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Controlling Drug Infusion Biological Systems FREN with Sliding
Bounds

Chidentree Treesatayapun

Abstract— In this paper, a direct adaptive control for drug  control effort is presented in section Ill. Then, in section
infu?iol? of bi0|0@li<3t’|=}I hSY§temS is pre(;sentt_ed. Tthe ﬁropﬁsgd IV, the structure of FREN is introduced. Its usage as a
controller 1Is accomplisnea using our adaptive network calle: H H H H H
Fuzzy Rules Emulated Network (FREN). The structure of contro!ler is explaln?d in the next subsegtlon. Durlng the
FREN resembles the human knowledge in the form of fuzzy op_e_rat_lon, all FREN's param«_eters are_adJUSteq in order to
IF-THEN rules. After selecting the initial value of network’s Minimize the control error signal. This adaptive method
parameters, an on-line adaptive process based on Lyapunov's based on the steepest descent or gradient search is presente
criteria is performed to improve the controller performance.  in subsection IV-B. The criteria for learning rate selestis
The control signal from FREN is designed to keep in the region - jiscssed next. Then the computer simulation results when

which is calculated by the modified Sliding Mode Control - .
(SMC). The simulation results indicate that the proposed algo- applying FREN to control the change in blood pressure

rithm can satisfy the setting point and the robust performance. 0 the infusion rate of sodium nitroprusside are shown in
section V. In the final section, some conclusions are given.

. INTRODUCTION Il. THE DRUG INFUSION MODEL
The infusion of sodium nitroprusside in order to lower In [2], a model of a patient's response to the infusion

blood pressure in patients after surgery is an example 8f sogium nitroprusside has been perforned. The transfer
the drug infusion problem. There are two general methoqﬁnction is

for administering the drug [1]. The first one is a bolus s T
injection and the second is a continuously controlled ssea APy(s) _ Ke "*(1+ae”"**) 1)
of the drug. The controller must find the correct dose to I(s) Ts+1 7
decrease the blood pressure to the desired level with out tigere A P, () is the change in mean arterial blood pressure
risk of a drug overdose. The model of a patient’s responsg mmHg and I(s) is the drug infusion rate innlh~".
have been represented in [2]. This model has been used Oyher parameters can be defined as follows:
several controller design studies. The model reference-ada - gensitivity of the patient to the drué"”?,ff)
tive controller was introduced in [3]. Many multiple-mode ., Initial transport delay(sec) "
adaptive controllers were presented in [4] and [5]. A robust,/ . ; '
direct model reference adaptive controller was described i T. Rec!rculat!on transport delasec),
X ! , . Recirculation(—),
[6], in which the control of a dog’s mean arterial blood

. : . 7 Lag time constantsec).
pressure was investigated. Unfortunately, theirs res@it &y, yis paper, the simulation will be done with a discreteim

based on a linearized nonlinear model and need the accurmgdeL LetA Py (k) andI (k) be thek!" sampling ofApa(t)
mathematical model. andi(t), whereApy(t) andi(t) are invert Laplace transform

In this paper, our adaptive controller inspired by the hyyt A p, () and I(s), respectively. The plant simulation is
brid Siding Mode Control(SMC) [7], [8], [9] and a recently depicted in Fig. 1, where\ 2;(k) and (k) are denoted by

proposed adaptive controller callédizzy Rules Emulated y-(qy and 17(s), respectively. The disturbance is generated

Network (FREN) [10], [11] is presented to cope those foliow the patient's environment as shown in Fig. 2.
problems. The mathematical model of the controlled drug

system is not necessary. The structure of FREN resemble
the human knowledge in the form of fuzzy control rules
and its initial setting of network parameters is intutively
selected. After setting its parameters, an on-line adiaptat
is performed during its operation to fine tune the values.
Hence, the controller is able to adapt itself to the change Fig. 1. Drug system
of environment. During the control effort is generated by
FREN, the stability can be guaranteed by the bound signalsFrom (1), the controlled drug system can be rewritten as
calculated by the modified SMC. _

This paper is organized as follows. Section Il introducesA_Pd(k+ 1= f@(k)’@ +9(Falk), 9)I(k) +d(k), (2)
the overview of the drug infusion model. The bound of th@' in state equation form as
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Assuming thatpy| < ®4, ¢Bj > 0 and
A =cxy(k+1) — cAx(k). (11)

From Eg. (10), there are two possible cases as follows:
Casel: s(k+1)+s(k) >0and s(k+1) —s(k) <0

We obtain
Suml  Saturation G_r _A + chu(k;) + cor + S(k) > 0’ (12)
Fig. 2. Disturbance of patient environment and condition —A+eByu(k) +cop —s(k) < 0. (13)
Eg. (12) and (13) lead to
whereza(k) = APy(k), z1(k) = APg(k — 1), u(k) is the control A — cpp, — s(k) A — cpp, + s(k)
signal I(k), f(.) and g(.) are unknown nonlinear functions amfk) is — 5. < u(k) < 5. (14)
the bounded disturbance. The system in Eq. (3) with only Hatias of Bk B
f(.), g(.) andd(k) is used to design the proposed controller as shown i%ince
the next section.
[1l. THE REGION OF THE CONTROL EFFORT uip(k) = AJF%M
The control effort range is determined by using the modified Sid€ed A Bk i
on the discrete-time domain. The genenat”-order nonlinear discrete- > M7
time plant can be written as cBy,
- A—cPq — sk
w1k +1) a1,1 a1n un(k) = c+”
z2(k +1) a1 as N y cBy, w
: = : . : < TS
. . . . cBy
zn-1(k+1) aN-1,1 aN-1,N
zn(k+1) L an e aN,N we can conclude that
z1(k) b1
T2 (k’) ba uln(k) < u(k’) < ulp(k). (15)
: : k
: * u(k) Sinceu1p (k) > uin(k), it is required that
CEN_l(k)
o (k) b s(k) > —cn Py (16)
fi(z) di(k)
fa(x) da (k) Case Il: s(k + 1) + s(k) < 0 and s(k + 1) — s(k) > 0
+ . + . d(k), We obtain
fn () dn (k) —A+ceBru(k) + cpp +s(k) < 0, 17)
or —A+ eBru(k) + epr, —s(k) > 0. (18)
Eg. (17) and (18) yield
Define s(k) as
A — epy + s(k) A — epy, — s(k)
_ k _. 19
5(8) = c|2(k) — 2a(1)] = ce(h). ©) B, W< g (19
where x4(k) be the desired value otz at time k¥ and ¢ =  Since
[ a1 - ¢~ | € RN is a constant matrixf : RY — R and
d;(k) for i = 1,2,..., N is unknown disturbance. Note thaf' must not usp(k) = A+cn®q —s(k)
orthogonal toe, and the roots of the polynomiay +cy_12= 1 + -+ + P cBy,
1z N-1 — must be kept in the unit circle. From Eq. (4) and (5), S A — cpr, — s(k)
s(k + 1) can be obtained as B )
s(k+1) = cAz(k) + cBru(k) + cpr, — czq(k+ 1), (6) uon (k) = A—cn®q + s(k)
" B
wherep, = F + D;. Define the Lyapunov function A C:k —llis(k)
V() = $2(k), @) - B,
and again we can conclude that
AV(k) = V(k+1)-V(k),
k k k). 20
(e -2 © uzn (k) < u(k) < uzp(k) (20)
For stability we must have Sinceuzp (k) > uzn(k), it is required that
AV(E) <0 = s2(k+1) < s%(k), 9) s(k) < en®q. (21)
thus
The control effortu(k) will be determined within this boundary using the
{s(k +1)+ s(k)] {s(k +1) - S(k)} <0. (10)  adaptive network called FREN to be introduced in the nextisec
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IV. FREN AS CONTROLLER

A. Fuzzy Rules Emulated Network

A general fuzzy inference system can be represented byrH&HEN
rules. For a single input system, these rules may be written as,

RULE i: IF Ijnput 1S A; THEN B; = (hy — ki)pa, + ki

where I;,,,: denotes the crisp input of this fuzzy system. This rule

indicates that ife belongs to the fuzzy set; with the membership value
of u 4, then the fuzzy value of the output of this rule, denotedmy is
equal to the linear function df; andk; called Linear Consequence (LC)
parameters. After all rules have been processed, the crippitdoutput
is calculated by

Z Bi,

output (22)

i.e. shapes of membership function and linear consequenctesder to
minimize Eq. (24). The value of parametr is updated at each time step
b

0¢
oP;’

wheren); is called the learning rate of theth parameter. The terd®¢/0F;
is calculated from

PYW_ p, 4 AP, = P, — ;= (25)

o %% (26)
oP; Jy Ou OP;
wherew is the control signal, i.e. the output of the control@r Thus
ou _ 80. @7)
or;, 0P

This term can be analytically obtained since the networkicstire is
already known.

where N denotes the number of fuzzy rules. When using the proposed Other terms in Eq.(26) are approximated by

FREN as a controller, the structure of the control systenoimes as shown
in Fig. 3. The FREN receives the error signalk) and computes the

x(k+1)

x(kt]) ok
)

{r(k)}

Fig. 3. Control system using FREN

control signalu(k). The plant control signalk(k) is obtained by
u(k) = (23)

where Ooutput 1S the output of FREN in (22) andZ(k) is the input
to FREN or ;¢ As an example of how the initial value of FREN’s
parameters are selected, consider the following 4 fuzzyrabniles,

Ooutputv

RuLE1l IFEISPLTHENuISPL

RULE2 IFEISPM THENu ISPM
RULE3 IFEISNM THENu IS NM
RULE4 IFEISNL THENw IS NL.

Assume that the error sign@ € [—1, 1] and the calculated lower and
upper bound of the control effort are -2 and 2, respectiviedy,u, €
[—2,2]. The value of the control effortu;, can be set by parameters in
LC (e.g.h; andk; for : = 1,2,3,4.) In this exampleh; is set to the
upper boundhi = 2) andhy4 is set to the lower bounhy = —2). The
other parameters arky = Mo, hsy = ha — _1, and k; = 0 for

i =1,2,3,4. Then, MF parameters are selected to cover the error rang

The initial setting of all parameters can be given as:

Rulel: A; = (E) = m :B1 =24,
Rule2 : As = pa(E) = exp 7[E(;?525]2 By = As,
Rule3 : Az = us(E) = 7[%}2 B3 = —As,
Ruled : Ay = uy(E) = m iBy = —2A4.

The results of this setting are shown in Fig. 4. Notice that ¢bntrol
effort uy, is within [-2,2].

B. Adaptation algorithm

Since the initial setting of FREN parameters are just rougimesion
based on a human expert experience, it is necessary to finethese
values in order to cope with environmental change and to ingsystem
performance. In this work, an adaptive technique based orstiepest
descent technique is proposed to adjust all parameters gdsgiatem
operation. Firstly, we define the objective function as

&) = 5 (r9) - w(®)”, (24)

oy _ o, _ylk)—ylk—1)
ou " (k) —u(k—1) =
and
o5 =y — (k) = ~B(h). (29)
Y
Finally, Eq (25) becomes
new _ p. X 90
P"W = p, 4 nE(k)Y), a5, (30)

C. Learning Rate Sdlection

The difficulty in using the adaptive method based on the sstefascent
technique is on the selection of appropriate value for thenieg rate. Too
large value of the learning rate may reduce system stabilitgreas too
small value reduces the system adaptation performance.sisubsection,
we discuss how to select an appropriate learning rate whiehegtees the
stability in Lyapunov’s sense. Consider the following Lyapv function

1 2
V() = 5 (v - u®) = 3520, @Y
The change of Lyapunov function is given by
AV(k) = V(k+1)—-V(k)
= % (EQ(k +1) — E2(k)>
= AE(k) <E(k) + %AE(k)) , (32)
g/hereAE(k) E(k + 1) — E(k) is the change of error. This can be

dpproximated by

AE(k) OFE (k)
(k) AP, op, (33)
for small AP;.
The termOE(k)/OP; can be calculated by
OE(k) _ OE(k) gy 00 _ 90 (34)
orP, ~ oy 00 opr;,  Pop’

sincedE(k)/0y = —1 anddy /00 = dy/du = Y.
Using AP; from Eq.(30), the change of the Lyapunov function can

then be written as
2 1
1- 5771- Yy

According to the stability conditionAV (k) must be less than zero, this

yields
00\~
Pop;

80
P,

00

—)2 } (35)

AV (k
*) P,

- (E(k)Yp

O<’I7i<2( (36)

wherer(k) and y(k) are the reference and the plant’'s output signal afThe learning rate); should lie in the range indicated by the above relation

time k respectively. The objective is to adjust all of FREN'’s partere

in order to guarantee system stability.
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Fig. 4. FREN parameters setting

V. SIMULATION RESULTS | | | 1
The proposed controller is tested on 3 different patiehts jnsensitive, '
the nominal and the sensitive patient. The parameters in E@rélset as o8 1 =eor - 1
the following: o7r ] 2001 ]
Parameters ~ Sensitive  Nominal Insensitive Units §°v5’ =R )
K —9  —0714  —0.178 (”””If{’), osr 1 gy T
mlh £ = M~
T; 20 30 60 (sec), 2oar I 1
Te 30 45 75 (sec), oaf g B i
a 0 0.4 0.4 (=), 0zl i sol- T
T 30 40 60 (sec). N
The sampling time for this simulation is set tasdc. The target presure . oo
is set to decrease 3@&mHg. Denoting the erroe = AP;ctting — AP T T edeen Y o O %% embarship Grades 00 ¢
andw as the control drug rate, the fuzzy control rules of FREN averg
by, Fig. 7. Final learning: Membership functions and LC of instwes patient

RULE1 IFelSPLTHENwuISPL
RULE2 IFeISPM THENuISPM

RULE3 IFelsSNM THEN u IS NM * &
RULE4 IFelISNL THENw IS NL. ol , 0| ,
The simulation system is illustrated in Fig. 5. The initial merdhip oaf ] G0 ]
functions and LC of FREN are shown in Fig. 6. Both LC and mertiprs o7l i sol- PL i

function parameters are adjusted by using Eq. (30). Afterl¢henaing
phase around 2,500 epoch, the final membership functions an@fLC
FREN for the insensitive, the nominal and the sensitive patiee shown
on Figs. 7, 8 and 9, respectively. The simulation results o$¢hcases are

40 1

u]

30 - A

Membership Grades
o
@
T
Control signal
\

shown in Fig. 10. In this simulation, the sensitive patiergctes the set i | ol /mf/ |
point around 10 min. For the insensitive patient case, thedjaressure T
level reachs the set point in 25min. o2r ] R — ]
0 e - Inpu!?Error] 0 0 o 02 Melv?bershlp Grsades o8 *
i col- i Fig. 8. Final learning: Membership functions and LC of nomipatient
Toe T 1 VI. CONCLUSIONS

A discrete-time adaptive controller has been introduced daotrol
the drug infusion stated in [2]. This controller is conteattwith our
adaptable network (FREN) combined with a modified SMC to cateul
=— 00— the control effort bounds. While the control effort is geriedaby FREN,

Mempership Grades the control signal must be kept in these bounds. Three thereiff patients
conditions (sensitive, nominal and insensitive) are uséedthe controller
performance. Finally, from the simulation result, the prabsontroller
can provide a good response.

NL

o
Input [Error]

Fig. 6. Initial setting: Membership functions and LC
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