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Human Gait Modeling: Dealing with Holonomic Constraints

Tingshu HU™  Zongli Lin'f Mark F. AbePf Paul E. Allairé'

Abstract— Dynamical models are fundamental for the study characteristics. There is a long history of modeling the
g y g

of human gait. This paper presents a complete and systematic pipedal walking and a wide range of models have been
approach to deriving control system models for both the single  4eye|0ped over the years with different levels of complexity.
support phase and the double support phase of a gait cycle. We One end of the spectrum involves simple models with a
consider a nine segment model in the sagittal plane. Emphasis ~" "~ p p - .

is placed on two important aspects of the modeling process: Minimal degree of freedom, such as ballistic and passive
dealing with the holonomic constraints and dealing with the walking models (see, e.g., [1], [8], [14]). The other end of
ground reaction forces. We start with a raw model which  the spectrum consists of complex models which are actuated
is a direct result of Newton’s law and which is subject to by muscle excitations (see, e.g., [2], [15], [18]). Models
holonomic constraints. By characterizing the ground reaction with different levels of com iexit ’ca t'ure d’ifferent aspects
forces, these constraints are eliminated to generate standard ] . p y cap ] p X
control system models for every possible situation in a gait Of walking characteristics [19] and attention has been paid

cycle. These models are verified via both inverse dynamics to both the study with simple models and the development

and forward simulations on experimental data. of complex models.
Keywords: gait model, holonomic constraints, ground reaction Models with medium level of complexity usually iUVC"Ve
forces, forward simulation, inverse dynamics the feet, the lower legs (shanks), the upper legs (thighs) and
the HAT (head-arm-trunk). These models are actuated by
|. INTRODUCTION net joint moments and have been widely studied (see, e.g.,

Walking appears to be a simple task for normal peopld6], [7], [10], [16]). The more complicated models involving
Yet it takes tremendous effort to build a machine that cafuscle excitations are actually built upon these models by
barely make one full step, not to mention a robot that cafttaching individual subsystems of muscle actuation at the
walk as efficiently and gracefully as a human being. Weriginal input points of joint moments or muscle forces.
also realize that walking is much more complicated thafherefore, it is important to study these models in depth
it appears to be when we make every effort to correct thend to have full understanding of the skeletal dynamics.
walking strategies of disabled bodies so that they can wafkesides, these models have also been recognized to be
like a normal person or with more efficiency. The appareritseful in understanding the development of pathological gait
simplicity of walking disappears when one attempts tdsee, €.g., [7] and [19] and the references therein). For these
describe it as a scientific process: a dynamical contréeasons, our modeling effort in this paper will be focused
system. on a nine segment bipedal walking system which is driven

Bipedal walking is a multidisciplinary subject that hasby the joint moments.
been studied by a diverse group of clinicians and engi- In the study of human walking, the gait cycle is divided
neers including orthopedic surgeons, physical therapist&to double support phases and single support (swing)
exercise physiologists, bioengineers, mechanical enginedtigases. It is well known that the dynamics of the double
and electrical engineers. Basically, two types of subjects afélpport phase is much more difficult to describe than that
involved in the study of bipedal walking: the humans an@®f the single support phase. As a result, the majority of
the bipedal robots. As a matter of fact, human walking antesearch results have been reported on the single support
bipedal robot walking involve similar dynamical systemsPhase (see, e.g., [4], [7], [9], [11], [13]). However, since
which can be studied in the same framework in contrdhe double support phase generates most of the energy
theory. Although the human body is much more complicatefpr forward progression and prepares the single support
than a bipedal robot, the locomotion of a bipedal roboPhase with initial position and velocity, simply explaining
captures the fundamental properties of human walkingathological gait from the swing phase may lead to incorrect
such as stability. The stability of bipedal walkers has beegonclusions and we may have to locate the origin of
extensively studied in the robotics and control communitgbnormality in the double support phase [4].

(5], [8], [12]. The difficulty in modeling the double support phase arises

It is now well accepted that the best way to understantiom the holonomic constraints imposed by the contact
Wa|k|ng is to model it as a dynamica] System and t(pf both feet with the ground. Although this prObIem has

study its stability and performance in terms of input-outpubeen attempted by different researchers, the approaches are
quite different and have not been unified yet. For example,

1 Department of Electrical and Computer Engineering in [6], the foot is modeled as a curved plantar surface

2 i . . .

, Department of Orthopaedic Surgery which rolls on the ground but not slide, and in [2], the
Department of Mechanical Engineering . . . . . .

+ University of Virginia, Charlottesville, VA 22904 interaction is modeled with a series of springs and dampers

0-78EBHS3IBI/ QUG 1T Q0 QRPN €du on the soles of the feet. A more complicated ground zpogact



model was used in [9]. In other literature, both feet are
assumed fixed on the ground for simplicity (see, e.g., [3],
[10]). In our preliminary study, we observed that neither of
the feet is fixed on the ground during the double support
phase. Although the relative motion between the feet and
the ground is very small, the acceleration is considerable.
Simply ignoring the acceleration would result in large errors
in evaluating the kinetics and power transfer among the
body segments. It would be significant and challenging to
develop a relatively simple model that is able to account
for the relative motion between the feet and the ground.

In this paper, we will develop a systematic approach to
modeling a bipedal walker driven by the joint moments. We
will start with a raw model which is directly obtained from
Newton’s law. This raw model has redundant variables in
both the inputs and the states, and it is subject to holonomig opservations and basic assumptions
constraint. The main effort of modeling will be devoted to

the elimination of the redundant variables and to dealing . ) )
with the holonomic constraint through characterizing th fixed on the ground during the single support phase and

ground reaction forces. We will finally arrive at a set oth feet are fixed durin'g the double §upport phase. We also
of models which are free of holonomic constraint for a”made such an assumption at the earlier stage of our research

possible situations in a gait cycle. These models have cle Ht later founq out that this assumption would result in large
dynamical relationships between the inputs and the stat&iScrepancy in forces and moments between the forward

and will be validated with experimental data via both inversgYnamics and the inverse dynamics. Careful examination
dynamics and forward simulation. of experimental data reveals that there are small relative

motions between the feet and the ground.

Fig. 1. A nine segment walker

Traditionally, it is assumed that the foot of the stance leg

An observation: the relative motion

From the experimental data that we collected on a group
of tests on normal barefoot walking, we observed that there
were relative motions between both feet and the ground dur-
A. A nine segment bipedal walker ing the double support phase. In the experiment, we placed

linked bod dv th . .aregular set of markers on the subject. The movement of the
We use a 9 segment linked body to study the mOtion Iy 5 usually measured with a marker at the heel (heel

thg sagittal plane (see Fig. 1_)' Each I_eg of the body hasrﬁ‘arker) and a marker at the joint between the toe segment
thigh, a shank and a foot which consists of two segment%

nd the hindfoot (toe marker). For better observation of the
the toe and the hindfoot. The upper body is represented wi ( )

inal full qai le h inal otion of the feet, we placed an additional marker on the
a single segment. A full gait cycle has wo single supportl'ig of each big toe. The displacements of these markers are

1. A WALKING SYSTEM, OBSERVATIONS AND
ASSUMPTIONS

phases and two double support phases. A single suppg ry small (within five centimeters) but the accelerations are
phase starts when the toe of one foot leaves the grounflsigeraple. If we ignore these accelerations, there would
(toe-off) and ends when the heel of the same foot toucheg, qjanificant differences between the real interaction forces
the ground (heel-strike). A double support phase starts WheRl  the interaction forces projected by the dynamics of the
the heel of one foot touches the ground and ends when tPrﬂaodel. In other words, if we ignore these relative motions

toe of the other foot leaves the ground. Since a normgl 4o process of modeling, the resulting model would fail

walking is symmetric on both the left side and the righliO describe the true dynamics of the walking system.
side, it suffices to study half of a gait cycle which starts

with the toe-off of one foot and ends with the toe-off ofAssumptions on the relative motion

another foot. During this half gait cycle, we call the leg We usex; to denote the horizontal displacement of the
that is not in touch with the ground in the single supportip of the toe of the stance leg and usg to denote the
phase the swing leg and the other leg the stance leg. Therizontal displacement of the heel of the swing leg. We
segments are numbered 1,2, starting from the toe of the assume that, during the double support phase, the tip of
stance leg. During the swing phase, the toe of the swinthe toe of the hind leg slides backward with a velocity

leg does not affect other segments much. During the doub(¢; < 0) and the heel of the front leg slides forward with
support phase, the foot in the front (or, of the swing leg) is velocity of z;, (£, > 0). These velocities might be zero

almost straight. Because of these and for simplicity, we uder slow walking. We also assume that during the single
a single segment to denote the foot of the swing leg, whickupport phase, there might be a backward velocity of the
should be the 8th segment according to our numbering. tip of the toe of the stance leg:{ < 0). We observed sggly



a possibility in some of the experiment on normal walking. Assume for simplicity that the ground reaction forces on
It is likely that when the walking speed increases, thé¢he stance foot act at the tip of the toe. This is not the case
backward motion would increase and at the extreme casewhen the entire toe part or the entire foot is in contact with
running, this motion would be significant. This assumptiorthe ground. When the whole segment of the toe is on the
has a potential to explain how fast walking transitions int@round, the ground reaction force is distributed. To simplify
running. the situation, we introduce a fictitious momegton the toe
When there is a relative horizontal motion between theegment so that it produces an equivalent motion dynamics.
contacting surfaces, the horizontal interaction force can bEhis fictitious moment is manipulated by the muscles under
categorized as the dynamic friction force. Let the horizontdhe foot and hence can be considered as an input.
ground reaction forces at the first segment and the 8
segment be’,;, and F g, respectively, and let the vertical
ground reaction forces at the first segment and the 8t
segment beF,, and Fyg,, respectively. When the foot p _ [Fpz Fpy - Fste Firy Fyse Fysyl € R,
slides on the ground, the horizontal forgg,, (or F,s;) is

che dynamical equations
p, Denote

a dynamic friction force. Its relation with the vertical force ~ — 70 721 - Tr] € RS,

F,1, (or F,s,) depends on the material of the ground and¥ = diag{mi,mi,ma,ma,---,ms,ms} € R,
the footwear, and possibly, the sliding velocity. In general,G = [0 myg 0 mag --- 0 mgg]” € R,

the dynamic friction force is proportional to the vertical ; _ diag{I, I», -, Is} € R®*S.

force. If the contacting surfaces are both rigid, then
The equations of motion are directly derived from Newton'’s

Foiz = kiFgry,  Fose = knFgsy, (1) law. We have
wherek, and k;, are constants. If the contacting surfaces Mi = RF-G, (3)
are deformable, the friction force may also depend on the i - W(0)F + Br )

sliding velocity &, and iy, i.e.,

. . where R € R!*® B ¢ R®*® are constant matrices and
Fore = k(@) Fory, - Fosw = En(n) Fosy- - (2) W(0) € R¥**!'® is the moment arm matrix that depends on
It turns out that the relation&F, ., Fy1,) and (Fyss, Fysy) 6. For- S|mpI|C|_ty, we omit the-dependence W(@) on 6
can be used to simplify the model. Our preliminary studynd simply write it asiV’, as will also be done with other
indicates that these relations can be determined from expérdependent matrices.

imental data. The constraints
The centers of mass of the body segments are determined
by the segment angle8)(and the position of the distal end
Here we use the following notation to describe theof the first segmentaf), i.e.,
kinematics and kinetics of the body segments:

- (z4,y;): the position of the center of mass of tlih
segment. where J;,J, € R'*® and E ¢ R'S*! are constant
- 0;: the angle between thgh segment and the forward matrices. We further have
horizontal direction. ] i
- Fjiz, Fji,: the total forces acted on thigh segment = X10% + X260 + Eiy, )

from the jth segment. 16x8
- 7;;- the net moment at the joint between tite and where.X;, X, € R depend ord,

the jth segments. X, =—Jidiag(s)—Jodiag(c), Xo=Jidiag(c)—Jodiag(s).
The parameters of the body segments are listed as fol-
lows:

- m;: the mass of théth segment.
- I;; the moment of inertia of theéth segment with

I1l. A RAW MODEL WITH HOLONOMIC CONSTRAINTS

= Jis+ Joc+ Exy,

For the double support phase, we need to deal with the
constraint imposed by the contact of the feet of the ground.
The position of the heel is determined as

respect to its center of mass.

p BE

Denote Yn 0
Ty . where Js, J; € R**® are constant matrices. If the heel is
Y1 61 03 cos 0 sinfi|  fixed on the ground, thegj, = 0, i, = 0. This constraint
z=|:|,0=|:|,0?=| : |,e=| : cs=| . can be written as
Ty Os 62 cos O sin fg . . iy
X360 X460 =0 6

Ys A A ’ Oos



where X3, X, € R**® depend ory. If the heel slides on Recall that M/ e R'9*6 R ¢ R!*18 B ¢ R®*3,
the ground, therj, = 0. This constraint can be written as I € R®*%, E ¢ R!'%*! and G € R'°*! are constant

] j trices/vectors. The matricd¥ ¢ R®'® X, X, ¢
X:0%+ X6 =0 7 ma y X1, X2
1 85 T 7 " R'9*® depend on the angle vectér
where X5, Xg € R depend orf. During the single support phase, the last two elements
The raw model of F are zero, i.e.Fys, = Fys, = 0. Let F; € R'® be

. . . ._formed by droppingFys, and Fyg, from F and letR; €
Putting together the equations of motion, the constram{imm and W, € R®1 be formed by dropping the last

and the relation between the ground reaction forces, WE o columns fromR and W', respectively, then we have
have the raw model as

Mi = RF — G, 8) Mi = RiFy -G, (19)
16 = WF + Br, (9) 10 = WiF + Br. (20)
ST N2 N .
= [1Xa0 .+ X260+ Ext’ (10) There are two possible cases during the single support
(6),(7), or neither for single support, (11) phase. In the first part of the phase, the tip of the toe is fixed
Foiz = ki(24)Fg1y if @4 #0, (12) on the ground, i.e.i; = #; = 0. In the second part of the

Fyse = kn(in)F,s, for double support, ifi, # 0.(13) phase, the tip of the toe slides backward, iig.< 0. This.
second part might be absent for slow or normal walking.

We call equations (8) - (13) the raw model because it is Nq{s the walking speed increases, the second part becomes
clear which is the control input and which is the state, angqre significant.

the dynamical relationship between the input and the state
is not explicit. In a standard control system 1) Case 14, = i, = 0: This is the simplest case in the

b= f(v,0,u), (14) whole gait cycle. The relation betweanand g is
where v is the control input andv,) is the state, the i = X107 + X,0. (21)
trajectory ofv is completely determined by the inputand
the initial value of(v, ). From (19), we have

The main objective of this paper is to obtain a control
system model in the general form of (14) for the walking
system. The first step is to choose the appropriate iant
and state. Traditionally; is chosen as the control input. It
turns out that all the joint interaction forces and the groun
reaction forces contained in the vectdr are determined 10 = WiR;{(MX,60> + MX,0 + G) + Br.  (23)
by the moment vectorr. On the other hand, the state
variables seem to include, i, 0,0, z, and i, but there is By reorganizing the above equation, we obtain
also redundancy among them, sincdepends o andz;. ]

The possible state variables should be chosen aighg; 0 = (I — WiR; "M X,) ' (W1 Ry ' (M X160 + G) + Br).

and ;. Because of the holonomic constraints (6) and (7), (24)
there may still exist redundant states amahg,z; and This is a clean dynamical relationship between the angle
i,. As we will see later, the choice of the state variableyectord and the inputr, which confirms that the trajectory

Fy = RTYMX,16% + MX,0 + G). (22)

should be noted here thdt; is invertible. Substituting
822) into (20), we have

depends on different situations of the gait cycle. of motion is driven by the joint moments. Moreover, all the
The next section is devoted to deriving a clean dynamicgdint reaction forces, including the ground reaction forces,
relationship between, x, and . are determined indirectly by the moments through (22) and

(24). We can also use the above equations to perform inverse

IV. THE CONTROL SYSTEM MODELS o ;
] ) ] ) dynamics, i.e., to determine the forces and moments from
There are five possible cases during a gait cycle: two fqfq experimental kinematic data.

the single support phase and three for the double support
phase. These cases are classified in terms of the relative?) Case 2.4; < 0: In this case, we have an extra
motion between the feet and the ground. condition (18) in addition to (15)-(17). Alsa;; is an extra

A. The single support phase degree of freedom besides all the segment angles. Hence

M# — RF_Q (15) T In the sequel, we use,, ., to denote amm x n matrix
.. ’ with all zero elements and u » 1o denote then
1§ = WF+Br, (16) i x X

. - . 3 identity matrix.
o= X074+ Xob + By, (17) Let R, be partitioned asR; = [R11 Ri2] with Ry €
Foio = ki(&1)Fgy if & #0. (18) R'®*!. Let W, be partitioned agV; = [Wy; Wiz withgo



Wi € R¥! Let T = [1 0y414]. Denote

S1 = [Iisxis Oisx1][Ri1(k(#)T + Ria) — ME]™,
Sy = [01x15 U[Ru1(k(&4)T + Ri2) — ME]™,
o 1 —S,MX,
0 I— (Wike(de)T + Wia)SiMXs |°
Then
{ Ty ] — Q! { Sy (M X,0% 4+ G) ) }
6 (Whike (i) T + W) S1 (M X160% + G)

B. The double support phase

1) Case 1i; = ¢, = 0: The raw model for this case is

Mi = RF -G, (25)
I6 = WF + Br, (26)
P o= X16% 4 X,0, (27)
0 = X30%+ X,40. (28)

Because of the constraint (28), the degree of freedom %f
the system is two less than the number of segments. Rec
that X5, X, € R**®. In other words, two of the angles are

determined by the remaining 6 angles.

Partiton? = [ R1 R. | with Ry € R andR, €
R'?. PartiionW = [ Wi W, | with W; € R¥*'C
andW, € R¥Z. LetS = (I — W R;'MX,)~! and
P = X,S(~WiR{ 'Ry + W5),

Py = SWiR{'MX, + S(-W1R; 'Ry + Wy) P!

X (—=X3 — X4 SWiRTIMX,),
Py = SWiR[ ' — S(-W R 'Ry + Wo) P~ X4 SW Ry,
Py =SB+ S(—W1R; 'Ry + Wy) P~ X,SB.

Then

ézpléz—FPQG—l-PgT. (29)

the one degree of freedom at the toe of the hind leg, (
the total degree of freedom is 8.

Let Ry € R'%*? pe formed by the first and the 17th
columns of R and R, € R!*1® be formed by the
remaining columns ofR. Let W; be formed by the first
and the 17th columns df and letW, be formed by the
remaining columns of¥/. Denote

T — { [[kt(i”t) O1x15 ]] }
O1x15 kn(@n) ’
S = (WAT+Wy)(RiT + Ry)~ ",
P = X¢(I—-SMX,) 'SME,
A = (I-SMXy)™
P, = A(SMX, - SMEP (X5 + XsASM X)),
P, = A(S—-SMEP'XsAS),
Ps = A(B-SMEP 'X¢AB).

Then we have

0 = P16? + P,G + Psr. (36)

The third case for the double support phase:jis< 0,
= 0. The final model can be obtained in a similar way
in Case 2. It is omitted due to space limitation.

V. EXPERIMENTAL VERIFICATION

To validate our model, we collected kinematic data on
a normal subject through a motion capture system (VI-
CONG612). The subject was instructed to walk on bare foot at
a normal speed. All the segment angles and the joint centers
are computed from the trajectories of a set of markers. The
velocities and accelerations are then computed by digital
differentiation. The ground reaction forces on both feet are
also measured for verification. The segment parameters are
estimated from the height and the weight of the subject by
using the formulae in [16].

To validate the forward dynamics of the models, we
feed the models with proper input signals and observe the
resulting trajectories of the angles. As a first step, we feed

For the system (29), the degree of freedom appears to /& model with the moments directly from the calculation
8. But the special structure aP;, P, and P3 ensures that of the inverse dynamics. Then we alter the moments and
the holonomic constraint is automatically satisfied. Hencebserve how the changes affect the output. However, the

the actual degree of freedom is 6.

process of forward simulation is much more complicated

2) Case 21 < 0,45, > 0: The raw model for this case than it appears to be. For the single support phase, the

is
Mi = RF -G, (30)
I6 = WF + Br, (31)
i = X10*4 X,0 + Eiy, (32)
0 = X562+ X0, (33)
Foio = Fke(@e)Fqy, (34)
Fuso = kn(in)Fysy. (35)

complication results from the instability of the model. For
the double support phase, arbitrarily altering the moments
may produce meaningless outcome, such as unreasonable
joint angles, even if the change is small.

The single support phase

During the single support phase, the body behaves like
an inverted pendulum, which is unstable. The instability is
caused by the gravity and will be weakened if we assume
reduced gravitational acceleration.

Here we have assumed different friction functions at the To validate the model through simulation, we may as-
toe and the heel. The constraint (33) reduces the degreesofme a reduced gravitational acceleration and keep every-
freedom in the segment angles from 8 to 7. In addition tthing else in the model unchanged. Note that we shagdouse



the same gravitational acceleration for the inverse dynamics
and the forward dynamics. Our simulation was carried
out with Matlab’s Simulink. We first assumed a normal

The measured swing The measured segment angles
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0
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-05 0 0.2 0.3

The simulated swing: g=2

1 [ ——

—
b

0.5 0

The simulated segment angles: g=2

0.1 0.2

time (sec)

' [3]

Fig. 2. Simulation undegy = 2m/s?.

gravitational acceleratiop = 9.8m/s* and computed the [41
moments by using the inverse dynamics. By feeding the
moments into the Simulink model, we observed that the [5]
trajectory of the simulated angles match the measured
angles for the first 0.1 second but diverge quickly from [g
them afterwards. We then reduced the gravity2te/s?

and repeated the procedure. A quite different result was [7]
then observed (see Fig. 2, where the dotted curves in the
lower right plot are the angles (degree) from the experiment [8]
data and the solid curves are the angles from the forward
simulation). If we reduce the gravity t then the simulated
trajectory matches the measured trajectory perfectly, which
validates our model.

E]

The double support phase [10]

In the first part of the double support phase, both feet
slide backward or forward. By feeding the model with the [11]
moments calculated from the inverse dynamics, we obtained
a simulated trajectory of the segment angles. They werg;y
exactly the same as the measured angles. This not only
validated our model, but also showed that the double suppor[ ]
model is much more stable than the single support model.
Fig. 3 plots the trajectories of the angles on the right side
and the positions (initial and final) of the linked body [14]
segments on the left side.
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