
Queuing Theory Based Open Loop Control of Web Server

K.Hareesh Kumar and Somanath Majhi

Abstract— All the webservers today consider incoming con-
nections on equal ground. As long as the server is lightly loaded
there is not much a large difference in the response time but
as the server becomes heavily loaded the response times may
increase dramatically. Some E-commerce sites would like to
give preferential treatment to their regular customers who
are generating revenues and provide faster response time to
them over other users who are merely browsing through their
website. In this work the requests are prioritized on the basis
of their URL in middleware layer. To select the requests in
middleware layer queues, queuing theory is used.

I. INTRODUCTION

The traditional approach to achieving performance guar-
antees in computing systems has been to quantify hardware
speed and software execution requirements, then apply an
appropriate combination of pre-run-time analysis, admission
control, and resource allocating algorithms to ensure that
the system is not overloaded and the desired performance
is achieved [1]. Support for different classes of QoS on
web has been investigated recently. An important measure
of quality is the responsiveness of the server. In the simplest
case it is desired to differentiate between two classes of
clients; premium and basic, such that premium clients
receive better service at overload. In the literature a server
architecture is proposed that maintains separate service
queues for premium and basic clients allowing them to be
handled separately in an appropriate order [2]. Maintaining
QoS and overload protection using classical feedback con-
trol techniques are also investigated in literature [1]. But
the problem with this method is selection of the requests
must be based on the error value. This technique may
not be suitable for dynamic environments. The utilization
bound for periodic requests is given in [3] and for aperiodic
requests was given in [4].

II. PROBLEM DEFINITION

The problems in loaded servers which lead to lower
response times are: a) The TCP listen queue does not
distinguish between preferred requests and ordinary request
to be serviced. b) Mostly used webservers do not distinguish
the preferred requests over non-preferred ones for allocation
of CPU time as well. c) Present, operating systems such as
Linux, have only a single outgoing queue without priority.
In this work, the above 2nd point has been taken up.

This work was not supported by any organization
K.Hareesh Kumar was a post-graduate student in the Department of

Electronics and Communication Engineering, Indian Institute of Technol-
ogy Guwahati

Somanath Majhi is with the Department of Electronics and Communi-
cation Engineering, Indian Institute of Technology Guwahati, Guwahati -
781039, India smajhi@iitg.ernet.in

III. SERVER UTILIZATION

If a Uniform Resource Locator (URL) of size x is
requested, the request service time can be approximated by

T (x) = a + bx (1)

where a and b are platform constants. Summing the service
times of all requests in a particular observation period and
dividing by the length of the period we can obtain server
utilization ρ.

ρ = aR + bW (2)

where R is the observed request rate, and W is the
aggregate delivered bandwidth [5]. The values of platform
constants a and b can be found using online estimators
described in [6].

IV. BOUND FOR APERIODIC REQUESTS

Theorem:A set of aperiodic tasks is schedulable us-
ing an optimal fixed-priority scheduling if ∀t : ρ(t) ≤
5
8 + 1

8(M−1) , where M is the maximum number of current
tasks in the system, and ρ(t) is the current utilization at
time t.
From the above theorem, the least upperbound to the
processor utilization for the aperiodic requests is nearly 5

8
[4]. For better service of requests at overload, server must
operate at server utilization nearly around 5

8 . This theorem
is valid only for single processor and not applicable for
multiprocessor environment.

V. ARCHITECTURE OF THE SERVER

Figure 1 depicts the architecture of a server that uses
middleware approach described in [7], [8]. This server
architecture comprises of an unmodified web server that is
augmented with a QoS-aware middleware layer. The mid-
dleware layer enables the server to offer differential qualities
of service to users, without requiring any changes to the
web server code. In order to do so, the middleware layer
intercepts a web server’s TCP socket calls [9], interfaces
directly with the server’s TCP/IP stack, receives and process
requests, and forwards them to the web server for service.

 New Requests

TCP Listen

Queue

 Queue

 Queue 1

Server

 Web

TCP/IP Stack

 Middleware

Acceptor

 M

Fig. 1. Architecture of a Server

A. Acceptor

The acceptor is the component of the middleware layer
that interfaces with the server’s TCP/IP stack. The acceptor
listens on the server’s TCP port (usually 80) and is respon-
sible for receiving new connections. For each request that it
receives on an incoming connection, the acceptor performs
classification of requests based on the URL. If the URL is
important for transactions, the request will be placed in high
priority queue (Queue1). These priority’s are not related
to operating system. These are only for user importance
classification. The priority of queues decreases from Queue
1 to Queue M.

B. Selection Procedure

The queues will be processed for every T seconds. First
we will see how many requests are there in each individual
queue. Let λ1, λ2,, λM are arrival rates in corresponding
queues. The server utilization corresponding to each queue
is given by

ρi =
λi

µ
(i = 1, ..., M) (3)

where µ is departure rate of the server (this departure
rate mainly depends on system resources) and ρi and λi

are server utilization and arrival rate, respectively for the
corresponding queues. The total server utilization is given
by the following relation

ρtotal =

M∑

i=1

ρi (4)

From the equation 3, the estimation equation is

ρnew(i) =
λnew(i) · ρprevious(i)

λprevious(i)
(i = 1,, M) (5)

The least upper bound for aperiodic requests from Theorem
1 is 5

8 . So server needs to be maintained at server utilization
below this bound always. At overload, server is maintained
at server utilization around 0.6. The algorithm for selection
of requests is given below. In this algorithm rejection of re-
quests are indicated by sending a short message “SERVER
IS BUSY, TRY AFTER SOME TIME” to the client.
Step 1: Initialize server utilization ρ = 0.
Step 2: Estimate the server utilization of each queue based
on previous period data. If the sum of server utilization of
processing queue and previous processed queues is less than
0.60, process all requests in that queue otherwise calculate
how many requests to be served to achieve server utilization
to be nearer to 0.60 and reject all the remaining requests
in that queue and the requests in remaining unprocessed
queues. This process is repeated for all queues.
Step 3:Calculate server utilization serviced requests using
ρ = aR + bW .
Step 4:Go to step 1 after T seconds.

VI. SIMULATION RESULTS

The multithreaded client, server programs are done in
Java [10]. For implementation purposes jdk1.3.1 version
was used. For simulation purposes some pages have been
put in server. The clients are run from the other systems. In
Fig 2 the solid line represents expected load at those time
instants due to clients and the discrete line represents actual
server utilization at those instants. The dotted line is 60%
server utilization line.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

Se
rv

er
 U

tili
za

tio
n

in
%

Sample points

Actual Server Utilization
Expected Server Utilization

Set point

Fig. 2. Simulation result

VII. CONCLUSIONS AND FUTURE WORKS

In this work the requests are prioritized on the basis of
their URL in middleware layer. To select the requests in
middleware layer queues, queuing theory is used. All the
measurements in this work were done in Java, by writing
client and server programs in Java. Our proposed algorithm
works for both static and dynamic content cases. In this
work the assumption is that the dynamic content (like
CGI scripts) execution periods are same over a period of
time. Until now all QoS enabled servers are open loop in
nature. For designing the server in closed loop system we
need adaptive controllers, which shall change its parameters
based on data of previous periods. In future intelligent
controller like fuzzy logic controllers shall play a major
role in QoS enabled server architectures.

REFERENCES

[1] T.F.Abdelzaher and C.Lu, Modeling and performance control in
Internet servers. IEEE CDC, Sydney, 2000.

[2] N.Bhatti and R.Friedrich, Web server support for tiered services.
IEEE Network, 13(5), 1999.

[3] C.L.Liu and J.W.Layland, Scheduling algorithms for multiprogram-
ming in a hard real-time environment. J.of ACM, 20(1), pp. 46-61,
1973.

[4] T.F.Abdelzaher, A schedulable utilization bound for aperiodic tasks.
University of Virginia, CS-2000-21, August, 2000.

[5] T.F.Abdelzaher and N.Bhatti, Web server QoS management by adap-
tive content delivery. Int. Workshop on Quality of Service, London,
UK, 1999.

[6] T.F.Abdelzaher, An automated profiling subsystem for QoS-aware
services. Real-Time Technology and Applications Symposium, Wash-
ington, D.C, June, 2000.

[7] T.Jin and J.D.Salehi, Capacity guarantees for web servers. Hewlett-
Packard Laboratories, HPL-98-155, June, 1998.

[8] P.Bhoj, S.Ramanathan and S.Singhal, Web2K: Bringing QoS to Web
Servers. ISAL,HP Laboratories, Palo AltoHPL-2000-61, May, 2000.

[9] W.R. Stevens, UNIX Network Programming. Prentice Hall of India
Private Limited, 2000.

[10] D.Flanagam, Java in nutshell. O’Reilly & Asoociates, 1996.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThA11.2
	Page0: 2314
	Page1: 2315

