
n=20, and increases to 2T seconds after that.  Trace 3 is for 
the system in which delay is T seconds before n<20, 
increases to 3T seconds for 20≤ n≤ 60, and returns to T 
seconds for n>60.  Following the analysis in Section IV.E 
we learn that τmax = 2.2234T seconds for X=0.2378 and 
Y=0.0701.  Therefore, the network is still stable for delays 
of T or 2T seconds, as indicated by trace 1 and 2.  However, 
the stability cannot be achieved for the delay larger than 
2.2234T seconds.  The instability can be observed in trace 3 
for 20≤ n≤ 60.  The system is stabilized again after the 
delay returns back to T seconds for n > 60. 

0 5 0 1 00 1 5 0 2 00
0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

1 . 1

1 . 2

1 . 3

1 . 4

n

B
 / 

B
0

t r ac e  1
trac e  2
trac e  3

 
Figure 4  System Response with Additional Delay (X=0.2378, Y=0.0701) 

 
 
 
 
 
 
 
 
 
 
 

Figure 5  System Response with Additional Delay (X=0.4192, Y=0.0045) 

Figure 5 is an example of the proportional and lag 
compensator in Section V.  We consider the design of an 
ACK pacer that can tolerate delays up to 3T seconds.  
Assume τmax=3.2T to provide the adequate robustness to 
delays, then design procedures in Section V yield that 
X=0.4192 and Y=0.0045.  These values result in a system 
with an actual delay tolerance of τmax=3.1396T.  The buffer 
occupancy trace 1 is for the system in which the additional 
delay is 3T seconds.  Trace 2 is for the system in which 
delay is 3T seconds before n<20, increases to 4T seconds 
for 20≤ n≤ 100, and returns to 2T seconds for n>100. 

VII. SUMMARY  

A control-theoretic TCP ACK pacing technique is 
presented to regulate the downstream TCP traffic and to 
avoid the QoS-damaging congestion.  A sampled data 
feedback control system representation is used to govern 
the design and analysis of a PI controller for the ACK 
pacer.  The selection of controller parameters was 
investigated with a main focus on the system stability.  In 
addition, the robustness of the system with respect to 
variations in the aggregate traffic and round trip delays is 
studied.  Numerical results that verify functions and 
properties of the ACK pacer are also provided. 
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Figure 3    Generalization of ACK Pacer Control Objective 

H(z) G1(s) 
{B0

*} +

B*(z) 

a(z) a(s) 

{C} 

B*(s) 

+
G2(s) ZOH 

e(z) r(s) 
G3(s) 

F(z) 

B(s) 

T 

0 1 0 0 2 00 3 00 40 0 5 00 600
0.5

0 .55

0.6

0 .65

0.7

0 .75

0.8

0 .85

0.9

0 .95

1

n

B
 / 

B
0

tra c e  1
tra c e  2


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThA11.3
	Page0: 2316
	Page1: 2317
	Page2: 2318
	Page3: 2319
	Page4: 2320
	Page5: 2321


