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Abstract— In this paper we use Kirchhoff’s laws and pipe
flow dynamics equations to describe a fluid flow network in
the form of a nonlinear differential equation with a periodic
right hand side. We apply the averaging method to find an
approximate solution of this equation and analyze its stability
properties. The approximate solution consists of three parts:
a mean flow part due to the resistive effects of branches, a
time-periodic part due to ”inductive” effects, and a mean
flow average correction due to the interaction of nonlinear
and time varying effects. We present an example that may
help explain the processes participating in the development of
venous diseases. In particular, it is shown that the widening
of a branch in a venous network leads to an increase in the
AC flow and decrease in the DC flow through that branch,
thus increasing the stress on venous valves, and consequently
leading to further increase in the effective width of the vein.

I. INTRODUCTION

We consider a fluid flow network driven by an ideal
current (flow) source (generator). Combining Kirchhoff’s
laws for flows and pressure laws with the equations for pipe
flow dynamics, we get a fluid flow network model in the
form of a nonlinear differential equation with a periodic
right hand side Q̇ = εf(t,Q, ε), where Q is the flow
rate. The exact closed-form solution of this equation can
not be found. Applying the averaging method, we find an
approximate solution which is in closed form and can be
found using algebraic calculations.

Each network can be divided into a set of tree branches,
which connect all the nodes without creating loops, and the
complement of the tree, called co-tree, whose branches are
called links. From the conservation of mass in the nodes it
follows that flow rates in the branches are not independent,
so we choose the flows in the links as independent variables,
and the flows in the tree branches are a function of those
in the links.

The paper is organized as follows: in Section II we
consider a simple introductory example, in Section III we
derive a minimal model of the fluid flow network, using pipe
flow dynamics equations and Kirchhoff’s laws, in Section
IV we do averaging analysis of the network. In Section
V we consider three examples. First, a network with two
branches and a generator branch, for which we can find
closed-form solution; second, a network with four branches
and a generator branch, for which we can find closed-form
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Fig. 1. Fluid flow network with a generator and two
branches.

solution for a constant input and then apply the main result
for a periodic input; third, a network with five branches and
a generator branch, for which we calculate the approximate
solution numerically.

II. INTRODUCTORY EXAMPLE

Consider a network consisting of two parallel branches,
as shown in Fig.1, with

Qin = Q1 + Q2, (1)

H1 = H2. (2)

As will be explained later, the dynamic equations of the
branches are

T1Q̇1 + R1Q
2
1 = H1 (3)

T2Q̇2 + R2Q
2
2 = H2. (4)

With (1) and (2) we obtain

T1Q̇1 + R1Q
2
1 = T2Q̇in − T2Q̇1 + R2(Qin − Q1)

2. (5)

In the case when there are no resistances, R1 = R2 = 0
we get a linear differential equation

(T1 + T2)Q̇1 = T2aω cos (ωt), (6)

whose solution (for a zero initial condition) is

Q1(t) =
T2

T1 + T2
a sin (ωt). (7)

In the static case, i.e., when a = T1 = T2 = 0, (5) becomes
a quadratic equation

(R1 − R2)Q
2
1 + 2R2Q0Q1 − R2Q

2
0 = 0. (8)

The solution of this equation is

Q1 =

√
R2√

R1 +
√

R2

Q0. (9)



Adding (7) and (9) we get an O(a) approximation of the
solution

Q̂1(t) =

√
R2√

R1 +
√

R2

Q0 +
T2

T1 + T2
a sin (ωt). (10)

As we shall show in Section V-B, the O(a2) approximation
is

Q1(t) =

√
R2√

R1 +
√

R2

Q0 +
T2

T1 + T2
a sin (ωt)

+
a2

4Q0

√
R1R2

R2T
2
1 − R1T

2
2

(T1 + T2)2
. (11)

The third term is the result of combined nonlinear and
time varying effects. It is obtained by the method of
averaging. The rest of this paper develops this idea for
general networks and discusses a possible application.

III. PIPE FLOW DYNAMICS AND KIRCHHOFF’S
LAWS FOR FLUID FLOW NETWORKS

In this section we present the basic components of a
model of a fluid flow network. We consider a network driven
by a single ideal current source with flow Qin(t).

We first introduce the dynamical equation of one branch.
For simplicity, we make the following assumptions: A1. the
fluid is incompressible; A2. the temperatures in all branches
are identical. Under assumptions A1 and A2, one branch
of the fluid flow network is described with the following
equations [4], [5], [6], [7]

Tj
dQj

dt
+ Rj |Qj |Qj = Hj , (12)

where Qj is flow through a branch j, Rj are aero/hydro
dynamic resistances, Hj are pressure drops of the branches,
Tj are inertia coefficients, j = 1, · · · , n and n is the number
of network branches (excluding the generator branch).

We write this in vector form as

TQ̇ = −Q2
DR + H, (13)

where T = diag{Tj}, R = col{Rj} and

Q2
D = diag{Qj |Qj |}. (14)

Let nc denote the number of nodes. Then l = n−nc +1
is the number of links (excluding the generator branch) and
n − l is the number of tree branches.

Like an electrical network, a fluid flow network must
satisfy Kirchhoff’s current law, i.e., the flow out of any
node is equal to the flow into that node. Mathematically,
Kirchhoff’s current law for fluid flow networks can be
expressed as:

EQin

[
Qin

Q

]
= 0, (15)

or
n∑

j=1

EQijQj + eQini
Qin = 0, i = 1, · · · , n − l, (16)

where n − l + 1 is the number of nodes (of which one is
a ”reference” node and is not represented in (16)), Q is a
vector of flow quantities, EQin

= [eQin
EQ], and EQ =

[EQij ] is a full rank matrix of order (n− l)× n where the
values of EQij are defined as follows: EQij = 1 if branch
j is connected to node i and the flow goes away from node
i, EQij = −1 if it goes into node i, EQij = 0 if branch
j is not connected to node i, and eQin is an (n − l) × 1
vector where the values eQini

are defined as follows: if
generator branch is connected to node i and the flow goes
away from node i then eQini

= 1, if the flow goes into
node i then eQini

= −1, and eQini
= 0 if generator branch

is not connected to node i.
Similarly, the fluid flow network also satisfies Kirchhoff’s

voltage law, i.e., the sum of the pressure drops around any
loop in the network must be equal to zero, or mathemati-
cally,

EHH = 0, (17)

or
n∑

j=1

EHijHj = 0, i = 1, · · · , l, (18)

where Hj is the pressure drop of the branch j, H is a
vector of pressure drops, EH = [EHij ] is an l × n mesh
matrix, in which each mesh (loop) is formed by a link and
a unique chain in the tree connecting the two nodes of the
link. The elements of EHij are defined as follows: EHij =
1 if branch j is contained in mesh i and has the same
direction, EHij = −1 if branch j is contained in mesh i
and has the opposite direction, EHij = 0 if branch j is not
contained in mesh i.

IV. MAIN RESULT

In order to establish a dynamic model of minimal order,
one has to find independent variables as states of the
system. We take the flows of link (co-tree) branches as state
variables. We also include the generator branch into the set
of links since its flow is given:

Qin(t) = Q0 + a sin ωt, (19)

For convenience of analysis, we label the link branches
(except the generator branch) from 1 to l. Define

Q =

[
Qc

Qa

]
, H =

[
Hc

Ha

]
, (20)

so that Qc and Hc vectors describe flow and pressure drop,
respectively, in the links, excluding the generator branch,
and Qa and Ha vectors describe them in the tree branches.

The matrices EH and EQin
can be split into blocks,

EH = [EHc EHa], (21)

EQin
= [eQin

EQc EQa], (22)

where [2], [5], [6]

EQa = I(n−l)×(n−l), EHc = Il×l, EHa = −ET
Qc. (23)



Hence, the structure of the network can be expressed in the
matrix form as

E =

[
0 I −ET

Qc

eQin
EQc I

]
. (24)

Furthermore,

T =

[
Tc 0
0 Ta

]
, R =

[
RT

c RT
a

]T
. (25)

We are ready now to state the main result.
Theorem 4.1: Let

T0(T ) = Tc + ET
QcTaEQc, (26)

Bc(T,E) = −T−1
0 ET

QcTaeQin, (27)

Ba(T,E) = −(I − EQcT
−1
0 ET

QcTa)eQin, (28)

U(R, T,E) = col
{
B2

ci
Rci

}
− ET

Qccol
{
B2

ai
Rai

}
, (29)

V (R,E,Q0) = diag {Qc0i
Rci

} + ET
QcW, (30)

where

W =
{
EQcij

(−EQci
Qc0 − eQini

Q0)Rai

}
(n−l)×l

, (31)

and Qc0(R,E,Q0) denotes a solution to the l-dimensional
quadratic equation

Q2
c0DRc−ET

Qcdiag{(EQci
Qc0+eQini

Q0)
2}Ra = 0 (32)

such that V is nonsingular and −T−1
0 V is Hurwitz. Then

for a given Q0 > 0, for sufficiently small a and sufficiently
large ω the solutions of the system (12)-(19) locally expo-
nentially converge to an O

(
1
ω + a4

)
neighborhood of

Qc(t) = Qc0 −
a2

4
V −1U + Bca sin ωt, (33)

Qa(t) = (−EQcQc0 − eQinQ0) +
a2

4
EQcV

−1U

+Baa sin ωt. (34)
Proof: With (20), (22) the flow rates through tree

branches can be expressed by flows through links:

Qa = −eQinQin − EQcQc, (35)

Q̇a = −eQinQ̇in − EQcQ̇c. (36)

From branch dynamics equation (13), with (20) and (36)
we get

[
Hc

Ha

]
=

[
TcQ̇c

−TaeQin
Q̇in − TaEQcQ̇c

]

+

[
Q2

cDRc

Q2
aD(Qc, Qin)Ra

]
. (37)

Rewrite (18) as

0 = EHcHc + EHaHa = Hc − ET
QcHa

= TcQ̇c + Q2
cDRc + ET

QcTaEQcQ̇c

−ET
QcQ

2
aDRa + ET

QcTaeQin
Q̇in, (38)

or, rearranging this

−T0Q̇c − ET
QcTaeQin

Q̇in = Q2
cDRc − ET

QcQ
2
aDRa. (39)

where T0 is invertible [5]. Denote

Q̃c = Qc + T−1
0 ET

QcTaeQin
a sin (ωt) − Qc0

= Qc − Qc0 − Bca sin (ωt). (40)

Then (39) can be rewritten as

−T0
˙̃

Qc = Q2
cDRc − ET

QcQ
2
aDRa. (41)

Denote the RHS of (41) by

f

(
ωt, Q̃c, a

2,
1

ω

)
= Q2

cDRc − ET
QcQ

2
aDRa

= diag{2Qc0i
(Q̃ci

+ Bci
a sin (ωt))

+(Q̃ci
+ Bci

a sin (ωt))2}Rc

−ET
Qcdiag{2(eQini

Q0

+EQci
(Q̃c + Qc0))

×(eQini
+ EQci

Bc)a sin ωt}Ra

−ET
Qcdiag{(eQini

+ EQci
Bc)

2

×a2 sin2 ωt}Ra

−ET
Qcdiag{(EQci

Q̃c)
2

+2EQci
Q̃c(eQini

Q0

+EQci
Qc0)}Ra

+f1(Qc0), (42)

where

f1(Qc0) = Q2
c0DRc − ET

Qcdiag{(EQci
Qc0

+eQini
Q0)

2}Ra = 0 (43)

according to (32). Equation (41) becomes

˙̃
Qc = −T−1

0 f

(
ωt, Q̃c, a

2,
1

ω

)
, (44)

which rewrite (44) as

dQ̃c

d(ωt)
= − 1

ω
T−1

0 f

(
ωt, Q̃c, a

2,
1

ω

)
. (45)

Next we calculate

fav(Q̃c, a
2) =

1

2π

∫ 2π

0

f(ωt, Q̃c, a
2, 0)d(ωt)

= −ET
Qcdiag{(EQci

Q̃c)
2

+2EQci
Q̃c(eQini

Q0 + EQci
Qc0)}Ra

+diag{2Qcoi
Q̃ci

+ Q̃2
ci
}Rc

+
a2

2
diag{B2

ci
}Rc

−a2

2
ET

Qcdiag
{
B2

ai

}
Ra. (46)

With the definitions of U and V given by (29), (30) we can
rewrite (46) as

fav(Q̃c, a
2) = 2V Q̃c +

a2

2
U − ET

Qcdiag{(EQci
Q̃c)

2}Ra

+diag{Q̃2
ci
}Rc

= 2V Q̃c +
a2

2
U + col{Q̃T

c ZiQ̃c}, (47)



where

Zi = −
n−l∑

j=1

EQcji
ET

Qcj
EQcj

Raj

+diag{0, . . . , 0, Rci
, 0, . . . , 0}. (48)

So, the average system is

dQ̃c

d(ωt)
= − 1

ω
T−1

0 fav(Q̃c, a
2). (49)

To find the equilibrium points of (49) one needs to find
the solution Q̃c(a

2) of fav(Q̃c, a
2) = 0. By the implicit

function theorem, since V is assumed to be invertible, there
exists such a solution. It can be written as

Q̃av
c = −a2

4
V −1U + O(a4). (50)

The Jacobian of the average system (49) at Q̃av
c is

J = − 2

ω
T−1

0


V +




Z1Q̃
av
c

...
ZlQ̃

av
c







= − 2

ω
T−1

0


V − a2

4




(V −1U + O(a2))T Z1

...
(V −1U + O(a2))T Zl







= − 2

ω
T−1

0 V + O(a2). (51)

Since −T−1
0 V is Hurwitz, for sufficiently small a the

Jacobian J will also be Hurwitz. By the averaging theorem
[3] there exists an exponentially stable periodic solution
Q̃

2π/ω
c (t) of period 2π/ω in the 1/ω-neighborhood of the

average equilibrium Q̃av
c , that is,

Q̃c(t) = Q̃2π/ω
c (t) + ε−t

= Q̃av
c + O

(
1

ω

)
+ ε−t

= −a2

4
V −1U + O

(
1

ω
+ a4

)
+ ε−t, (52)

where ε−t denotes exponentially decaying terms. Rewrite
(40) as

Qc(t) = Q̃c(t) + Qc0 + Bca sin (ωt). (53)

With (50) this becomes

Qc(t) = Qc0 −
a2

4
V −1U + Bca sin (ωt)

+O

(
1

ω
+ a4

)
+ ε−t. (54)

Substitution of (54) into (35) gives

Qa(t) = −eQinQ0 − EQcQc0 +
a2

4
EQcV

−1U

+Baa sin ωt + O

(
1

ω
+ a4

)
+ ε−t. (55)

Fig. 2. Electrical circuit with two branches and current generator.

Remark 4.1: The vector field

fav(Q̃c, a
2) = col{Q̃T

c ZiQ̃c} + 2V Q̃c +
a2

2
U, (56)

is a vector-valued quadratic form in Q̃c. In the scalar case
the solution to the quadratic equation fav(Q̃c, a

2) = 0
would be explicit. While in some special multivariable
cases an explicit solution might be possible, providing an
exact average equilibrium, in general only an approximate
solution (for small a) can be obtained. �

Remark 4.2: It is worth noting that in (54), (55) the first
(respective) terms are due to the resistive part of the network
(R), the third (sinusoidal) terms are due to the ”inductive”
part of the network (T ), and the second terms are due to
both resistance and inductivity. �

V. EXAMPLES

A. Two Branch Electric Circuit

Consider the circuit in Figure 2, which is driven by

Iin(t) = I0 + a sin (ωt). (57)

The Laplace transform of the current in the first branch is

I1(s) =
R2 + L2s

R1 + R2 + (L1 + L2)s
Iin(s), (58)

The time response of the current in the first branch can be
calculated as

I1(t) =
R2

R1 + R2
I0

+
L2R1 − L1R2

(R1 + R2)(L1 + L2)
I0e

−
R1+R2
L1+L2

t

− L2R1 − L1R2

(R1 + R2)2 + ω2(L1 + L2)2
aωe−

R1+R2
L1+L2

t

+
(R1 + R2)R2 + ω2(L1 + L2)L2

(R1 + R2)2 + ω2(L1 + L2)2
a sin (ωt)

+
L2R1 − L1R2

(R1 + R2)2 + ω2(L1 + L2)2
aω cos (ωt). (59)



For large ω and t (and for any a), (59) becomes

I1(t) ≈ R2

R1 + R2
I0 +

L2

L1 + L2
a sin (ωt). (60)

Thus, the DC response depends only on the resistive effects,
and, for fast forcing, the AC response depends only on the
inductive effects. As we shall see in the next section, the
former is not the case for the fluid networks, where the
resistive effect is nonlinear.

B. Two Branch Fluid Network

Let us now consider a fluid network example where we
can calculate the flows in closed form. The network consists
of two parallel branches, as shown on Fig.1. Branch 1 is
the link and branch 2 is the tree of the network. Thus

Tc = T1, Ta = T2, (61)

Rc = R1, Ra = R2, (62)

and, from (1), (2) we get

EHc = 1, EHa = −1,
EQc = 1, EQa = 1,
eQin = −1.

(63)

Following the procedure given in the statement of Theorem
4.1, we get

T0 = T1 + T2, (64)

Bc =
T2

T1 + T2
, (65)

Ba =
T1

T1 + T2
, (66)

U =
T 2

2 R1 − T 2
1 R2

T1 + T2
, (67)

W = (Qc0 − Q0)R2, (68)

V = Qc0R1 − W = Qc0(R1 − R2) − Q0R2, (69)

where Qc0 is the solution of quadratic equation

Q2
1R1 − (Q1 − Q0)

2R2 = 0, (70)

such that V 6= 0 and −T−1
0 V < 0. We obtain

Qc0 =

√
R2√

R1 +
√

R2

Q0, (71)

with
V =

√
R1R2Q0 6= 0, (72)

and

−T−1
0 V = −

√
R1R2

T1 + T2
Q0 < 0. (73)

With (64)–(67) and (72) we get

Q1(t) =

√
R2√

R1 +
√

R2

Q0

+
a2

4Q0

√
R1R2

R2T
2
1 − R1T

2
2

(T1 + T2)2

+
T2

T1 + T2
a sin (ωt). (74)

Let us now write the average system of (5)

(T1 + T2)
˙̃

Q1 = fav(Q̃1, a
2)

= (R2 − R1)Q̃
2
1 − 2

√
R1R2Q0Q̃1

−a2

2

R1T
2
2 − R2T

2
1

(T1 + T2)2
, (75)

where

Q̃1 = Q1 −
√

R2√
R1 +

√
R2

Q0

− T2

T1 + T2
a sin (ωt), (76)

While the second term in (75) represents an approximate
average equilibrium, the average equilibrium in this scalar
situation can be found exactly, providing a more accurate,
O(1/ω)–approximation

Q̆1(t) =

√
R2√

R1 +
√

R2

Q0

+
a2

2Q0

√
R1R2

R2T
2
1 − R1T

2
2

(T1 + T2)2

× 1(
1 +

√
1 + a2

2Q2
0

R1−R2

R1R2

R2T 2
1
−R1T 2

2

(T1+T2)2

)

+
T2

T1 + T2
a sin (ωt), (77)

whereas (75) is an O(1/ω + a4) approximation.
The expression (74) is very similar to (60) for Li = Ti

and I0 = Q0. One minor difference is between Ri and√
Ri, where the latter appears due to the quadratic nature

of resistive losses in the fluid network. The other difference
is the absence of the a2-order DC term in (60). This term
appears in (74) due to the nonlinearities in the fluid network.
We note that this term depends on Ri, Ti, a, Q0—i.e., all the
problem data except the frequency ω. This term becomes
significant when Q0 becomes relatively small in comparison
to a. It should be also noted that this term has no effect
when R2T

2
1 ≈ R1T

2
2 . Physically, this is the case where two

branches are of equal length (for example) and one is wider
and smoother, while the other is narrower and rougher. To
see this we recall that

Ti =
ρli
Si

, Ri = rili, (78)

where Si is the cross-section of the branch i, li is the length,
ρ is the fluid density and ri is the specific resistance of the
branch i.

To examine (75) further and analyze its meaning for
blood flow networks, let us introduce a quantity we call
peakiness

P =

T2

T1 + T2
a

√
R2√

R1 +
√

R2

Q0 +
a2

4Q0

√
R1R2

R2T
2
1 − R1T

2
2

(T1 + T2)2
(79)
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Fig. 3. Flow in the first branch with R1 = R2 = 2, T1 = T2/µ, T2 = 1

and µ = 0.2 and µ = 0.265.

as the ratio of AC and DC components of the flow.
Clearly, the peakiness of the input Qin(t) is P0 = a/Q0.
Normalized peakiness is defined as the ratio between P and
P0:

P

P0
=

T2

T1 + T2√
R2√

R1 +
√

R2

+
P 2

0

4
√

R1R2

R2T
2
1 − R1T

2
2

(T1 + T2)2

. (80)

Let the first branch be σ2 times longer and µ times wider
than second branch, i.e.,

R1 = rlσ2, R2 = rl, (81)

T1 = ρ
σ2l

µS
, T2 = ρ

l

S
. (82)

(Taking σ < 1 or µ < 1 means that the first branch
is shorter, or, respectively, narrower.) Then (80) can be
rewritten as

P

P0
= µ

(σ + 1)(σ2 + µ)

(σ2 + µ)2 +
P 2

0

4 σ(σ + 1)(σ2 − µ2)
. (83)

The partial derivative of (83) with respect to µ is

∂(P/P0)

∂µ
=

1

[(σ2 + µ)2 +
P 2

0

4 σ(σ + 1)(σ2 − µ2)]2

×σ2(σ + 1)[(σ2 + µ)2

+
P 2

0

4
σ(σ + 1)(σ2 + 2µ + µ2)]. (84)

One can see that expression (84) is always positive. This
shows that when a vein gets wider, the flow through it
gets more ”peaky”. The extra stress promotes valve failure,
which further increases the effective width of the vein.
This ”positive feedback” scenario may explain the processes
participating in the development of venous diseases.

Since our Q1(t) is only an estimate, we present next
an exact numerical simulation illustrating the above phe-
nomenon. Consider the case where the branch lengths are

equal, l1 = l2, and the first branch is narrower than second
one: S1 = µS2, µ < 1. Let the flow in generator branch be
Qin = 3 + 2 sin 5t, which gives P0 = 2/3. Also, consider
two cases: µ = 0.2, and µ = 0.265. This increase in cross-
section corresponds to a 15% increase in diameter. Then
the analytically estimated peakiness will be

P

P0
(µ = 0.2) = 0.2903,

P

P0
(µ = 0.265) = 0.3711. (85)

This is a 27% increase in peakiness due to a 15% increase
in branch diameter. The exact responses of the system are
shown in Fig.3. From it we can find peakiness:

P

P0
(µ = 0.2) =

0.455

1.735
= 0.2622,

P

P0
(µ = 0.265) =

0.56

1.7
= 0.3294. (86)

So, the increase in diameter by 15% results in an increase in
peakiness of 25%. In this example we chose µ small because
venous disease tends to develop in narrower ”superficial”
veins, rather than in wider ”deep” veins [1].

VI. CONCLUSION

In this paper we developed an analytical form of ap-
proximate solutions for a model of fluid flow networks
with periodic forcing. The approximation can be used as
a quantitative predictive tool (when the network parameters
are known, which is unfortunately seldom the case in blood
flow networks) or as a qualitative tool that may assist in
explaining phenomena participating in the progression of
some vascular diseases. The main future challenge would
be in extending these results to more realistic models of
venous flow.
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