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Abstract— Dynamical models are fundamental for the study
of human gait. This paper presents a complete and systematic
approach to deriving control system models for both the single
support phase and the double support phase of a gait cycle. We
consider a nine segment model in the sagittal plane. Emphasis
is placed on two important aspects of the modeling process:
dealing with the holonomic constraints and dealing with the
ground reaction forces. We start with a raw model which
is a direct result of Newton’s law and which is subject to
holonomic constraints. By characterizing the ground reaction
forces, these constraints are eliminated to generate standard
control system models for every possible situation in a gait
cycle. These models are verified via both inverse dynamics
and forward simulations on experimental data.
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I. I NTRODUCTION

Walking appears to be a simple task for normal people.
Yet it takes tremendous effort to build a machine that can
barely make one full step, not to mention a robot that can
walk as efficiently and gracefully as a human being. We
also realize that walking is much more complicated than
it appears to be when we make every effort to correct the
walking strategies of disabled bodies so that they can walk
like a normal person or with more efficiency. The apparent
simplicity of walking disappears when one attempts to
describe it as a scientific process: a dynamical control
system.

Bipedal walking is a multidisciplinary subject that has
been studied by a diverse group of clinicians and engi-
neers including orthopedic surgeons, physical therapists,
exercise physiologists, bioengineers, mechanical engineers
and electrical engineers. Basically, two types of subjects are
involved in the study of bipedal walking: the humans and
the bipedal robots. As a matter of fact, human walking and
bipedal robot walking involve similar dynamical systems
which can be studied in the same framework in control
theory. Although the human body is much more complicated
than a bipedal robot, the locomotion of a bipedal robot
captures the fundamental properties of human walking,
such as stability. The stability of bipedal walkers has been
extensively studied in the robotics and control community
[5], [8], [12].

It is now well accepted that the best way to understand
walking is to model it as a dynamical system and to
study its stability and performance in terms of input-output
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characteristics. There is a long history of modeling the
bipedal walking and a wide range of models have been
developed over the years with different levels of complexity.
One end of the spectrum involves simple models with a
minimal degree of freedom, such as ballistic and passive
walking models (see, e.g., [1], [8], [14]). The other end of
the spectrum consists of complex models which are actuated
by muscle excitations (see, e.g., [2], [15], [18]). Models
with different levels of complexity capture different aspects
of walking characteristics [19] and attention has been paid
to both the study with simple models and the development
of complex models.

Models with medium level of complexity usually involve
the feet, the lower legs (shanks), the upper legs (thighs) and
the HAT (head-arm-trunk). These models are actuated by
net joint moments and have been widely studied (see, e.g.,
[6], [7], [10], [16]). The more complicated models involving
muscle excitations are actually built upon these models by
attaching individual subsystems of muscle actuation at the
original input points of joint moments or muscle forces.
Therefore, it is important to study these models in depth
and to have full understanding of the skeletal dynamics.
Besides, these models have also been recognized to be
useful in understanding the development of pathological gait
(see, e.g., [7] and [19] and the references therein). For these
reasons, our modeling effort in this paper will be focused
on a nine segment bipedal walking system which is driven
by the joint moments.

In the study of human walking, the gait cycle is divided
into double support phases and single support (swing)
phases. It is well known that the dynamics of the double
support phase is much more difficult to describe than that
of the single support phase. As a result, the majority of
research results have been reported on the single support
phase (see, e.g., [4], [7], [9], [11], [13]). However, since
the double support phase generates most of the energy
for forward progression and prepares the single support
phase with initial position and velocity, simply explaining
pathological gait from the swing phase may lead to incorrect
conclusions and we may have to locate the origin of
abnormality in the double support phase [4].

The difficulty in modeling the double support phase arises
from the holonomic constraints imposed by the contact
of both feet with the ground. Although this problem has
been attempted by different researchers, the approaches are
quite different and have not been unified yet. For example,
in [6], the foot is modeled as a curved plantar surface
which rolls on the ground but not slide, and in [2], the
interaction is modeled with a series of springs and dampers
on the soles of the feet. A more complicated ground contact



model was used in [9]. In other literature, both feet are
assumed fixed on the ground for simplicity (see, e.g., [3],
[10]). In our preliminary study, we observed that neither of
the feet is fixed on the ground during the double support
phase. Although the relative motion between the feet and
the ground is very small, the acceleration is considerable.
Simply ignoring the acceleration would result in large errors
in evaluating the kinetics and power transfer among the
body segments. It would be significant and challenging to
develop a relatively simple model that is able to account
for the relative motion between the feet and the ground.

In this paper, we will develop a systematic approach to
modeling a bipedal walker driven by the joint moments. We
will start with a raw model which is directly obtained from
Newton’s law. This raw model has redundant variables in
both the inputs and the states, and it is subject to holonomic
constraint. The main effort of modeling will be devoted to
the elimination of the redundant variables and to dealing
with the holonomic constraint through characterizing the
ground reaction forces. We will finally arrive at a set
of models which are free of holonomic constraint for all
possible situations in a gait cycle. These models have clean
dynamical relationships between the inputs and the states,
and will be validated with experimental data via both inverse
dynamics and forward simulation.

II. A WALKING SYSTEM, OBSERVATIONS AND

ASSUMPTIONS

A. A nine segment bipedal walker

We use a 9 segment linked body to study the motion in
the sagittal plane (see Fig. 1). Each leg of the body has a
thigh, a shank and a foot which consists of two segments:
the toe and the hindfoot. The upper body is represented with
a single segment. A full gait cycle has two single support
phases and two double support phases. A single support
phase starts when the toe of one foot leaves the ground
(toe-off) and ends when the heel of the same foot touches
the ground (heel-strike). A double support phase starts when
the heel of one foot touches the ground and ends when the
toe of the other foot leaves the ground. Since a normal
walking is symmetric on both the left side and the right
side, it suffices to study half of a gait cycle which starts
with the toe-off of one foot and ends with the toe-off of
another foot. During this half gait cycle, we call the leg
that is not in touch with the ground in the single support
phase the swing leg and the other leg the stance leg. The
segments are numbered 1,2,· · ·, starting from the toe of the
stance leg. During the swing phase, the toe of the swing
leg does not affect other segments much. During the double
support phase, the foot in the front (or, of the swing leg) is
almost straight. Because of these and for simplicity, we use
a single segment to denote the foot of the swing leg, which
should be the 8th segment according to our numbering.
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Fig. 1. A nine segment walker

B. Observations and basic assumptions

Traditionally, it is assumed that the foot of the stance leg
is fixed on the ground during the single support phase and
both feet are fixed during the double support phase. We also
made such an assumption at the earlier stage of our research
but later found out that this assumption would result in large
discrepancy in forces and moments between the forward
dynamics and the inverse dynamics. Careful examination
of experimental data reveals that there are small relative
motions between the feet and the ground.

An observation: the relative motion
From the experimental data that we collected on a group

of tests on normal barefoot walking, we observed that there
were relative motions between both feet and the ground dur-
ing the double support phase. In the experiment, we placed
a regular set of markers on the subject. The movement of the
foot was usually measured with a marker at the heel (heel
marker) and a marker at the joint between the toe segment
and the hindfoot (toe marker). For better observation of the
motion of the feet, we placed an additional marker on the
tip of each big toe. The displacements of these markers are
very small (within five centimeters) but the accelerations are
considerable. If we ignore these accelerations, there would
be significant differences between the real interaction forces
and the interaction forces projected by the dynamics of the
model. In other words, if we ignore these relative motions
in the process of modeling, the resulting model would fail
to describe the true dynamics of the walking system.

Assumptions on the relative motion
We usext to denote the horizontal displacement of the

tip of the toe of the stance leg and usexh to denote the
horizontal displacement of the heel of the swing leg. We
assume that, during the double support phase, the tip of
the toe of the hind leg slides backward with a velocityẋt

(ẋt ≤ 0) and the heel of the front leg slides forward with
a velocity of ẋh (ẋh ≥ 0). These velocities might be zero
for slow walking. We also assume that during the single
support phase, there might be a backward velocity of the
tip of the toe of the stance leg (ẋt ≤ 0). We observed such



a possibility in some of the experiment on normal walking.
It is likely that when the walking speed increases, the
backward motion would increase and at the extreme case of
running, this motion would be significant. This assumption
has a potential to explain how fast walking transitions into
running.

When there is a relative horizontal motion between the
contacting surfaces, the horizontal interaction force can be
categorized as the dynamic friction force. Let the horizontal
ground reaction forces at the first segment and the 8th
segment beFg1x andFg8x, respectively, and let the vertical
ground reaction forces at the first segment and the 8th
segment beFg1y and Fg8y, respectively. When the foot
slides on the ground, the horizontal forceFg1x (or Fg8x) is
a dynamic friction force. Its relation with the vertical force
Fg1y (or Fg8y) depends on the material of the ground and
the footwear, and possibly, the sliding velocity. In general,
the dynamic friction force is proportional to the vertical
force. If the contacting surfaces are both rigid, then

Fg1x = ktFg1y, Fg8x = khFg8y, (1)

wherekt and kh are constants. If the contacting surfaces
are deformable, the friction force may also depend on the
sliding velocity ẋt and ẋh, i.e.,

Fg1x = kt(ẋt)Fg1y, Fg8x = kh(ẋh)Fg8y. (2)

It turns out that the relations(Fg1x, Fg1y) and(Fg8x, Fg8y)
can be used to simplify the model. Our preliminary study
indicates that these relations can be determined from exper-
imental data.

III. A RAW MODEL WITH HOLONOMIC CONSTRAINTS

Here we use the following notation to describe the
kinematics and kinetics of the body segments:

- (xi, yi): the position of the center of mass of theith
segment.

- θi: the angle between theith segment and the forward
horizontal direction.

- Fjix, Fjiy: the total forces acted on theith segment
from the jth segment.

- τij : the net moment at the joint between theith and
the jth segments.

The parameters of the body segments are listed as fol-
lows:

- mi: the mass of theith segment.
- Ii: the moment of inertia of theith segment with

respect to its center of mass.
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Assume for simplicity that the ground reaction forces on
the stance foot act at the tip of the toe. This is not the case
when the entire toe part or the entire foot is in contact with
the ground. When the whole segment of the toe is on the
ground, the ground reaction force is distributed. To simplify
the situation, we introduce a fictitious momentτ0 on the toe
segment so that it produces an equivalent motion dynamics.
This fictitious moment is manipulated by the muscles under
the foot and hence can be considered as an input.

The dynamical equations
Denote

F = [Fg1x Fg1y · · · F87x F87y Fg8x Fg8y]T ∈ R18,

τ = [τ0 τ21 · · · τ87]T ∈ R8,

M = diag{m1, m1, m2, m2, · · · ,m8,m8} ∈ R16×16,

G = [0 m1g 0 m2g · · · 0 m8g]T ∈ R16,

I = diag{I1, I2, · · · , I8} ∈ R8×8.

The equations of motion are directly derived from Newton’s
law. We have

Mẍ = RF −G, (3)

Iθ̈ = W (θ)F + Bτ, (4)

whereR ∈ R16×18, B ∈ R8×8 are constant matrices and
W (θ) ∈ R8×18 is the moment arm matrix that depends on
θ. For simplicity, we omit the dependence ofW (θ) on θ
and simply write it asW , as will also be done with other
θ-dependent matrices.

The constraints
The centers of mass of the body segments are determined

by the segment angles (θ) and the position of the distal end
of the first segment (xt), i.e.,

x = J1s + J2c + Ext,

where J1, J2 ∈ R16×8 and E ∈ R16×1 are constant
matrices. We further have

ẍ = X1θ̇
2 + X2θ̈ + Eẍt, (5)

whereX1, X2 ∈ R16×8 depend onθ,

X1 =−J1diag(s)−J2diag(c), X2 =J1diag(c)−J2diag(s).

For the double support phase, we need to deal with the
constraint imposed by the contact of the feet of the ground.
The position of the heel is determined as

[
xh

yh

]
= J3s + J4c +

[
xt

0

]
,

whereJ3, J4 ∈ R2×8 are constant matrices. If the heel is
fixed on the ground, then̈yh ≡ 0, ẍh ≡ 0. This constraint
can be written as

X3θ̇
2 + X4θ̈ +

[
ẍt

0

]
= 0, (6)



whereX3, X4 ∈ R2×8 depend onθ. If the heel slides on
the ground, then̈yh ≡ 0. This constraint can be written as

X5θ̇
2 + X6θ̈ = 0, (7)

whereX5, X6 ∈ R1×8 depend onθ.

The raw model

Putting together the equations of motion, the constraints
and the relation between the ground reaction forces, we
have the raw model as

Mẍ = RF −G, (8)

Iθ̈ = WF + Bτ, (9)

ẍ = |!X1θ̇
2 + X2θ̈ + Eẍt, (10)

(6),(7), or neither for single support, (11)

Fg1x = kt(ẋt)Fg1y if ẋt 6= 0, (12)

Fg8x = kh(ẋh)Fg8y for double support, ifẋh 6= 0.(13)

We call equations (8) - (13) the raw model because it is not
clear which is the control input and which is the state, and
the dynamical relationship between the input and the state
is not explicit. In a standard control system

v̈ = f(v, v̇, u), (14)

where u is the control input and(v, v̇) is the state, the
trajectory ofv is completely determined by the inputu and
the initial value of(v, v̇).

The main objective of this paper is to obtain a control
system model in the general form of (14) for the walking
system. The first step is to choose the appropriate input
and state. Traditionally,τ is chosen as the control input. It
turns out that all the joint interaction forces and the ground
reaction forces contained in the vectorF are determined
by the moment vectorτ . On the other hand, the state
variables seem to includex, ẋ, θ, θ̇, xt and ẋt but there is
also redundancy among them, sincex depends onθ andxt.
The possible state variables should be chosen amongθ, θ̇, xt

and ẋt. Because of the holonomic constraints (6) and (7),
there may still exist redundant states amongθ, θ̇, xt and
ẋt. As we will see later, the choice of the state variables
depends on different situations of the gait cycle.

The next section is devoted to deriving a clean dynamical
relationship betweenθ, xt andτ .

IV. T HE CONTROL SYSTEM MODELS

There are five possible cases during a gait cycle: two for
the single support phase and three for the double support
phase. These cases are classified in terms of the relative
motion between the feet and the ground.

A. The single support phase

For the single support phase, the raw model is

Mẍ = RF −G, (15)

Iθ̈ = WF + Bτ, (16)

ẍ = X1θ̇
2 + X2θ̈ + Eẍt, (17)

Fg1x = kt(ẋt)Fg1y if ẋt 6= 0. (18)

Recall that M ∈ R16×16, R ∈ R16×18, B ∈ R8×8,
I ∈ R8×8, E ∈ R16×1 and G ∈ R16×1 are constant
matrices/vectors. The matricesW ∈ R8×18, X1, X2 ∈
R16×8 depend on the angle vectorθ.

During the single support phase, the last two elements
of F are zero, i.e.,Fg8x = Fg8y = 0. Let F1 ∈ R16 be
formed by droppingFg8x and Fg8y from F and letR1 ∈
R16×16 and W1 ∈ R8×16 be formed by dropping the last
two columns fromR andW , respectively, then we have

Mẍ = R1F1 −G, (19)

Iθ̈ = W1F1 + Bτ. (20)

There are two possible cases during the single support
phase. In the first part of the phase, the tip of the toe is fixed
on the ground, i.e.,̇xt ≡ ẍt ≡ 0. In the second part of the
phase, the tip of the toe slides backward, i.e.,ẋt < 0. This
second part might be absent for slow or normal walking.
As the walking speed increases, the second part becomes
more significant.

1) Case 1.ẋt ≡ ẍt ≡ 0: This is the simplest case in the
whole gait cycle. The relation betweenx andθ is

ẍ = X1θ̇
2 + X2θ̈. (21)

From (19), we have

F1 = R−1
1 (MX1θ̇

2 + MX2θ̈ + G). (22)

It should be noted here thatR1 is invertible. Substituting
(22) into (20), we have

Iθ̈ = W1R
−1
1 (MX1θ̇

2 + MX2θ̈ + G) + Bτ. (23)

By reorganizing the above equation, we obtain

θ̈ = (I −W1R
−1
1 MX2)−1(W1R

−1
1 (MX1θ̇

2 + G) + Bτ).
(24)

This is a clean dynamical relationship between the angle
vectorθ and the inputτ , which confirms that the trajectory
of motion is driven by the joint moments. Moreover, all the
joint reaction forces, including the ground reaction forces,
are determined indirectly by the moments through (22) and
(24). We can also use the above equations to perform inverse
dynamics, i.e., to determine the forces and moments from
the experimental kinematic data.

2) Case 2.ẋt < 0: In this case, we have an extra
condition (18) in addition to (15)-(17). Also,xt is an extra
degree of freedom besides all the segment angles. Hence

the state vector should be

[
xt

θ

]
. The input vector is still

τ . In the sequel, we use0m×n to denote anm× n matrix
with all zero elements and useIn×n to denote then × n
identity matrix.

Let R1 be partitioned asR1 = [R11 R12] with R11 ∈
R16×1. Let W1 be partitioned asW1 = [W11 W12] with



W11 ∈ R8×1. Let T = [1 01×14]. Denote

S1 = [I15×15 015×1][R11(k(ẋt)T + R12) −ME]−1,

S2 = [01×15 1][R11(k(ẋt)T + R12) −ME]−1,

Q =
[

1 −S2MX2

0 I − (W11kt(ẋt)T + W12)S1MX2

]
.

Then
[

ẍt

θ̈

]
= Q−1

[
S2(MX1θ̇

2 + G)
(W11kt(ẋt)T + W12)S1(MX1θ̇

2 + G)

]

+Q−1

[
0
B

]
τ.

B. The double support phase

1) Case 1.ẋt ≡ ẋh ≡ 0: The raw model for this case is

Mẍ = RF −G, (25)

Iθ̈ = WF + Bτ, (26)

ẍ = X1θ̇
2 + X2θ̈, (27)

0 = X3θ̇
2 + X4θ̈. (28)

Because of the constraint (28), the degree of freedom of
the system is two less than the number of segments. Recall
that X3, X4 ∈ R2×8. In other words, two of the angles are
determined by the remaining 6 angles.

PartitionR =
[

R1 R2

]
with R1 ∈ R16×16 andR2 ∈

R16×2. Partition W =
[

W1 W2

]
with W1 ∈ R8×16

andW2 ∈ R8×2. Let S = (I −W1R
−1
1 MX2)−1 and

P = X4S(−W1R
−1
1 R2 + W2),

P1 = SW1R
−1
1 MX1 + S(−W1R

−1
1 R2 + W2)P−1

×(−X3 −X4SW1R
−1
1 MX1),

P2 = SW1R
−1
1 − S(−W1R

−1
1 R2 + W2)P−1X4SW1R

−1
1 ,

P3 = SB + S(−W1R
−1
1 R2 + W2)P−1X4SB.

Then
θ̈ = P1θ̇

2 + P2G + P3τ. (29)

For the system (29), the degree of freedom appears to be
8. But the special structure ofP1, P2 and P3 ensures that
the holonomic constraint is automatically satisfied. Hence
the actual degree of freedom is 6.

2) Case 2.ẋt < 0, ẋh > 0: The raw model for this case
is

Mẍ = RF −G, (30)

Iθ̈ = WF + Bτ, (31)

ẍ = X1θ̇
2 + X2θ̈ + Eẍt, (32)

0 = X5θ̇
2 + X6θ̈, (33)

Fg1x = kt(ẋt)Fg1y, (34)

Fg8x = kh(ẋh)Fg8y. (35)

Here we have assumed different friction functions at the
toe and the heel. The constraint (33) reduces the degree of
freedom in the segment angles from 8 to 7. In addition to

the one degree of freedom at the toe of the hind leg (xt),
the total degree of freedom is 8.

Let R1 ∈ R16×2 be formed by the first and the 17th
columns of R and R2 ∈ R16×16 be formed by the
remaining columns ofR. Let W1 be formed by the first
and the 17th columns ofW and letW2 be formed by the
remaining columns ofW . Denote

T =
[ [

kt(ẋt) 01×15

]
[

01×15 kh(ẋh)
]

]
,

S = (W1T + W2)(R1T + R2)−1,

P = X6(I − SMX2)−1SME,

∆ = (I − SMX2)−1,

P1 = ∆(SMX1 − SMEP−1(X5 + X6∆SMX1)),
P2 = ∆(S − SMEP−1X6∆S),
P3 = ∆(B − SMEP−1X6∆B).

Then we have

θ̈ = P1θ̇
2 + P2G + P3τ. (36)

The third case for the double support phase isẋt < 0,
ẋh = 0. The final model can be obtained in a similar way
as in Case 2. It is omitted due to space limitation.

V. EXPERIMENTAL VERIFICATION

To validate our model, we collected kinematic data on
a normal subject through a motion capture system (VI-
CON612). The subject was instructed to walk on bare foot at
a normal speed. All the segment angles and the joint centers
are computed from the trajectories of a set of markers. The
velocities and accelerations are then computed by digital
differentiation. The ground reaction forces on both feet are
also measured for verification. The segment parameters are
estimated from the height and the weight of the subject by
using the formulae in [16].

To validate the forward dynamics of the models, we
feed the models with proper input signals and observe the
resulting trajectories of the angles. As a first step, we feed
the model with the moments directly from the calculation
of the inverse dynamics. Then we alter the moments and
observe how the changes affect the output. However, the
process of forward simulation is much more complicated
than it appears to be. For the single support phase, the
complication results from the instability of the model. For
the double support phase, arbitrarily altering the moments
may produce meaningless outcome, such as unreasonable
joint angles, even if the change is small.

The single support phase
During the single support phase, the body behaves like

an inverted pendulum, which is unstable. The instability is
caused by the gravity and will be weakened if we assume
reduced gravitational acceleration.

To validate the model through simulation, we may as-
sume a reduced gravitational acceleration and keep every-
thing else in the model unchanged. Note that we should use



the same gravitational acceleration for the inverse dynamics
and the forward dynamics. Our simulation was carried
out with Matlab’s Simulink. We first assumed a normal
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Fig. 2. Simulation underg = 2m/s2.

gravitational accelerationg = 9.8m/s2 and computed the
moments by using the inverse dynamics. By feeding the
moments into the Simulink model, we observed that the
trajectory of the simulated angles match the measured
angles for the first 0.1 second but diverge quickly from
them afterwards. We then reduced the gravity to2m/s2

and repeated the procedure. A quite different result was
then observed (see Fig. 2, where the dotted curves in the
lower right plot are the angles (degree) from the experiment
data and the solid curves are the angles from the forward
simulation). If we reduce the gravity to0, then the simulated
trajectory matches the measured trajectory perfectly, which
validates our model.

The double support phase
In the first part of the double support phase, both feet

slide backward or forward. By feeding the model with the
moments calculated from the inverse dynamics, we obtained
a simulated trajectory of the segment angles. They were
exactly the same as the measured angles. This not only
validated our model, but also showed that the double support
model is much more stable than the single support model.
Fig. 3 plots the trajectories of the angles on the right side
and the positions (initial and final) of the linked body
segments on the left side.
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