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I. INTRODUCTION patient. There is very substantial variability among patients
. L o .__in the drug concentration at the locus of the effect @ffect

Control engineering is the underpinning for technologicadjte concentrationthat results from a given dose, as there
advances in fields as diverse as aerospace, chemical, poweh|so variability among patients in the therapeutic efficacy
manufacturing, electronic, communication, transportationsf any given effect site concentration. Thus, there is large
and network engineering. However, control technology haggriapility among patients in the therapeutic effect of any
had less impact on modern medicine. There have begfyen dose. In the vast majority of cases, the appropriate
exciting breakthroughs in areas such as robotic surgef§pse for a specific patient is found by trial and error.
electrophysiological systems (pacemakers and automafigr example, the internist treating a patient with essential
implantable defibrillators), life support (ventilators, artificialp, pertension will begin by prescribing the recommended
hearts), and image-guided therapy and surgery. However, dl%se and then, in follow-up, will observe the effect of the
general, there are steep barriers to the application of modqymg on blood pressure and adjust the dose empirically.

control theory and technology to medicine. The steepeshis process can be cumbersome, time consuming, and
barriers are the system uncertainties, inherent to biologinprecise.

that preclude mathematical modeling and hence application
of many of the tools of modern control technology. Another
steep barrier is communication between control engineers
and the medical community. Future advances will depend on
collaboration between control theorists and engineers and|t has been apparent for some time that dosing of drugs
biomedical researchers. could be placed on a more rational basis by usgr-

One of the areas of medicine most suited for application®acokineticand pharmacodynamicnodeling. Pharmacoki-
of control theory is clinical pharmacology, a discipline innetics is the study of the concentration of drugs in various
which mathematical modeling has had a prominent roldissues as a function of time and dose schedule. Pharma-
Some of the most important advances in modern medicir@dynamics is the study of the relationship between drug
have been in the area of pharmacology. The physician in tig@ncentration and effect. By developing techniques relating
21st century has a broad armamentarium of drugs availatsi@se to resultant drug concentration (pharmacokinetics),
for the treatment of disease. This is in contrast to previougd concentration to effect (pharmacodynamics), one can
generations of physicians, who were largely limited t@enerate a model for drug dosing.

diagnosis, possible surgery, and often only consolation. Yet, pharmacokinetic models will be familiar to most control
while we have an abundance of therapeutic agents, propgigineers and theorists since they are based on dynamical
dosing of drugs is often imprecise and may be a significag{stem theory. The disposition of drugs in the body is a
cause of increased costs, morbidity, and mortality. complex interplay of numerous transport and metabolic pro-

It is instructive to consider how dose guidelines ar€esses, many of which are still poorly understood [1], [2].
derived. Drug development begins with animal experimerHowever,compartmental modelsay effectively encapsu-
tation. Promising agents are then taken to human trials, blete these processes [3]. Common pharmacokinetic models
ginning with healthy volunteers and progressing to patiengssume that, for the purpose of describing drug disposition,
with the disease for which the drug is being developedhe body is comprised of a few homogenous, well-mixed
Early stages of these trials focus on safety while the finglompartments (so that the drug concentration is constant
trials usually entail randomized, blinded administration ofvithin the compartment), with linear (proportional to drug
placebo and different drug doses for the evaluation gfoncentration) transport to other compartments or elimi-
efficacy. Efficacy is statistically defined and even when ther@ation from the compartment and the body by metabolic
is a therapeutic effect in the statistical aggregate, there mayocesses. The simplest model, the one-compartment model,
still be individual patients for whom the drug is either notassumes that the body is just a single compartment and also
efficacious or who experience side-effects. If a therapeutfypically assumes instantaneous mixing when drug is in-
effect is observed, then the drug may be approved by tigoduced intravenously, with subsequent linear elimination.
Food and Drug Administration and, in general, the recomfhe model is characterized by two parameters, the volume
mended dose is that found to be efficacious in the “averag@f distribution (/3) and the elimination rate constant.J.
patient. And this is the problem. No patient is an “averageWith this simple model the concentratio6’) immediately

after a dose of amount d is equal toD/V4 and drug is
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be described by this model, it is too simplistic for most. It should be readily apparent that pharmacokinetic mod-
The assumption of instantaneous mixing, which is clearlgls, especially mammillary models, are coarse grained over-
unrealistic in the case of drugs that are taken orally, casimplifications. Consider the injection of a drug into a small
be remedied by using a two (or more) compartment modeleripheral vein in the hand. The drug will be transported
in which there is a compartment representing the gastrad the venous stream of flow to the right heart, binding
intestinal tract that receives the dose and from which druig blood cells or proteins and mixing with other venous
is transferred irreversibly to a second compartment thatreams as various veins coalesce, with large scale mixing
representsintravascular blood (blood within arteries or in the right atrium and ventricle, from where it will be
veins) and organ systems which receive a large amount wansported to the lung. In the lung some of the drug may
blood flow and hence which equilibrate with intravasculabind to lung tissue. From the lung the drug returns to the left
blood rapidly. heart from which it is expelled into the aorta for transport to

For drugs that are administered intravenously, a comm her inert tissues, where drug binding occurs, and to tissues

model is the two-compartmemammillarymodel [3]. This (iK€ the liver and kidney) where the drug is metabolized.
model assumes that there is a central compartment whilfdeling this with a small number of compartments is
receives the intravenous dose with instantaneous mixin&{.early a coarse-grained approximation. It is almost a cliche
Drug is then either transferred to a peripheral compartmef Note that the clinical utility of these models depends
or metabolized and eliminated from the body. Drug elimENtireély on the time scale of the application. For example,
ination from the peripheral compartment is ignored sinc!eS€ simplified models work quite well for estimation of
this compartment is identified with tissues such as muscfPSing intervals for drugs administered orally. As another
or fat which are metabolically inert as far as the drug icixample, there has been interest among anesthesiologists, to

concerned. (Most drugs are metabolized in the liver or kid2€ discussed in more detail later, in using pharmacokinetic
ney, organs that, along with the heart and brain, equilibraf@°d€!s to produce and maintain therapeutic drug concentra-
rapidly with the intravascular blood and are identified witoNS: Using simplified mammillary models one can achieve

a central compartment that receives the intravenous dosgfdian absolute performance errors (the normalized offset
Drug in the peripheral compartment transfers back to t f(;carget and measured drug concentrations) of less than
central compartment with linear kinetics. The system is thefi07?: When drug concentrations are sampled on the order

; i of every 15 minutes. This is clinically quite acceptable in
described by the familiar state space model the sense that drug concentrations within this range of the

i(t) = Az(t), x(0) ==z, t>0, (1) target generally achieve the desired effect. But consider

- the problem of predicting drug concentrations during the

where induction of anesthesia. Anesthesia is typically initiated by
—(a21 +a11) a2 intravenously administering a bolus (impulse function) dose

A= ao1 —apo of a hypnotic drug. During the minute needed to induce

anesthesia large-scale mammillary models fail to predict
z = [21,22]T is the state vector representing the masses ffUg concentrations. This is, indeed, obvious, since mam-
the two compartments;;» anda,; are the compartment 2 millary models assume instantaneous mixing. To predict
to compartment 1 and the compartment 1 to compartmentdZUQ concentrations one needs more elaborate models, such
transfer coefficients, respectively, and; is the rate at asS those which incorporate mixing chamberscatenary
which drug is eliminated out of the system from (the centralznOdeIS [3]. For example, models which utilize catenary
compartment 1. The other system parameterVjs the Stuctures to approximate transport of drug from the injec-
volume of the central compartment (for a total of fourtion site to the central circulation (the heart, brain, etc.) and
pharmacokinetic parameters). Note that with the assumpti@§ditional parallel compartments (similar to mammillary
of instantaneous mixing, theoncentrationat ¢ = 0 after Models) to account for distribution of drug to peripheral
doseD is D/V;. The assumption of instantaneous mixing(muscle and fat) tissues have very effectively described the
is unrealistic but has little effect on the predictive accurac@rocess of induction of anesthesia [4]. Alternatively, we
of the model as long as we do not try to model drug@" consider the pharmacokinetics of inhaled anesthetics.
concentrations immediately after the initial drug dose. Thi/odern technology allows the on-line measurement of
two-compartment mammillary model is generally useful fof1€ anesthetic concentration at the end of each breath.
drugs that are administered intravenously, although so (—2'3 measurement rate requires a much more fine-grained
require an extension of the model to include two distincPharmacokinetic model than the typical 2 or 3 compartment
peripheral compartments along with the central comparffammillary model.
ment (the three compartment mammillary model). Other While the most commonly used pharmacokinetic models
extensions or revisions of the basic model are possible. bre linear, it is clear that the underlying processes that deter-
most cases the assumption of linear transfer is maintain@gine pharmacokinetic behavior are nonlinear. For example,

so that the system equation remains the familiar the molecular processes of drug metabolism are typically
) described by Michaelis-Menten kinetics in which the rate
@(t) = Az(t), =(0)=z0, t2>0, (2)  of drug metabolism is given by;,C/ (K. +C), whereV,,

and K, are constants and is the drug concentration, while
f¥e large scale pharmacokinetic models assume linear drug
metabolism or elimination (which is valid only in the limit

i b . of decreasing drug concentration). Similarly, transport of
compartmental masses andn@nnegative matri{3] in  qr,q hetween various tissues will be proportional to blood
the case where represents compartmental concentrationgqy’ petween the tissues, so the transport of drug would
Hence, (2) describes a nonnegative, compartmental dynagf— linear. However, many drugs can alter cardiovascular

wherex € R™ represents the system compartmental mass
or system compartmental concentrations and R"*" is
a compartmental matrix3] in the case where represents

ical system and there is a substantial body of theoreticalnction and, hence, pharmacokinetic behavior becomes
work which is relevant for analyzing these systems (see [§onjinear. The impact of these nonlinearities is unclear
and the numerous references therein).
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and again depends on the time scale of the model. It Pharmacokinetic parameters (the entries of the system
appears that linear models are adequate for coarse-graimedtrix A) are estimated by fitting models to the data.
prediction of drug concentratiort>( 10 minutes) as long The models, of course, are approximations and there are
as the range of observed drug concentrations is not tammerous sources of noise in the data, from assay error
great. This latter observation follows from the practical facto human recording error. Thus there is always an offset
that drugs are not approved for clinical use if the ratidbetween the concentration predicted by the model and the
of toxic concentrations (as in cardiovascular depression) twbserved data, the prediction error. One common method for
therapeutic effect is small. The impact of nonlinearity (an@stimating pharmacokinetic parameters is to use the method
also model oversimplification) for application of controlof maximum likelihood [6]. In this type of analysis one
theory can only be assessed by actual clinical testing of tlssumes a specific statistical distribution for the prediction
control application. And while animal experimentation iserror and then determines the parameter values that would
very useful, inter-species differences will dictate that humamaximize the likelihood of the observed results. For exam-
clinical testing will be the final measure of the utility of theple, suppose we have conducted a study in a single patient
models. In addition, as we will see, at this time there isn which we have collected blood samples at 10 different
a paucity of human data available from the application gboints in time after a single bolus intravenous dose of the
control theory to clinical pharmacology. drug. If we assume that the prediction error has a simple

Parenthetically, it is important for the control engineefl0rmal or Gaussian distribution, then the likelihood of the
or theorist who wants to approach the pharmacokinetf@?Served results will be proportional to
literature to realize that the conventions of nomenclature r
are somewhat different than those used in this article. For H 1 o—PE}/20° (4)
example, pharmacokineticists denote the transfer coefficient Ll /5ra2 ’
from compartment to compartmentj as k;; rather than =t
aj;. Pharmacokinetists also often parameterize models difshere PE; is the prediction error of théth observation and
ferently. For example, most pharmacokinetic papers wils given by PE; = Cp; — Cnj, WhereCy,, is the predicted
report theterminal elimination half-life the time required jth drug concentration and,,; is the measuredth drug
for drug concentration to decrease by 50% if all tissues a@ncentrationg? is the variance of the assumed Gaussian
equilibrated with the blood concentration. Another comgistribution of prediction errors, and is the number of
monly reported parameter is ttearance which is the ohservations (measured concentrations). We refer to this as
volume of tissue or blood “cleared” of drug per unit time.theintrapatient error modelNote that the above expression
Many pharmacokinetic investigations will be parameterizet§ a function of & and the pharmacokinetic parameters
in terms of compartment volumes and intercompartmentge entries of the system matrif). By maximizing the
clearances. These parameters are simply transformationsaove expression (or more commonly its logarithm) with
the basic elements of the system matrix along with a respect to the pharmacokinetic parameters @rmhe may
scale parameter, which in the case of the two compartmesétimate the structural model parameters (the entries of the
mammillary model is the volume of the central compartsystem matrixA) and the error model parameters (in this
ment. simple casegy) that maximize the likelihood of the observed

The experimental data used for pharmacokinetic modelesults. The reader familiar with statistical estimation theory
ing is typically collected by administering drug to patientswill realize that the above example reduces to simple least
and then drawing blood ‘samples at various times aft@&guares estimation. However, using a more sophisticated
the initiation of dosing, and determining the concentratiogrror model (for example, by assuming that prediction error
of drug as a function of time. Consequently, most phahas a normal distribution with variance proportional to the
macokinetic investigations focus on blood concentrationgredicted concentration raised to an unknown power) leads
One of the goals of the analysis for drugs administere® more complex methods of parameter estimation [6].

intravenously is to derive an expression for thét dispo- There are two distinct approaches to estimating mean
sition function the blood concentration that results frompharmacokinetic parameters for a population of patients [7],
a single unit bolus dose (impulse function) of drug. INg]. In the first, models are fitted to data from individual
the case of linear kinetics, if the unit disposition functionpatients and the pharmacokinetic parameters for individual
(fua) is known then the blood concentration that resultpatients are then averagewé-stage analysjsto provide a
from any arbitrary dose schedule is easily calculated by th@easure of the pharmacokinetic parameters for the popula-

convolution integral tion. The other approach to data analysis involves pooling
. of the data from individual patients. It is calletixed-
_ _ effects modelingoecause in this situation the prediction
o) = /O faa(m)D(t — 7)dr, ®) error is determined not only by the stochastic noise of the

experiment but also by the fact thdifferent patients have
where D(t) is the dose as a function of time [5]. Note thatdifferent pharmacokinetic parametefBhe error model, the
it is seldom technically feasible to actually measure drugnalogue of the simple Gaussian distribution used in the ex-
concentrations in the tissue thought to be the site of themple above, must account not only for variability between
therapeutic effect, and it is often assumed that effect sitbe observed and predicted concentrations within the same
concentration and blood concentration are linearly relategatient but also for variability between patients. The analyst
if not equal. The vast majority of drugs are distributed tanust assume a statistical distribution for both intrapatient
the site of action by blood flow and in general the effectariability and interpatient variability. Most commonly, it
site rapidly equilibrates with blood. If the finite equilibrationis assumed that pharmacokinetic parameters have a log-
time between the central intravascular blood volume and thermal distribution. This sophisticated method of analysis
effect site is clinically relevant, then the pharmacokinetioot only estimates the mean structural pharmacokinetic
model should be revised to include a distinct effect sitparameters (the elements of the system matlixout also
compartment. the statistical variability of these elements in the population,
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the interpatient variability Since the total variance is the equation becomes
sum of interpatient and intrapatient variability, the latter is
also estimated. This is a very powerful method of analysis P=C"/(C7 + ), (6)

for two reasons. First, it gives the clinician not only aNyhere the effect is now the probability that the patient

estimate of the pharmacokinetic parameters but also i) ot respond to some noxious stimuli (arg),.,. equals
estimate of their variance. This is extremely important fo[mity) [10], [11]. ax

the clinician since no matter how desirable the properties i ) . . .

of a drug are, on average, if there is extreme variability in In typical pharmacodynamic studies, drug is administered
these properties it may not be safe for clinical use. An@nd the effect is measured at various points in time. At
second, mixed-effects modeling may allow a reduction igach point of observation, a blood sample is taken for
the amount of data that is gathered from each individudhe determination of the drug concentration at the time
patient. In a two-stage analysis, one must have enough d&observation of effect. The parameters of the pharma-
points from each patient to estimate their pharmacokinetgodynamic model Krax, Cso, v) may then be estimated
parameters. For example, if one adopts a two compartmedit the same methods (maximum likelihood, generalized
mammillary model, there are 4 pharmacokinetic parameter€ast squares, etc.) described above. Obviously, if blood
It is impossible to estimate these parameters for any orfug concentrations and effect site concentrations have not
patient with 4 or less data points from that patient. Howevegquilibrated, this analysis is invalidated.

with mixed-effects modeling it is possible to use sparse data. |t should be noted that pharmacodynamic models are
This also is an important advantage since pharmacokinefigherently nonlinear, in contrast to pharmacokinetic mod-
studies may be expensive and time consuming. els, which are usually linear. However, the interplay with
In contrast to pharmacokinetic modeling, pharmacodyPharmacodynamics may lead to nonlinear pharmacokinetics
namic modeling is more empirical. The molecular mechalso. For example, some intravenous anesthetics depress
nism of action of many drugs is reasonably well-understoog@rdiac output the volume of blood pumped by the heart
in that most drugs act by binding to some “receptor” on op€r unit of time. Since the basic transport processes that de-
within target cells [1]. There is a well-developed theorytermine pharmacokinetic behavior are fundamentally func-
of multiple equilibrium binding of ligands, such as drugtions of blood flow, administration of the drug alters its
molecules, to receptors on larger macromolecules, such kigetics and since the pharmacodynamic relationship be-
proteins. So in theory pharmacodynamics, the relationshfeen drug concentration and depression of cardiac output
between drug concentration and effect, should follow frons nonlinear, the pharmacokinetics of the drug are, in reality,
these models of molecular binding. However, the physicalso nonlinear.
logical effect is a complex interplay of numerous factors
and it is generally not possible to quantitatively relate the
effect at the level of the intact organism to the number Ill. CLINICAL PHARMACOLOGY AND DRUG DOSING

of receptors bound by the drug at the molecular level. - i
Empirical models are needed. It could be assumed that!n @ddition to safety and efficacy, the Food and Drug

drug effect is proportional to the drug concentration at th@dministration requires pharmacokinetic evaluation before
effect site but this is clearly unrealistic since it admits th&PProval of any new drug. The pharmacokinetic profile may
possibility of limitless drug effect. For example, consider £ Useful in developing dose guidelines. However, this ap-
drug which lowers heart rate. It is unrealistic to assume th&{ication of basic principles is usually quite simplified. The
the drug effect is proportional to drug concentration sincd!SPOsition of most drugs is determined by both metabolic
there is no limit on the drug concentration but there is a limiprocesses that eliminate the drug and distribution processes,
on the effect (the heart rate cannot be slower than zero). THEL IS, transfer between various tissue groups. The route of
empirical model should incorporate a ceiling effect. OndiStribution is via the intravascular blood volume whether
model that has been quite effective for a variety of drugs i&'€ drug is administered by mouth, intramuscular injection
the Hill equation or intravenously. The complexity of these processes implies
that the governing dynamical system model is almost always
characterized by a vector differential equation. However,
E = EnaxC"/(C7 + C5), (®)  the vast majority of drugs are given for chronic conditions,
and when the time scale of treatment greatly exceeds the
where FE is the drug effect,Fy,.. is the maximum drug time scale of the distributive processes, one can ignore
effect,C' is the drug concentratiord/s, is the drug concen- them. Furthermore, very few patients would comply with
tration associated with 50% of the maximum effect, gnd the complex dosing schemes (“take 3 pills in the morning
is a dimensionless parameter that determines the steepnasd then 2 1/2 at 3:00 pm and then 2 at 8:00 and 10:00 pm
of the concentration-effect relationship [9]. Note that thisand then one the next morning...”) needed to account for
model reduces the concentration-effect relationship to threkstributive processes at the onset of therapy. Thus, the ap-
parameters, the maximum effect, a measure of the midpoiplication of pharmacokinetic principles must be simplified.
of the relationship, and a measure of the steepness. Itlisterms of the system equation (2), we assume that a
interesting that this model was first developed in 1906 tecalar. For example, if we know that a dose of 50 mg of an
describe amolecular interaction, the binding of oxygen antihypertensive drug is efficacious in the average patient
to hemoglobin. Since that time it has been applied to and we also know that the half life in the average patient is
wide variety of phenomenon which are far removed froni2 hours then we may propose a dosing schedule that begins
explanations at the molecular level. There are a number wfith an initial dose of 50 mg with subsequent dosing of
modification of this basic model that have been employe@5 mg every 12 hours. Or, as another example, suppose we
One important one is when the drug effect is a binarjknow that a blood concentration of an intravenous anesthetic
yes-or-no, variable. An example of a binary variable i®f 100ug/ml reliably produces unconsciousness and that we
anesthesia, for which the patient is either responsive or nalso know that the clearance (the amount of blood cleared
In this case, the pharmacodynamic model based on the Hif drug per unit time) is 150 ml/minute. Then an infusion of
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100 pg/ml x 150 ml/min = 1500Q.g/min will maintain this  (4)). P(©) is the a priori probability of a given value
blood concentration, although this concentration will not bef © and is given by the assumed distribution fér(as
achieved until distributive processes have equilibrated. Imoted above, usually log-normal) and the varianceGof
point of fact, many of the dosing guideline recommended bgstimated from the mixed-effects analysis. By determining
the manufacturers of drugs are based on simple calculatiotie mode ofP(C|©)P(0©) with respect t®® one can derive

like these. And although it is often not perceived as such maximum likelihood estimate & for the specific patient.

by the clinician, initial drug dosing is a form of open-loopBy estimating patient-specific parameters one can more
control, that is, control without feedback. accurately calculate the necessary dose to achieve a given

There have been attempts to develop more precise opéﬂ“g concentration. This process has been demonstrated to

loop control in the acute care environment, especially in thgProve the precision of drug dosing [16]. But note that

area of anesthetic pharmacology. With the increased avali-Only improves the precision of achieving a given drug

ability in the 1980s of small computers that could be takefOncentrationwhich may or may not lead to better control
f drug effect given pharmacodynamic variability. Also

into the operating room, several groups of investigators de-. ; t of d trai
veloped computer-controlled pump systems that continually!!S Proc€ss reguires measurement of drug concentration,
mething that cannot usually be done quickly (a typical

adjusted the drug infusion rate to achieve and maintain t kes h if h q |
drug concentration desired by the clinician [12]-[15]. Thes&TU9 assay takes hours, if not more than a day, to complete).

algorithms use the appropriate pharmacokinetic model While the process of titrating drug dose to the desired
. effect may be acceptable (if often frustrating) for chronic
i(t) = Az(t) + Bu(t), x(0)=wzo, t>0, (7) outpatient therapy, in the acute care environment, such as

with averagepharmacokinetic parameters taken from previth€ operating room or the intensive care unit, this process

ous investigations to calculate the needed dggg, ¢ > 0, MY be dangerously slow or imprecise. It is in this envi-
usually via the unit disposition function and the assumptiofPNMent that control technology has much to offer modern

of linearity. The output, which is continually updated drivednedicine and for the remainder of this article we will restrict
the infusion pump. ' ' ourselves to drugs used in the acute care setting.

This is clearly open-loop control since, as previously In order to implement closed-loop control in an acute

emphasized, no one patient is an average patient and th&f:€ en\lnronment or?e mufst have a real—tlmei ”e‘?“'% |nstar|1—
is no mechanism for measuring the concentrations in tH&neously measurable performance or control variable. Early

individual patient for feedback control. It is technically SeMPts at closed-loop control have of necessity focused on
not feasible to actually measure blood concentrations &entrol of variables that are conveniently measured. By their
intravenous anesthetics in real time. But even with the lac"y hature, cardiovascular and central nervous system func-
of feedback, numerous studies have demonstrated beff9 &re critical in the acute care environment, and so mature
control of drug concentrations than the standard empiricifcnnologies ha\?a eyolvedf foIr th‘é'rl measurerr}em];. (;I'hus,
dosing used by most clinicians. The clinical relevance df'€_Primary applications of closed-loop control of drug

this is unclear. While open-loop control systems have n@dministration have been to hemodynamic management and
yet been approved by the Food and Drug Administration fdfontrol of levels of consciousness. Before discussing our
routine clinical use in the United States, several Europedpestigations of closed-loop control of anesthesia, we will

countries have approved a device for the infusion of th riefly review closed-loop control of cardiovascular func-

intravenous anesthetic, propofol, and this device is currentfiP?; as it illustrates many of the general problems inherent

in use for clinical delivery of anesthesia. :c tr}e application of control technology to physiological
unction.

While initial dosing guidelines may be based on the

average patient, the very significant interpatient pharma-
cokinetic and pharmacodynamic variability observed for |\ c|osep-Loor CONTROL OF CARDIOVASCULAR
most drugs leads to the inevitable conclusion thiscise ' =

drug dosing will require closed-loop control. As noted in UNCTION

the introduction, in one sense most drug dosing is a form a¢ar major surgery, especially cardiac surgery, many

of closed-loop control. Patients are quite familiar with thiséatients become profoundly hypertensive [17]. While this

The physician prescribes a drug, usually given orally, and \qrome is distinct from the essential hypertension well
2” initial QOse,dobﬁeryes the ret)sponse, adnd adJu?lt_s the dg§5own to both patients and medical professionals, it does
n experienced physician can be quite adept at this procesagire treatment since elevated blood pressure may cause
but, in general, it is certainly not systematic and is usuallEardiac dysfunction, leading to pulmonary edema or my-
time consuming. Most individuals who have been treatefcrgial ischemia, may be a risk factor for stroke, and may
for a chronic disease know this well. exacerbate bleeding from fragile surgical suture lines. There
The process of dose titration can be made somewhat maee a number of potent drugs available for the treatment
precise by the use of mixed-effects pharmacokinetic modedf post-operative hypertension but titrating these drugs to
ing andpost-hocBayesian estimation of individual patient achieve the desired blood pressure may be difficult. Under-
pharmacokinetic parameters [6]-[8]. It will be recalleddosing leaves the patient hypertensive and overdosing can
that mixed-effects modeling provides not only estimates atduce the blood pressure to levels associated with shock.
pharmacokinetic parameters but also their variance withifihere has been interest since the late 1970s in developing
the population. Suppose one has measured one or ma@ntrollers for the administration of sodium nitroprusside
drug concentrations in an individual patient. Using Bayesia(SNP), a commonly used and potent anti-hypertensive. The
probability principles, the likelihood of a given value of problems encountered in this endeavor are enlightening.
some pharmacokinetic parametéd, is proportional to The initial attempts used simple nonadaptive methods such
P(C|©)P(©). P(C|©) is the probability of the observed as proportional-derivative or proportional-integral-derivative
concentration(s) as a function dd and is simply the controllers that assumed a linear relationship between infu-
intrapatient error model cited earlier (an example is equaticgion rate and effect [18], [19]. This was a tenuous assump-
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tion. While the drug concentration may be the simple convaafterload. Finally, stroke volume may be increased by
lution of the infusion rate and a transfer function (equatiofncreasing preload and this can be accomplished by giving
(3)), the relationship between effect and infusion rate ithe patients fluid. However, giving too much fluid may be
not likely to be so simple (see equation (5)). Also, one ofleleterious since it can lead to impaired pulmonary function
the significant challenges to the design of a blood pressuas fluid builds up in the lungs. The fact that closed-loop
controller is the fact that there is a time delay betweenontrol of blood pressure has not widely adopted by clini-
administration of the drug and the clinical effect. Failure tecians is not too surprising when one considers the complex
account for this time delay can lead to significant systermterrelationships of hemodynamic variables. However, this
oscillations. These early blood pressure controllers includeadso indicates an area where future applications of control
time delays in the system model; however, the delays wetbeory could be invaluable. The technology is currently
assumed to be the same for each patient. While these eaalyailable to measure heart rate, blood pressure, cardiac
controllers were successful in some patients, in general theytput, and measures of preload continuously and in real
have not had wide clinical implementation. The barriers ttime. Adaptive and robust optimal controllers which control
clinical implementation were the nonlinear patient responghe administration of multiple drugs (inotropes, vasopres-
and significant interpatient differences in drug sensitivity. Isors, vasodilators) and fluids would be a major advance in
was very evident that interpatient variability, and also theritical care medicine. There have been some preliminary
fact that an individual patient’s sensitivity to the drug variesnvestigation of the control of multiple hemodynamic drugs
in time, made adaptive controllers essential. Subsequent]f7], [28] but this is an area of great potential for future
single model and multiple model adaptive controllers wereesearch.

developed [20], [21]. Single model adaptive controllers are

based on on-line estimation of system parameters using

minimum variance or least squares methodology. These V. CLOSED-LOOPCONTROL OFANESTHESIA
controllers were also not acceptable due to large amplitude —_— .

transients. Multiple model adaptive controllers represent the | 1€ré has been long-standing interest in closed-loop con-
system by one of a finite number of models. For eac ol of anesthesia. Adequate anesthesia is comprised of sev-
model there is a separate controller. The probabilities th&f& componentsanalgesialack of reflex response, such as
the system is represented by each of the different models df¢réased blood pressure or heart rate, to surgical stimulus,
calculated from the relative offsets of the system respon&keflexia lack of movement (which simplifies the task of the
and the response predicted by each model. The output $ff9€0n), andypnosisor lack of consciousness. In order
the controller is the probability-weighted sum of the outl0 implement closed-loop control it is necessary to measure

puts from each model [22], [23]. Multiple model adaptivethe state and the assessment of consciousness. Attempting

controllers have proven to be somewhat more satisfactof) meéasure and control consciousness has been challenging.

Subsequent refinements to blood pressure control have owever, two technical innovations have facilitated the

cluded single model reference adaptive control [24], whicHev&lopment of feedback controllers. The first (historically)
appeared promising in simulations, and neural networkS the routine clinical implementation of real-time spectro-

based methods [25]. There has also been substantial inter'é%‘i?piflf1 methods for mﬁals%ring thef concgntlration of i”ha"'lz‘d
in optimal control since sodium nitroprusside has toxic sig@nesthetic agent in exhaled gases from the lung, in particular
effects when the dose is too high [26]. énd-expiratory (routinely called end-tidal) gases. End-tidal

_ o _ anesthetic gas concentration is a reasonable surrogate for

These investigations into control of blood pressure reveakterial blood anesthetic concentration [29]. Since end-tidal
the challenges inherent to biological systems, specificaljhesthetic agent concentrations can be measured in real time
nonlinearity, interpatient variability (system uncertainty)with this technology, this has allowed closed-loop control
and time delays. Despite the refinements of closed-logsf end-tidal anesthetic concentration. However, anesthetic
blood pressure controllers, they are seldom used clinicalloncentration cannot be equated with anesthetic effect.
While this is due, in part, to the cost of technology acquipore recently, real time processetectroencephalograph
sition, this is probably not the most important impedimentEEG) measurement has held open the possibility of closed-
to their clinical use. Blood pressure control is importantjopop control of anesthetic effect. It has been known for
but cardiovascular function involves several other importardecades that the EEG changes with induction of anesthesia
variables and all these variables are interrelated [17]. Thg0]. However,quantitativelyrelating the EEG to anesthetic
intensive care unit clinician (nurse or physician) must nogffect has been challenging. In the last decade, there has
only insure that blood pressure is within appropriate limitheen substantial progress in developing processed EEG
but that also cardiac output (the amount of blood pumpeghonitors that provide a measure of the depth of anesthesia

by the heart per minute) is acceptable and heart rate dnd are candidates for performance variables for closed-loop
within reasonable limits. Mean arterial blood pressure igontrollers.

proportional to cardiac output, with the proportionality con- . .

stant denoted the systemic vascular resistance, in analogynhaled anesthetic agents have been the mainstay of
to Ohm’s law. Cardiac output is equal to the product Oﬁ nical practice since the first delivery of anesthesia. A
heart rate andtroke volumethe volume of blood pumped .un.darpentalncharacterlstlc_of every inhaled anesthetic agent
with each beat of the heart. Stroke volume, in turn, is & 1S "MAC” value, for minimum alveolar (lveoli are
function of contractility (the intrinsic strength of the cardiac the_fundamental units of the lungoncentration that is
contraction) preload (the volume of blood in the heart at the &SSociated with a 50% probability of patient movement or
beginning of the contraction), aradterload (the impedance N Movement in response to surgical stimulus [27]. By
to ejection by the heart). The intensive care unit cliniciaf@ntaining end-tidal concentrations well above MAC, the
must balance all these variables. There are drugs (inotrogiEactitioner is relatively assured of hypnosis. The ready
agents) that increase contractility, but will also have variabigVailability of spectroscopic systems for measuring end-
effects on heart rate and afterload. There are also druld@l anesthetic concentration in real time has led several

which increase (vasopressors) or decrease (vasodilato ;esngators to develop closed-loop controllers. The earli-
est of these controllers used proportional-integral-derivative
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algorithms [31], [32]. As noted above, these controllersvhered A, § B represent the updates to the valuesdodnd
share the weaknesses of assuming that all patients are fBein the adaptive control algorithm. In conjunction with
same. More recently, adaptive model-based controllers hamgnimization of5 A2 +§B? this equation was used to solve
been developed [33], [34]. These typically rely on leastfor 4 andéB. It is important to note that this algorithm
squares methods to estimate the specific system parametges only partially adaptive in that the only parameters
for the individual patient. In animal studies, the adaptivef the model that were updated weré and B. This
controllers have performed, not surprisingly, more robustlglgorithm was implemented for the intravenous anesthetic
than the fixed gain controllers. However, they have naigents methohexital and propofol but did not appear to
been widely adopted clinically. The primary reason ioffer great advantage over standard manual control [36],
that because of interpatient pharmacodynamic variability37]. This may have been due to the approximations of the
control of anesthetic concentration does not translate intgorithm or due to the deficiencies of the median EEG
control of anesthetic effect, and most clinicians wouldrequency as a measure of the depth of anesthesia.

value control technology only if it prevented the possible g e the early work by Schwildeat al, other EEG

overdoses inherent in malntalnlrl;g endr;ndal Conc‘lamrat'ol’?leasures of depth of anesthesia have been developed. Pos-
in each individual patient well above the MAC value, ang,the most notable of these is thispectral indesor BIS
average from a population of patients. Closed-loop contrgbgr’ 13 ‘The BIS is a single composite EEG measure that
of zlilnesthes!a requires a monitor of anesthetic effect, specifnears’to be closely related to the level of consciousness
ICally COnsciousness. and that can track changes in latency of some of the
The development of a monitor of consciousness hdsequency components of the EEG signal. Recently, Struys
been an elusive challenge for anesthesiologists. The EEGaad colleagues have described a closed-loop controller of
global measure of electrical activity in the brain, has beethe delivery of the intravenous anesthetic propofol using a
an obvious candidate. In particular, neurophysiologists haveodel-based adaptive algorithm with the BIS as the control
observed that the EEG of an anesthetized patient contaiariable [40]. The algorithm is similar to that of Schwilden
slower waves with higher amplitudes. However, the EEG iand his colleagues in that it is based on a pharmacokinetic
a complex of multiple time series and multiple spectra andchodel predicting the drug concentration as a function of
while there are characteristic changes in the EEG with thafusion rate and time, and a pharmacodynamic model
induction of anesthesia, it has not been clear which, if angnalogous to that used by Schwildetral.[36], [37] relating
characteristic of the EEG best reflects the anesthetic statee BIS signal to concentration. However, in contrast to
Building on pioneering work by Bickford [35], Schwilden Schwilden and his colleagues, Strugs al. [40] assume
and his colleagues developed and clinically tested a closettiat the pharmacokinetic parameters are always correct and
loop model-based adaptive controller for the delivery ofthat any variability in individual patient response is due
intravenous anesthesia using the median frequency of tte pharmacodynamic variability. More specifically, with
EEG power spectrum as the control variable [36]. Theiinduction they calculated a predicted concentration using
model assumed a two compartment pharmacokinetic mod#le pharmacokinetic model and then constructed a BIS-
for which the concentration of dru@'(¢) as a function of concentration relationship using the observed BIS during

time (¢) after a single bolus dose was given by induction and the predicted propofol concentration. With
ot _pt each time epoch, the difference between the target BIS
C(t) = Ae™™ + Be™ ™, (8) signal and the observed BIS signal is used to update the

pharmacodynamic parameters relating concentration and
IS signal for the individual patient. Note that this algo-
hm is only partially adaptive in the sense that there is
no adaptive updating of pharmacokinetic parameters. Using
this algorithm, Struyet al.[40] demonstrated excellent per-
E = Ey — Enax[C7/(C7 + C)], (9) formance as measured by the difference between the target
) . ) and observed BIS signals. However, as pointed out by Glass
where Ej is the baseline signall,,.. is the maximum and Rampil, the excellent performance of the system may
decrease in signal with increasing drug concentratidd, have been because the system was not fully stressed [41]. In
is the drug concentration associated with 50% of the maxheir study, Struy®t al. [40] administered a relatively high
imum effect, andy is a parameter describing the steepnesfixed dose of the opioid remifentanil, in conjunction with
of the concentration-effect curve. From the above equatigsropofol. This dose blunted the patient response to surgical
it can be seen that the drug effect is a function of thetimuli and meant that the propofol was needed only to
pharmacokinetic parametersl,( B, o, 3) as well as the produce unconsciousness in patients who were profoundly
pharmacodynamic parameterBo( Enax, Cso, and~). If  analgesic. The result was that only small adjustments in
these parameters are known, calculation of the dose regimgropofol concentrations were necessary. Whether the system
needed to achieve the target EEG signal is straightforwar@iould have been robust in the absence of deep narcotization
However, tneseI par?]metgrs ?re SOE) knOV\r/]n {gr indivcijd%% an open guestion.
patients. The algorithm developed by Schwilden and his .
colleagues assumed that each of the pharmacodynargj Qalc(:)?rr:t(raz?sgltohg\wlzseder\r/]&geIékéasaed rgdgfttig'ﬁafmgorlﬁfs’
parametersiy, Enax, Cs0, andy) and the pharmacokinetic %3 ’ P prop d

where A, B, «, [ are patient-specific pharmacokinetic
parameters. It was also assumed that the control variab
median EEG frequency (denoted 1B3), was related to the
drug concentration by the modified Hill equation

erivative controller using the BIS signal as the variable to
parameters; andj were equal to the mean values reporte ntrol the infusion of propofol [42]. The median absolute

in prior studies. Then using the mean population values erformance error (the median value of the absolute value of

the pharmacokinetic parametetsand B as starting values, / : ;
; : - El..00t) Of this system was good (8.0%), although in
estimates of these parameters were refined by analy&s%ﬁ, 10 pgtients oscillations of the BIS signal around the set

the difference between the target and observed EEG sig int were observed and anesthesia was deemed clinically

(AE). Linearizing AL with respect tod and 5 we find inadequate in 1 of the 10 patients. This same system has also
AE = (0E/0A)SA + (OE/0B)dB, (10) been used with an auditory evoked potential (somatosensory
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information provided by auditory stimulation generatingvariability. In particular, we develop a neural adaptive output
oscillations within the EEG signal) as the control varifeedback control framework for adaptive set-point regula-
able [43]. Intravenous propofol anesthesia has also be&nn of nonlinear uncertain nonnegative and compartmental
delivered by a closed-loop controller that uses both awsystems. We emphasize that the formulation in [48], [50]
ditory evoked responses and cardiovascular responsesaasiresses adaptieeitput feedbackontrollers for nonlinear
the control variables with a fuzzy-logic algorithm. Thiscompartmental systems withnmodeled dynamicef un-
system has had only very minimal clinical testing [44]known dimensiomvhile guaranteeing ultimate boundedness
More recently, Gentilini and his colleagues have describeaf the error signals corresponding to the physical system
model-based controllers for inhalation anesthetic agents thethtes as well as the neural network weighting gains. Output
attempt to control the BIS signal or mean arterial bloodeedback controllers are crucial in clinical pharmacology
pressure, while keeping end-tidal anesthetic concentratiosce key physiological (state) variables cannot be measured
within pre-specified limits [45]. in practice.

Given the uncertainties of both pharmacokinetic and
pharmacodynamic models, and the magnitude of inter-
patient variability, we have been investigating parameter- VI. CHALLENGES AND OPPORTUNITIES IN
independent adaptive controllers that could be implemented PHARMACOLOGICAL CONTROL
using the processed EEG as a performance variable. Specif- i
ically, in a recent series of papers [46]-[50] we develop di- Even though there has been several control algorithms
rect adaptive and neural network adaptive control algorithnfoposed in recent years for active drug administration
for nonnegative and compartmental systems. As mention&g reported in this paper, closed-loop control for clinical
above, nonnegative and compartmental models providePharmacology is still at its infancy. There are numerous
broad framework for biological and physiological systems¢hallenges and opportunities that lie ahead. In particular,
including clinical pharmacology, and are well suited foran implicit assumption inherent in all the proposed control
the problem of closed-loop control of drug administrationframeworks discussed in this paper is that the control law is
Specifically, nonnegative and compartmental dynamical sy§nplemented without any regard to actuator amplitude and
tems [3]1 [51] are Composed of homogeneous interconnecté&zfe saturatlor_\ COﬂStl'_alnt_S. Of course, any e_IectromechanlcaI
subsystems  (or compartments) which exchange variapentrol actuation device is SUbj_eCt to amphtqde and/or rate
nonnegative quantities of material with conservation lawgonstraints leading to saturation nonlinearities enforcing
describing transfer, accumulation, and elimination betwedfnitations on control amplitudes and control rates. More
the compartments and the environment. It thus follows frorfinportantly, in pharmacological applications, drug infusion
physical considerations that the state trajectory of sudi@tes can vary from patient to patient and it is vital that they
systems remains in the nonnegative orthant of the sta#® not exceed certain threshold values. As a consequence,
space for nonnegative initial conditions. Using nonnegativactuator nonlinearities and actuator constraints (that is,
and compartmental model structures, a Lyapunov-basétfusion pump rate constraints) need to be accounted for
direct adaptive control framework is developed in [46], [47]in drug delivery systems since they can severely degrade
[49] that guarantees partial asymptotic set-point stability gflosed-loop system performance, and in some cases drive
the closed-loop system; that is, asymptotic set-point stabilifj)e system to instability. These effects are even more
with respect to part of the closed-loop system states asgronounced for adaptive controllers, which continue to
ciated with the physiological state variables. Furthermor&dapt when the feedback loop has been severed due to the
the remainder of the state associated with the adaptiesence of actuator saturation, causing unstable controller
controller gains is shown to be Lyapunov stable. In additioinodes to drift, which in turn leads to severe windup effects.

the adaptive controllers are constructeithout requiring Another important issue not considered by most of the
knowledge of the system pharmacokinetic and pharmacgontrol algorithms discussed in this paper is sensor mea-
dynamic parameters while providing a nonnegative contrgurement noise. In particular, EEG signals may have as
(source) input for robust stabilization with respect to a giveuch as 10% variation due to noise. For example, the BIS
set point in the nonnegative orthant. signal may be corrupted bglectromyographic noisethat
Neural network adaptive control algorithms have alsds, signals emanating form muscle rather that the central
been recently developed in [48], [50] for addressing closedlervous system. Even though electromyographic noise can
loop control of drug administration. Neural networks consisfe minimized by muscle paralysis, there are other sources of
of a weighted interconnection of fundamental element§i€asurement noise (electrocautery, x-ray, movement) that
calledneurons which are functions consisting of a summingare stochastic in nature and need to be accounted for within
junction and a nonlinear operation involving an activatiorihe control design processes.
function. One of the primary reasons for the Iarge interest In many Compartmenta| pharmacokinetic system mod-
in neural networks is their capability to approximate &is, transfers between compartments are assumed to be
large class of continuous nonlinear maps from the collectiigstantaneous:; that is, the model does not account for
action of very simple, autonomous processing units intefnaterial in transit. Even though this is a valid assumption
connected in simple ways. In addition, neural networks hav@r certain biological and physiological systems, it is not
attracted attention due to their inherently parallel and highlitue in general; especially in certain pharmacokinetic and
redundant processing architecture that makes it possifiarmacodynamic models. For example, if a bolus of drug
to develop parallel weight update laws. This parallelisnjs injected into the circulation and we seek its concentration
makes it possible to effectively update a neural networleve| in the extracellular and intercellular space of some
on line. These properties make neural networks a viablgrgan, there exists a time lag before it is detected in that
paradigm for adaptive system identification and control igrgan [3]. In this case, assuming instantaneous mass transfer
clinical pharmacology. In [48], [50], we present a neurabetween compartments will yield erroneous models. Hence,
network adaptive control framework that accounts for comyp accurately describe the distribution of pharmacological
bined interpatient pharmacokinetic and pharmacodynamiggents in the human body, it is necessary to include in
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any mathematical pharmacokinetic model some information VII. CONCLUSION
of the past system states. In this case, the state of the

system at any given time involves giece of trajectories  There is no doubt that control-system technology has a
in the space of continuous functions defined on an ingreat deal to offer pharmacology in general, and anesthesia
terval in the nonnegative orthant. This of course leads tand critical care unit medicine in particular. Critical care

(infinite-dimensional) delay dynamical systems [52]. Thigatients, whether undergoing surgery or recovering in in-

is especially relevant to correctly address the time delagnsive care units, require drug administration to regulate
inherent in equilibrating the effect site compartment withkey physiological variables (e.g., blood pressure, cardiac
the central compartment and would have ramifications in theutput,” heart rate, degree of consciousness, etc.) within
control design processes. For example, for adaptive contrelesired levels. The rate of infusion of each administered
a nonlinear adaptive algorithm for compartmental systemgug iscritical, requiring constant monitoring and frequent

with unknowntime delay would need to be developed.  adjustments. Open-loop control by clinical personnel can be

Optimal control for drug administration is also oftenVery tedious, imprecise, time consuming, and sometimes of
necessary in clinical pharmacology. For therapeutic reasoR80r quality. Alternatively, closed-loop control can achieve
in the intensive care unit, it may be desirable to regulatéesirable system performance in the face of the highly un-
(maintain) the amount of a drug in one compartment abov&ertain and hostile environment of surgery and the intensive
a certain minimum threshold (dosage) level, while maintair€are unit. Since robust and adaptive controllers can achieve
ing the amount below a certain maximum level in anothepystem performance without excessive reliance on system
compartment. Furthermore, to minimize drug side effects, fpodels, active robust and adaptive closed-loop control has
is desirable to minimize the total amount (dosage) of drug§€ potential for improving the quality of medical care as
used. Drug administration in clinics and hospitais do notell as curtailing the increasing costs of health care.

generally satisfy the aforementioned conditions. To enforce |t is clear that closed-loop control for clinical pharmacol-
the specialized structure of compartmental and nonnegatiggy would significantly advance our understanding of the
systems, nonnegative state and control constraints will neggide effects of pharmacological agents and anesthetics, as
to be enforced as part of the controller design. The optimglell as advance the state-of-the-art in drug delivery systems.
nonnegative control law will need to be designed to mainwhile our focus in this paper has been to survey the recent
tain desired drug concentrations in the plasma dictated kjevelopments of active control methods to deliver sedation
therapeutic effects while minimizing drug dosage to reduce critically ill patients in an acute care environment and
side effects. outline some of the future challenges of active sedation

A fundamental constraint for nonnegative linear systerontrol, these control methods will have implications for
stabilization with a nonnegative control signal arises in sether uses of closed-loop control of drug delivery. There are
point regulation. In particular, it can be shown that théumerous potential applications such as control of glucose,
existence of an equilibrium point in the interior of theheart rate, blood pressure, etc., that may be improved as
nonnegative orthant of the state space is assured only if tAeesult of active drug dosing control. Payoffs would arise
nonnegative dynamical system has a system matrix that ddé@m improvements in medical care, health care, reliability
not possess eigenvalues in the open right-half plane [46]f drug dosing equipment, as well as reduced cost for health
This condition implies that the largest eigenvalue of thé&are.
system lies on the imaginary axis. However, by the Perron-
Frobenius theorem this eigenvalue is real and therefore
equal to zero. Hence, the system matrix is semistable. In
light of this constraint, it can be shown using Brockett's
necessary condition for asymptotic stabilizability that therem A. G. Gilman, J. G. Hardman, and L. E. LimbirGoodman and
does not exist aontinuous nonnegativetabilizing feed- G.ilm'c-ln’s The bhérﬁacological éasis 01; THerapeut'[t@;th ed. New
back for set-point regulation in the nonnegative orthant for v NY: McGraw-Hill, 1996. '

a nonnegative system. However, that is not to say thajp) p. G. Welling, Pharmacokinetics: Processes, Mathematics, and Ap-
asymptotic feedback set-point regulation usidigcontin- plications 2nd ed. Washington DC: American Chemical Society,
uous nonnegative feedback is not possible. Of course, in  1997.
the case where the system matrix is asymptotically stabl€3] J. A. JacquezCompartmental Analysis in Biology and Medicine
continuous nonnegative feedback for set-point regulation in  Ann Arbor, MI: University of Michigan Press, 1985. .
the nonnegative orthant can be used to improve syster4] T. K. Henthom, T. C. Krejcie, C. U. Niemann, C. Enders-Klein,
performance. In light of the above, it may be desirable C- A Shanks, and M. J. Avram, “Ketamine distribution described
to develop hybrid (discontinuous) adaptive controllers for by a recirculatory pharmacokinetic model is not stereo-selective,
positive set-point regulation of semistable compartmental,, A"esthesiologyol. 91, pp. 1733-1743, 1999.
. . o . . IS] H. Schwilden, “A general method for calculating the dosage scheme
systems. Hybrid adaptive control is virtually nonexistent in ™ ;" inear bharmacokineticsEur. J. Clin. Pharmacol.vol. 20, no. 5
the literature. Furthermore, the problem of active control of 5 379386, 1081. o o
sedation using an intermittent clinician assessment with ags] M. Davidian and D. M. GiltinanNonlinear Models for Repeated
ordinal sedation scoring system as a performance variable Measurement DataBoca Raton, FL: Chapman and Hall/CRC, 1995.
necessitates hybrid control architectures to account fo[7] L. B. Sheiner and S. L. Beal, “Evaluation of methods for estimating
abstract decision making units (nurses or physicians) per- population pharmacokinetic parameters Il. Biexponential model and
forming logical checks that identify system mode operation  experimental pharmacokinetic data,"Pharmacokinetics Biopharm.
and specify the lower-level continuous-time subcontroller to  Vol- 9, no. 5, pp. 635-651, 1981. o
be activated. [8] L. B. Sheiner, “The population approach to pharmacokinetic data
analysis: Rationale and standard data analysis methdaisjy
Metabolism Reviews/ol. 15, no. 1-2, pp. 153-171, 1984.
[9] A. V. Hill, “The possible effects of the aggregation of the molecules
of haemoglobin on its dissociation curved,”Physiol, vol. 40, pp.
iv—vii, 1910.
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