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I. I NTRODUCTION

Control engineering is the underpinning for technological
advances in fields as diverse as aerospace, chemical, power,
manufacturing, electronic, communication, transportation,
and network engineering. However, control technology has
had less impact on modern medicine. There have been
exciting breakthroughs in areas such as robotic surgery,
electrophysiological systems (pacemakers and automatic
implantable defibrillators), life support (ventilators, artificial
hearts), and image-guided therapy and surgery. However, in
general, there are steep barriers to the application of modern
control theory and technology to medicine. The steepest
barriers are the system uncertainties, inherent to biology,
that preclude mathematical modeling and hence application
of many of the tools of modern control technology. Another
steep barrier is communication between control engineers
and the medical community. Future advances will depend on
collaboration between control theorists and engineers and
biomedical researchers.

One of the areas of medicine most suited for applications
of control theory is clinical pharmacology, a discipline in
which mathematical modeling has had a prominent role.
Some of the most important advances in modern medicine
have been in the area of pharmacology. The physician in the
21st century has a broad armamentarium of drugs available
for the treatment of disease. This is in contrast to previous
generations of physicians, who were largely limited to
diagnosis, possible surgery, and often only consolation. Yet,
while we have an abundance of therapeutic agents, proper
dosing of drugs is often imprecise and may be a significant
cause of increased costs, morbidity, and mortality.

It is instructive to consider how dose guidelines are
derived. Drug development begins with animal experimen-
tation. Promising agents are then taken to human trials, be-
ginning with healthy volunteers and progressing to patients
with the disease for which the drug is being developed.
Early stages of these trials focus on safety while the final
trials usually entail randomized, blinded administration of
placebo and different drug doses for the evaluation of
efficacy. Efficacy is statistically defined and even when there
is a therapeutic effect in the statistical aggregate, there may
still be individual patients for whom the drug is either not
efficacious or who experience side-effects. If a therapeutic
effect is observed, then the drug may be approved by the
Food and Drug Administration and, in general, the recom-
mended dose is that found to be efficacious in the “average”
patient. And this is the problem. No patient is an “average”
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patient. There is very substantial variability among patients
in the drug concentration at the locus of the effect (theeffect
site concentration) that results from a given dose, as there
is also variability among patients in the therapeutic efficacy
of any given effect site concentration. Thus, there is large
variability among patients in the therapeutic effect of any
given dose. In the vast majority of cases, the appropriate
dose for a specific patient is found by trial and error.
For example, the internist treating a patient with essential
hypertension will begin by prescribing the recommended
dose and then, in follow-up, will observe the effect of the
drug on blood pressure and adjust the dose empirically.
This process can be cumbersome, time consuming, and
imprecise.

II. A PRIMER ON CLINICAL PHARMACOLOGY

It has been apparent for some time that dosing of drugs
could be placed on a more rational basis by usingphar-
macokineticandpharmacodynamicmodeling. Pharmacoki-
netics is the study of the concentration of drugs in various
tissues as a function of time and dose schedule. Pharma-
codynamics is the study of the relationship between drug
concentration and effect. By developing techniques relating
dose to resultant drug concentration (pharmacokinetics),
and concentration to effect (pharmacodynamics), one can
generate a model for drug dosing.

Pharmacokinetic models will be familiar to most control
engineers and theorists since they are based on dynamical
system theory. The disposition of drugs in the body is a
complex interplay of numerous transport and metabolic pro-
cesses, many of which are still poorly understood [1], [2].
However,compartmental modelsmay effectively encapsu-
late these processes [3]. Common pharmacokinetic models
assume that, for the purpose of describing drug disposition,
the body is comprised of a few homogenous, well-mixed
compartments (so that the drug concentration is constant
within the compartment), with linear (proportional to drug
concentration) transport to other compartments or elimi-
nation from the compartment and the body by metabolic
processes. The simplest model, the one-compartment model,
assumes that the body is just a single compartment and also
typically assumes instantaneous mixing when drug is in-
troduced intravenously, with subsequent linear elimination.
The model is characterized by two parameters, the volume
of distribution (Vd) and the elimination rate constant (ae).
With this simple model the concentration (C) immediately
after a dose of amount ofD is equal toD/Vd and drug is
subsequently eliminated at a rate equal toaeC (exponential
decay). While the behavior of a few drugs may actually



be described by this model, it is too simplistic for most.
The assumption of instantaneous mixing, which is clearly
unrealistic in the case of drugs that are taken orally, can
be remedied by using a two (or more) compartment model
in which there is a compartment representing the gastro-
intestinal tract that receives the dose and from which drug
is transferred irreversibly to a second compartment that
representsintravascular blood (blood within arteries or
veins) and organ systems which receive a large amount of
blood flow and hence which equilibrate with intravascular
blood rapidly.

For drugs that are administered intravenously, a common
model is the two-compartmentmammillarymodel [3]. This
model assumes that there is a central compartment which
receives the intravenous dose with instantaneous mixing.
Drug is then either transferred to a peripheral compartment
or metabolized and eliminated from the body. Drug elim-
ination from the peripheral compartment is ignored since
this compartment is identified with tissues such as muscle
or fat which are metabolically inert as far as the drug is
concerned. (Most drugs are metabolized in the liver or kid-
ney, organs that, along with the heart and brain, equilibrate
rapidly with the intravascular blood and are identified with
a central compartment that receives the intravenous dose.)
Drug in the peripheral compartment transfers back to the
central compartment with linear kinetics. The system is then
described by the familiar state space model

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (1)

where

A =
[ −(a21 + a11) a12

a21 −a12

]
,

x = [x1, x2]T is the state vector representing the masses in
the two compartments,a12 anda21 are the compartment 2
to compartment 1 and the compartment 1 to compartment 2
transfer coefficients, respectively, anda11 is the rate at
which drug is eliminated out of the system from (the central)
compartment 1. The other system parameter isV1, the
volume of the central compartment (for a total of four
pharmacokinetic parameters). Note that with the assumption
of instantaneous mixing, theconcentrationat t = 0 after
doseD is D/V1. The assumption of instantaneous mixing
is unrealistic but has little effect on the predictive accuracy
of the model as long as we do not try to model drug
concentrations immediately after the initial drug dose. The
two-compartment mammillary model is generally useful for
drugs that are administered intravenously, although some
require an extension of the model to include two distinct
peripheral compartments along with the central compart-
ment (the three compartment mammillary model). Other
extensions or revisions of the basic model are possible. In
most cases the assumption of linear transfer is maintained
so that the system equation remains the familiar

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (2)

wherex ∈ Rn represents the system compartmental masses
or system compartmental concentrations andA ∈ Rn×n is
a compartmental matrix[3] in the case wherex represents
compartmental masses and anonnegative matrix[3] in
the case wherex represents compartmental concentrations.
Hence, (2) describes a nonnegative, compartmental dynam-
ical system and there is a substantial body of theoretical
work which is relevant for analyzing these systems (see [3]
and the numerous references therein).

It should be readily apparent that pharmacokinetic mod-
els, especially mammillary models, are coarse grained over-
simplifications. Consider the injection of a drug into a small
peripheral vein in the hand. The drug will be transported
in the venous stream of flow to the right heart, binding
to blood cells or proteins and mixing with other venous
streams as various veins coalesce, with large scale mixing
in the right atrium and ventricle, from where it will be
transported to the lung. In the lung some of the drug may
bind to lung tissue. From the lung the drug returns to the left
heart from which it is expelled into the aorta for transport to
other inert tissues, where drug binding occurs, and to tissues
(like the liver and kidney) where the drug is metabolized.
Modeling this with a small number of compartments is
clearly a coarse-grained approximation. It is almost a cliche
to note that the clinical utility of these models depends
entirely on the time scale of the application. For example,
these simplified models work quite well for estimation of
dosing intervals for drugs administered orally. As another
example, there has been interest among anesthesiologists, to
be discussed in more detail later, in using pharmacokinetic
models to produce and maintain therapeutic drug concentra-
tions. Using simplified mammillary models one can achieve
median absolute performance errors (the normalized offset
of target and measured drug concentrations) of less than
20%, when drug concentrations are sampled on the order
of every 15 minutes. This is clinically quite acceptable in
the sense that drug concentrations within this range of the
target generally achieve the desired effect. But consider
the problem of predicting drug concentrations during the
induction of anesthesia. Anesthesia is typically initiated by
intravenously administering a bolus (impulse function) dose
of a hypnotic drug. During the minute needed to induce
anesthesia large-scale mammillary models fail to predict
drug concentrations. This is, indeed, obvious, since mam-
millary models assume instantaneous mixing. To predict
drug concentrations one needs more elaborate models, such
as those which incorporate mixing chambers orcatenary
models [3]. For example, models which utilize catenary
structures to approximate transport of drug from the injec-
tion site to the central circulation (the heart, brain, etc.) and
additional parallel compartments (similar to mammillary
models) to account for distribution of drug to peripheral
(muscle and fat) tissues have very effectively described the
process of induction of anesthesia [4]. Alternatively, we
can consider the pharmacokinetics of inhaled anesthetics.
Modern technology allows the on-line measurement of
the anesthetic concentration at the end of each breath.
This measurement rate requires a much more fine-grained
pharmacokinetic model than the typical 2 or 3 compartment
mammillary model.

While the most commonly used pharmacokinetic models
are linear, it is clear that the underlying processes that deter-
mine pharmacokinetic behavior are nonlinear. For example,
the molecular processes of drug metabolism are typically
described by Michaelis-Menten kinetics in which the rate
of drug metabolism is given byVmC/(Km +C), whereVm
andKm are constants andC is the drug concentration, while
the large scale pharmacokinetic models assume linear drug
metabolism or elimination (which is valid only in the limit
of decreasing drug concentration). Similarly, transport of
drug between various tissues will be proportional to blood
flow between the tissues, so the transport of drug would
be linear. However, many drugs can alter cardiovascular
function and, hence, pharmacokinetic behavior becomes
nonlinear. The impact of these nonlinearities is unclear



and again depends on the time scale of the model. It
appears that linear models are adequate for coarse-grained
prediction of drug concentration (> 10 minutes) as long
as the range of observed drug concentrations is not too
great. This latter observation follows from the practical fact
that drugs are not approved for clinical use if the ratio
of toxic concentrations (as in cardiovascular depression) to
therapeutic effect is small. The impact of nonlinearity (and
also model oversimplification) for application of control
theory can only be assessed by actual clinical testing of the
control application. And while animal experimentation is
very useful, inter-species differences will dictate that human
clinical testing will be the final measure of the utility of the
models. In addition, as we will see, at this time there is
a paucity of human data available from the application of
control theory to clinical pharmacology.

Parenthetically, it is important for the control engineer
or theorist who wants to approach the pharmacokinetic
literature to realize that the conventions of nomenclature
are somewhat different than those used in this article. For
example, pharmacokineticists denote the transfer coefficient
from compartmenti to compartmentj as kij rather than
aji. Pharmacokinetists also often parameterize models dif-
ferently. For example, most pharmacokinetic papers will
report theterminal elimination half-life, the time required
for drug concentration to decrease by 50% if all tissues are
equilibrated with the blood concentration. Another com-
monly reported parameter is theclearance, which is the
volume of tissue or blood “cleared” of drug per unit time.
Many pharmacokinetic investigations will be parameterized
in terms of compartment volumes and intercompartmental
clearances. These parameters are simply transformations of
the basic elements of the system matrixA, along with a
scale parameter, which in the case of the two compartment
mammillary model is the volume of the central compart-
ment.

The experimental data used for pharmacokinetic model-
ing is typically collected by administering drug to patients
and then drawing blood samples at various times after
the initiation of dosing, and determining the concentration
of drug as a function of time. Consequently, most phar-
macokinetic investigations focus on blood concentrations.
One of the goals of the analysis for drugs administered
intravenously is to derive an expression for theunit dispo-
sition function, the blood concentration that results from
a single unit bolus dose (impulse function) of drug. In
the case of linear kinetics, if the unit disposition function
(fud) is known then the blood concentration that results
from any arbitrary dose schedule is easily calculated by the
convolution integral

C(t) =
∫ t

0

fud(τ)D(t− τ)dτ, (3)

whereD(t) is the dose as a function of time [5]. Note that
it is seldom technically feasible to actually measure drug
concentrations in the tissue thought to be the site of the
therapeutic effect, and it is often assumed that effect site
concentration and blood concentration are linearly related,
if not equal. The vast majority of drugs are distributed to
the site of action by blood flow and in general the effect
site rapidly equilibrates with blood. If the finite equilibration
time between the central intravascular blood volume and the
effect site is clinically relevant, then the pharmacokinetic
model should be revised to include a distinct effect site
compartment.

Pharmacokinetic parameters (the entries of the system
matrix A) are estimated by fitting models to the data.
The models, of course, are approximations and there are
numerous sources of noise in the data, from assay error
to human recording error. Thus there is always an offset
between the concentration predicted by the model and the
observed data, the prediction error. One common method for
estimating pharmacokinetic parameters is to use the method
of maximum likelihood [6]. In this type of analysis one
assumes a specific statistical distribution for the prediction
error and then determines the parameter values that would
maximize the likelihood of the observed results. For exam-
ple, suppose we have conducted a study in a single patient
in which we have collected blood samples at 10 different
points in time after a single bolus intravenous dose of the
drug. If we assume that the prediction error has a simple
normal or Gaussian distribution, then the likelihood of the
observed results will be proportional to

r∏

i=1

1√
2πσ2

e−PE2
i /2σ2

, (4)

wherePEi is the prediction error of theith observation and
is given byPEi = Cpi −Cmi, whereCpi is the predicted
ith drug concentration andCmi is the measuredith drug
concentration,σ2 is the variance of the assumed Gaussian
distribution of prediction errors, andr is the number of
observations (measured concentrations). We refer to this as
the intrapatient error model. Note that the above expression
is a function of σ and the pharmacokinetic parameters
(the entries of the system matrixA). By maximizing the
above expression (or more commonly its logarithm) with
respect to the pharmacokinetic parameters andσ one may
estimate the structural model parameters (the entries of the
system matrixA) and the error model parameters (in this
simple case,σ) that maximize the likelihood of the observed
results. The reader familiar with statistical estimation theory
will realize that the above example reduces to simple least
squares estimation. However, using a more sophisticated
error model (for example, by assuming that prediction error
has a normal distribution with variance proportional to the
predicted concentration raised to an unknown power) leads
to more complex methods of parameter estimation [6].

There are two distinct approaches to estimating mean
pharmacokinetic parameters for a population of patients [7],
[8]. In the first, models are fitted to data from individual
patients and the pharmacokinetic parameters for individual
patients are then averaged (two-stage analysis) to provide a
measure of the pharmacokinetic parameters for the popula-
tion. The other approach to data analysis involves pooling
of the data from individual patients. It is calledmixed-
effects modelingbecause in this situation the prediction
error is determined not only by the stochastic noise of the
experiment but also by the fact thatdifferent patients have
different pharmacokinetic parameters. The error model, the
analogue of the simple Gaussian distribution used in the ex-
ample above, must account not only for variability between
the observed and predicted concentrations within the same
patient but also for variability between patients. The analyst
must assume a statistical distribution for both intrapatient
variability and interpatient variability. Most commonly, it
is assumed that pharmacokinetic parameters have a log-
normal distribution. This sophisticated method of analysis
not only estimates the mean structural pharmacokinetic
parameters (the elements of the system matrixA) but also
the statistical variability of these elements in the population,



the interpatient variability. Since the total variance is the
sum of interpatient and intrapatient variability, the latter is
also estimated. This is a very powerful method of analysis
for two reasons. First, it gives the clinician not only an
estimate of the pharmacokinetic parameters but also an
estimate of their variance. This is extremely important for
the clinician since no matter how desirable the properties
of a drug are, on average, if there is extreme variability in
these properties it may not be safe for clinical use. And
second, mixed-effects modeling may allow a reduction in
the amount of data that is gathered from each individual
patient. In a two-stage analysis, one must have enough data
points from each patient to estimate their pharmacokinetic
parameters. For example, if one adopts a two compartment
mammillary model, there are 4 pharmacokinetic parameters.
It is impossible to estimate these parameters for any one
patient with 4 or less data points from that patient. However,
with mixed-effects modeling it is possible to use sparse data.
This also is an important advantage since pharmacokinetic
studies may be expensive and time consuming.

In contrast to pharmacokinetic modeling, pharmacody-
namic modeling is more empirical. The molecular mecha-
nism of action of many drugs is reasonably well-understood
in that most drugs act by binding to some “receptor” on or
within target cells [1]. There is a well-developed theory
of multiple equilibrium binding of ligands, such as drug
molecules, to receptors on larger macromolecules, such as
proteins. So in theory pharmacodynamics, the relationship
between drug concentration and effect, should follow from
these models of molecular binding. However, the physio-
logical effect is a complex interplay of numerous factors
and it is generally not possible to quantitatively relate the
effect at the level of the intact organism to the number
of receptors bound by the drug at the molecular level.
Empirical models are needed. It could be assumed that
drug effect is proportional to the drug concentration at the
effect site but this is clearly unrealistic since it admits the
possibility of limitless drug effect. For example, consider a
drug which lowers heart rate. It is unrealistic to assume that
the drug effect is proportional to drug concentration since
there is no limit on the drug concentration but there is a limit
on the effect (the heart rate cannot be slower than zero). The
empirical model should incorporate a ceiling effect. One
model that has been quite effective for a variety of drugs is
the Hill equation

E = EmaxC
γ/(Cγ + Cγ

50), (5)

where E is the drug effect,Emax is the maximum drug
effect,C is the drug concentration,C50 is the drug concen-
tration associated with 50% of the maximum effect, andγ
is a dimensionless parameter that determines the steepness
of the concentration-effect relationship [9]. Note that this
model reduces the concentration-effect relationship to three
parameters, the maximum effect, a measure of the midpoint
of the relationship, and a measure of the steepness. It is
interesting that this model was first developed in 1906 to
describe amolecular interaction, the binding of oxygen
to hemoglobin. Since that time it has been applied to a
wide variety of phenomenon which are far removed from
explanations at the molecular level. There are a number of
modification of this basic model that have been employed.
One important one is when the drug effect is a binary,
yes-or-no, variable. An example of a binary variable is
anesthesia, for which the patient is either responsive or not.
In this case, the pharmacodynamic model based on the Hill

equation becomes

P = Cγ/(Cγ + Cγ
50), (6)

where the effect is now the probabilityP that the patient
will not respond to some noxious stimuli (andEmax equals
unity) [10], [11].

In typical pharmacodynamic studies, drug is administered
and the effect is measured at various points in time. At
each point of observation, a blood sample is taken for
the determination of the drug concentration at the time
of observation of effect. The parameters of the pharma-
codynamic model (Emax, C50, γ) may then be estimated
by the same methods (maximum likelihood, generalized
least squares, etc.) described above. Obviously, if blood
drug concentrations and effect site concentrations have not
equilibrated, this analysis is invalidated.

It should be noted that pharmacodynamic models are
inherently nonlinear, in contrast to pharmacokinetic mod-
els, which are usually linear. However, the interplay with
pharmacodynamics may lead to nonlinear pharmacokinetics
also. For example, some intravenous anesthetics depress
cardiac output, the volume of blood pumped by the heart
per unit of time. Since the basic transport processes that de-
termine pharmacokinetic behavior are fundamentally func-
tions of blood flow, administration of the drug alters its
kinetics and since the pharmacodynamic relationship be-
tween drug concentration and depression of cardiac output
is nonlinear, the pharmacokinetics of the drug are, in reality,
also nonlinear.

III. C LINICAL PHARMACOLOGY AND DRUG DOSING

In addition to safety and efficacy, the Food and Drug
Administration requires pharmacokinetic evaluation before
approval of any new drug. The pharmacokinetic profile may
be useful in developing dose guidelines. However, this ap-
plication of basic principles is usually quite simplified. The
disposition of most drugs is determined by both metabolic
processes that eliminate the drug and distribution processes,
that is, transfer between various tissue groups. The route of
distribution is via the intravascular blood volume whether
the drug is administered by mouth, intramuscular injection
or intravenously. The complexity of these processes implies
that the governing dynamical system model is almost always
characterized by a vector differential equation. However,
the vast majority of drugs are given for chronic conditions,
and when the time scale of treatment greatly exceeds the
time scale of the distributive processes, one can ignore
them. Furthermore, very few patients would comply with
the complex dosing schemes (“take 3 pills in the morning
and then 2 1/2 at 3:00 pm and then 2 at 8:00 and 10:00 pm
and then one the next morning...”) needed to account for
distributive processes at the onset of therapy. Thus, the ap-
plication of pharmacokinetic principles must be simplified.
In terms of the system equation (2), we assume thatA is a
scalar. For example, if we know that a dose of 50 mg of an
antihypertensive drug is efficacious in the average patient
and we also know that the half life in the average patient is
12 hours then we may propose a dosing schedule that begins
with an initial dose of 50 mg with subsequent dosing of
25 mg every 12 hours. Or, as another example, suppose we
know that a blood concentration of an intravenous anesthetic
of 100µg/ml reliably produces unconsciousness and that we
also know that the clearance (the amount of blood cleared
of drug per unit time) is 150 ml/minute. Then an infusion of



100µg/ml× 150 ml/min = 15000µg/min will maintain this
blood concentration, although this concentration will not be
achieved until distributive processes have equilibrated. In
point of fact, many of the dosing guideline recommended by
the manufacturers of drugs are based on simple calculations
like these. And although it is often not perceived as such
by the clinician, initial drug dosing is a form of open-loop
control, that is, control without feedback.

There have been attempts to develop more precise open-
loop control in the acute care environment, especially in the
area of anesthetic pharmacology. With the increased avail-
ability in the 1980s of small computers that could be taken
into the operating room, several groups of investigators de-
veloped computer-controlled pump systems that continually
adjusted the drug infusion rate to achieve and maintain the
drug concentration desired by the clinician [12]–[15]. These
algorithms use the appropriate pharmacokinetic model

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, t ≥ 0, (7)

with averagepharmacokinetic parameters taken from previ-
ous investigations to calculate the needed doseu(t), t ≥ 0,
usually via the unit disposition function and the assumption
of linearity. The output, which is continually updated, drives
the infusion pump.

This is clearly open-loop control since, as previously
emphasized, no one patient is an average patient and there
is no mechanism for measuring the concentrations in the
individual patient for feedback control. It is technically
not feasible to actually measure blood concentrations of
intravenous anesthetics in real time. But even with the lack
of feedback, numerous studies have demonstrated better
control of drug concentrations than the standard empirical
dosing used by most clinicians. The clinical relevance of
this is unclear. While open-loop control systems have not
yet been approved by the Food and Drug Administration for
routine clinical use in the United States, several European
countries have approved a device for the infusion of the
intravenous anesthetic, propofol, and this device is currently
in use for clinical delivery of anesthesia.

While initial dosing guidelines may be based on the
average patient, the very significant interpatient pharma-
cokinetic and pharmacodynamic variability observed for
most drugs leads to the inevitable conclusion thatprecise
drug dosing will require closed-loop control. As noted in
the introduction, in one sense most drug dosing is a form
of closed-loop control. Patients are quite familiar with this.
The physician prescribes a drug, usually given orally, and
an initial dose, observes the response, and adjusts the dose.
An experienced physician can be quite adept at this process,
but, in general, it is certainly not systematic and is usually
time consuming. Most individuals who have been treated
for a chronic disease know this well.

The process of dose titration can be made somewhat more
precise by the use of mixed-effects pharmacokinetic model-
ing andpost-hocBayesian estimation of individual patient
pharmacokinetic parameters [6]–[8]. It will be recalled
that mixed-effects modeling provides not only estimates of
pharmacokinetic parameters but also their variance within
the population. Suppose one has measured one or more
drug concentrations in an individual patient. Using Bayesian
probability principles, the likelihood of a given value of
some pharmacokinetic parameter,Θ, is proportional to
P (C|Θ)P (Θ). P (C|Θ) is the probability of the observed
concentration(s) as a function ofΘ and is simply the
intrapatient error model cited earlier (an example is equation

(4)). P (Θ) is the a priori probability of a given value
of Θ and is given by the assumed distribution forΘ (as
noted above, usually log-normal) and the variance ofΘ
estimated from the mixed-effects analysis. By determining
the mode ofP (C|Θ)P (Θ) with respect toΘ one can derive
a maximum likelihood estimate ofΘ for the specific patient.
By estimating patient-specific parameters one can more
accurately calculate the necessary dose to achieve a given
drug concentration. This process has been demonstrated to
improve the precision of drug dosing [16]. But note that
it only improves the precision of achieving a given drug
concentrationwhich may or may not lead to better control
of drug effect, given pharmacodynamic variability. Also
this process requires measurement of drug concentration,
something that cannot usually be done quickly (a typical
drug assay takes hours, if not more than a day, to complete).

While the process of titrating drug dose to the desired
effect may be acceptable (if often frustrating) for chronic
outpatient therapy, in the acute care environment, such as
the operating room or the intensive care unit, this process
may be dangerously slow or imprecise. It is in this envi-
ronment that control technology has much to offer modern
medicine and for the remainder of this article we will restrict
ourselves to drugs used in the acute care setting.

In order to implement closed-loop control in an acute
care environment one must have a real-time nearly instan-
taneously measurable performance or control variable. Early
attempts at closed-loop control have of necessity focused on
control of variables that are conveniently measured. By their
very nature, cardiovascular and central nervous system func-
tion are critical in the acute care environment, and so mature
technologies have evolved for their measurement. Thus,
the primary applications of closed-loop control of drug
administration have been to hemodynamic management and
control of levels of consciousness. Before discussing our
investigations of closed-loop control of anesthesia, we will
briefly review closed-loop control of cardiovascular func-
tion, as it illustrates many of the general problems inherent
in the application of control technology to physiological
function.

IV. CLOSED-LOOPCONTROL OFCARDIOVASCULAR

FUNCTION

After major surgery, especially cardiac surgery, many
patients become profoundly hypertensive [17]. While this
syndrome is distinct from the essential hypertension well
known to both patients and medical professionals, it does
require treatment since elevated blood pressure may cause
cardiac dysfunction, leading to pulmonary edema or my-
ocardial ischemia, may be a risk factor for stroke, and may
exacerbate bleeding from fragile surgical suture lines. There
are a number of potent drugs available for the treatment
of post-operative hypertension but titrating these drugs to
achieve the desired blood pressure may be difficult. Under-
dosing leaves the patient hypertensive and overdosing can
reduce the blood pressure to levels associated with shock.
There has been interest since the late 1970s in developing
controllers for the administration of sodium nitroprusside
(SNP), a commonly used and potent anti-hypertensive. The
problems encountered in this endeavor are enlightening.
The initial attempts used simple nonadaptive methods such
as proportional-derivative or proportional-integral-derivative
controllers that assumed a linear relationship between infu-
sion rate and effect [18], [19]. This was a tenuous assump-



tion. While the drug concentration may be the simple convo-
lution of the infusion rate and a transfer function (equation
(3)), the relationship between effect and infusion rate is
not likely to be so simple (see equation (5)). Also, one of
the significant challenges to the design of a blood pressure
controller is the fact that there is a time delay between
administration of the drug and the clinical effect. Failure to
account for this time delay can lead to significant system
oscillations. These early blood pressure controllers included
time delays in the system model; however, the delays were
assumed to be the same for each patient. While these early
controllers were successful in some patients, in general they
have not had wide clinical implementation. The barriers to
clinical implementation were the nonlinear patient response
and significant interpatient differences in drug sensitivity. It
was very evident that interpatient variability, and also the
fact that an individual patient’s sensitivity to the drug varies
in time, made adaptive controllers essential. Subsequently,
single model and multiple model adaptive controllers were
developed [20], [21]. Single model adaptive controllers are
based on on-line estimation of system parameters using
minimum variance or least squares methodology. These
controllers were also not acceptable due to large amplitude
transients. Multiple model adaptive controllers represent the
system by one of a finite number of models. For each
model there is a separate controller. The probabilities that
the system is represented by each of the different models are
calculated from the relative offsets of the system response
and the response predicted by each model. The output of
the controller is the probability-weighted sum of the out-
puts from each model [22], [23]. Multiple model adaptive
controllers have proven to be somewhat more satisfactory.
Subsequent refinements to blood pressure control have in-
cluded single model reference adaptive control [24], which
appeared promising in simulations, and neural network-
based methods [25]. There has also been substantial interest
in optimal control since sodium nitroprusside has toxic side
effects when the dose is too high [26].

These investigations into control of blood pressure reveal
the challenges inherent to biological systems, specifically
nonlinearity, interpatient variability (system uncertainty),
and time delays. Despite the refinements of closed-loop
blood pressure controllers, they are seldom used clinically.
While this is due, in part, to the cost of technology acqui-
sition, this is probably not the most important impediment
to their clinical use. Blood pressure control is important,
but cardiovascular function involves several other important
variables and all these variables are interrelated [17]. The
intensive care unit clinician (nurse or physician) must not
only insure that blood pressure is within appropriate limits
but that also cardiac output (the amount of blood pumped
by the heart per minute) is acceptable and heart rate is
within reasonable limits. Mean arterial blood pressure is
proportional to cardiac output, with the proportionality con-
stant denoted the systemic vascular resistance, in analogy
to Ohm’s law. Cardiac output is equal to the product of
heart rate andstroke volume, the volume of blood pumped
with each beat of the heart. Stroke volume, in turn, is a
function ofcontractility (the intrinsic strength of the cardiac
contraction),preload(the volume of blood in the heart at the
beginning of the contraction), andafterload(the impedance
to ejection by the heart). The intensive care unit clinician
must balance all these variables. There are drugs (inotropic
agents) that increase contractility, but will also have variable
effects on heart rate and afterload. There are also drugs
which increase (vasopressors) or decrease (vasodilators)

afterload. Finally, stroke volume may be increased by
increasing preload and this can be accomplished by giving
the patients fluid. However, giving too much fluid may be
deleterious since it can lead to impaired pulmonary function
as fluid builds up in the lungs. The fact that closed-loop
control of blood pressure has not widely adopted by clini-
cians is not too surprising when one considers the complex
interrelationships of hemodynamic variables. However, this
also indicates an area where future applications of control
theory could be invaluable. The technology is currently
available to measure heart rate, blood pressure, cardiac
output, and measures of preload continuously and in real
time. Adaptive and robust optimal controllers which control
the administration of multiple drugs (inotropes, vasopres-
sors, vasodilators) and fluids would be a major advance in
critical care medicine. There have been some preliminary
investigation of the control of multiple hemodynamic drugs
[27], [28] but this is an area of great potential for future
research.

V. CLOSED-LOOPCONTROL OFANESTHESIA

There has been long-standing interest in closed-loop con-
trol of anesthesia. Adequate anesthesia is comprised of sev-
eral components;analgesia, lack of reflex response, such as
increased blood pressure or heart rate, to surgical stimulus,
areflexia, lack of movement (which simplifies the task of the
surgeon), andhypnosisor lack of consciousness. In order
to implement closed-loop control it is necessary to measure
the state and the assessment of consciousness. Attempting
to measure and control consciousness has been challenging.
However, two technical innovations have facilitated the
development of feedback controllers. The first (historically)
is the routine clinical implementation of real-time spectro-
scopic methods for measuring the concentration of inhaled
anesthetic agent in exhaled gases from the lung, in particular
end-expiratory (routinely called end-tidal) gases. End-tidal
anesthetic gas concentration is a reasonable surrogate for
arterial blood anesthetic concentration [29]. Since end-tidal
anesthetic agent concentrations can be measured in real time
with this technology, this has allowed closed-loop control
of end-tidal anesthetic concentration. However, anesthetic
concentration cannot be equated with anesthetic effect.
More recently, real time processedelectroencephalograph
(EEG) measurement has held open the possibility of closed-
loop control of anesthetic effect. It has been known for
decades that the EEG changes with induction of anesthesia
[30]. However,quantitativelyrelating the EEG to anesthetic
effect has been challenging. In the last decade, there has
been substantial progress in developing processed EEG
monitors that provide a measure of the depth of anesthesia
and are candidates for performance variables for closed-loop
controllers.

Inhaled anesthetic agents have been the mainstay of
clinical practice since the first delivery of anesthesia. A
fundamental characteristic of every inhaled anesthetic agent
is its “MAC” value, for minimum alveolar (alveoli are
the fundamental units of the lung)concentration that is
associated with a 50% probability of patient movement or
no movement in response to surgical stimulus [27]. By
maintaining end-tidal concentrations well above MAC, the
practitioner is relatively assured of hypnosis. The ready
availability of spectroscopic systems for measuring end-
tidal anesthetic concentration in real time has led several
investigators to develop closed-loop controllers. The earli-
est of these controllers used proportional-integral-derivative



algorithms [31], [32]. As noted above, these controllers
share the weaknesses of assuming that all patients are the
same. More recently, adaptive model-based controllers have
been developed [33], [34]. These typically rely on least-
squares methods to estimate the specific system parameters
for the individual patient. In animal studies, the adaptive
controllers have performed, not surprisingly, more robustly
than the fixed gain controllers. However, they have not
been widely adopted clinically. The primary reason is
that because of interpatient pharmacodynamic variability,
control of anesthetic concentration does not translate into
control of anesthetic effect, and most clinicians would
value control technology only if it prevented the possible
overdoses inherent in maintaining end-tidal concentration
in each individual patient well above the MAC value, an
average from a population of patients. Closed-loop control
of anesthesia requires a monitor of anesthetic effect, specif-
ically consciousness.

The development of a monitor of consciousness has
been an elusive challenge for anesthesiologists. The EEG, a
global measure of electrical activity in the brain, has been
an obvious candidate. In particular, neurophysiologists have
observed that the EEG of an anesthetized patient contains
slower waves with higher amplitudes. However, the EEG is
a complex of multiple time series and multiple spectra and
while there are characteristic changes in the EEG with the
induction of anesthesia, it has not been clear which, if any,
characteristic of the EEG best reflects the anesthetic state.
Building on pioneering work by Bickford [35], Schwilden
and his colleagues developed and clinically tested a closed-
loop model-based adaptive controller for the delivery of
intravenous anesthesia using the median frequency of the
EEG power spectrum as the control variable [36]. Their
model assumed a two compartment pharmacokinetic model
for which the concentration of drugC(t) as a function of
time (t) after a single bolus dose was given by

C(t) = Ae−αt + Be−βt, (8)

where A, B, α, β are patient-specific pharmacokinetic
parameters. It was also assumed that the control variable,
median EEG frequency (denoted byE), was related to the
drug concentration by the modified Hill equation

E = E0 − Emax[Cγ/(Cγ + Cγ
50)], (9)

where E0 is the baseline signal,Emax is the maximum
decrease in signal with increasing drug concentration,C50
is the drug concentration associated with 50% of the max-
imum effect, andγ is a parameter describing the steepness
of the concentration-effect curve. From the above equation
it can be seen that the drug effect is a function of the
pharmacokinetic parameters (A, B, α, β) as well as the
pharmacodynamic parameters (E0, Emax, C50, and γ). If
these parameters are known, calculation of the dose regimen
needed to achieve the target EEG signal is straightforward.
However, these parameters are not known for individual
patients. The algorithm developed by Schwilden and his
colleagues assumed that each of the pharmacodynamic
parameters (E0, Emax, C50, andγ) and the pharmacokinetic
parametersα andβ were equal to the mean values reported
in prior studies. Then using the mean population values of
the pharmacokinetic parametersA andB as starting values,
estimates of these parameters were refined by analysis of
the difference between the target and observed EEG signal
(∆E). Linearizing∆E with respect toA andB we find

∆E = (∂E/∂A)δA + (∂E/∂B)δB, (10)

whereδA, δB represent the updates to the values ofA and
B in the adaptive control algorithm. In conjunction with
minimization ofδA2 +δB2 this equation was used to solve
for δA and δB. It is important to note that this algorithm
was only partially adaptive in that the only parameters
of the model that were updated wereA and B. This
algorithm was implemented for the intravenous anesthetic
agents methohexital and propofol but did not appear to
offer great advantage over standard manual control [36],
[37]. This may have been due to the approximations of the
algorithm or due to the deficiencies of the median EEG
frequency as a measure of the depth of anesthesia.

Since the early work by Schwildenet al., other EEG
measures of depth of anesthesia have been developed. Pos-
sibly the most notable of these is thebispectral indexor BIS
[38], [39]. The BIS is a single composite EEG measure that
appears to be closely related to the level of consciousness
and that can track changes in latency of some of the
frequency components of the EEG signal. Recently, Struys
and colleagues have described a closed-loop controller of
the delivery of the intravenous anesthetic propofol using a
model-based adaptive algorithm with the BIS as the control
variable [40]. The algorithm is similar to that of Schwilden
and his colleagues in that it is based on a pharmacokinetic
model predicting the drug concentration as a function of
infusion rate and time, and a pharmacodynamic model
analogous to that used by Schwildenet al. [36], [37] relating
the BIS signal to concentration. However, in contrast to
Schwilden and his colleagues, Struyset al. [40] assume
that the pharmacokinetic parameters are always correct and
that any variability in individual patient response is due
to pharmacodynamic variability. More specifically, with
induction they calculated a predicted concentration using
the pharmacokinetic model and then constructed a BIS-
concentration relationship using the observed BIS during
induction and the predicted propofol concentration. With
each time epoch, the difference between the target BIS
signal and the observed BIS signal is used to update the
pharmacodynamic parameters relating concentration and
BIS signal for the individual patient. Note that this algo-
rithm is only partially adaptive in the sense that there is
no adaptive updating of pharmacokinetic parameters. Using
this algorithm, Struyset al. [40] demonstrated excellent per-
formance as measured by the difference between the target
and observed BIS signals. However, as pointed out by Glass
and Rampil, the excellent performance of the system may
have been because the system was not fully stressed [41]. In
their study, Struyset al. [40] administered a relatively high
fixed dose of the opioid remifentanil, in conjunction with
propofol. This dose blunted the patient response to surgical
stimuli and meant that the propofol was needed only to
produce unconsciousness in patients who were profoundly
analgesic. The result was that only small adjustments in
propofol concentrations were necessary. Whether the system
would have been robust in the absence of deep narcotization
is an open question.

In contrast to these model-based adaptive controllers,
Absalom et al. have developed a proportional-integral-
derivative controller using the BIS signal as the variable to
control the infusion of propofol [42]. The median absolute
performance error (the median value of the absolute value of
∆E/Etarget) of this system was good (8.0%), although in
3 of 10 patients oscillations of the BIS signal around the set
point were observed and anesthesia was deemed clinically
inadequate in 1 of the 10 patients. This same system has also
been used with an auditory evoked potential (somatosensory



information provided by auditory stimulation generating
oscillations within the EEG signal) as the control vari-
able [43]. Intravenous propofol anesthesia has also been
delivered by a closed-loop controller that uses both au-
ditory evoked responses and cardiovascular responses as
the control variables with a fuzzy-logic algorithm. This
system has had only very minimal clinical testing [44].
More recently, Gentilini and his colleagues have described
model-based controllers for inhalation anesthetic agents that
attempt to control the BIS signal or mean arterial blood
pressure, while keeping end-tidal anesthetic concentrations
within pre-specified limits [45].

Given the uncertainties of both pharmacokinetic and
pharmacodynamic models, and the magnitude of inter-
patient variability, we have been investigating parameter-
independent adaptive controllers that could be implemented
using the processed EEG as a performance variable. Specif-
ically, in a recent series of papers [46]–[50] we develop di-
rect adaptive and neural network adaptive control algorithms
for nonnegative and compartmental systems. As mentioned
above, nonnegative and compartmental models provide a
broad framework for biological and physiological systems,
including clinical pharmacology, and are well suited for
the problem of closed-loop control of drug administration.
Specifically, nonnegative and compartmental dynamical sys-
tems [3], [51] are composed of homogeneous interconnected
subsystems (or compartments) which exchange variable
nonnegative quantities of material with conservation laws
describing transfer, accumulation, and elimination between
the compartments and the environment. It thus follows from
physical considerations that the state trajectory of such
systems remains in the nonnegative orthant of the state
space for nonnegative initial conditions. Using nonnegative
and compartmental model structures, a Lyapunov-based
direct adaptive control framework is developed in [46], [47],
[49] that guarantees partial asymptotic set-point stability of
the closed-loop system; that is, asymptotic set-point stability
with respect to part of the closed-loop system states asso-
ciated with the physiological state variables. Furthermore,
the remainder of the state associated with the adaptive
controller gains is shown to be Lyapunov stable. In addition,
the adaptive controllers are constructedwithout requiring
knowledge of the system pharmacokinetic and pharmaco-
dynamic parameters while providing a nonnegative control
(source) input for robust stabilization with respect to a given
set point in the nonnegative orthant.

Neural network adaptive control algorithms have also
been recently developed in [48], [50] for addressing closed-
loop control of drug administration. Neural networks consist
of a weighted interconnection of fundamental elements
calledneurons, which are functions consisting of a summing
junction and a nonlinear operation involving an activation
function. One of the primary reasons for the large interest
in neural networks is their capability to approximate a
large class of continuous nonlinear maps from the collective
action of very simple, autonomous processing units inter-
connected in simple ways. In addition, neural networks have
attracted attention due to their inherently parallel and highly
redundant processing architecture that makes it possible
to develop parallel weight update laws. This parallelism
makes it possible to effectively update a neural network
on line. These properties make neural networks a viable
paradigm for adaptive system identification and control in
clinical pharmacology. In [48], [50], we present a neural
network adaptive control framework that accounts for com-
bined interpatient pharmacokinetic and pharmacodynamic

variability. In particular, we develop a neural adaptive output
feedback control framework for adaptive set-point regula-
tion of nonlinear uncertain nonnegative and compartmental
systems. We emphasize that the formulation in [48], [50]
addresses adaptiveoutput feedbackcontrollers for nonlinear
compartmental systems withunmodeled dynamicsof un-
known dimensionwhile guaranteeing ultimate boundedness
of the error signals corresponding to the physical system
states as well as the neural network weighting gains. Output
feedback controllers are crucial in clinical pharmacology
since key physiological (state) variables cannot be measured
in practice.

VI. CHALLENGES AND OPPORTUNITIES IN

PHARMACOLOGICAL CONTROL

Even though there has been several control algorithms
proposed in recent years for active drug administration
as reported in this paper, closed-loop control for clinical
pharmacology is still at its infancy. There are numerous
challenges and opportunities that lie ahead. In particular,
an implicit assumption inherent in all the proposed control
frameworks discussed in this paper is that the control law is
implemented without any regard to actuator amplitude and
rate saturation constraints. Of course, any electromechanical
control actuation device is subject to amplitude and/or rate
constraints leading to saturation nonlinearities enforcing
limitations on control amplitudes and control rates. More
importantly, in pharmacological applications, drug infusion
rates can vary from patient to patient and it is vital that they
do not exceed certain threshold values. As a consequence,
actuator nonlinearities and actuator constraints (that is,
infusion pump rate constraints) need to be accounted for
in drug delivery systems since they can severely degrade
closed-loop system performance, and in some cases drive
the system to instability. These effects are even more
pronounced for adaptive controllers, which continue to
adapt when the feedback loop has been severed due to the
presence of actuator saturation, causing unstable controller
modes to drift, which in turn leads to severe windup effects.

Another important issue not considered by most of the
control algorithms discussed in this paper is sensor mea-
surement noise. In particular, EEG signals may have as
much as 10% variation due to noise. For example, the BIS
signal may be corrupted byelectromyographic noise; that
is, signals emanating form muscle rather that the central
nervous system. Even though electromyographic noise can
be minimized by muscle paralysis, there are other sources of
measurement noise (electrocautery, x-ray, movement) that
are stochastic in nature and need to be accounted for within
the control design processes.

In many compartmental pharmacokinetic system mod-
els, transfers between compartments are assumed to be
instantaneous; that is, the model does not account for
material in transit. Even though this is a valid assumption
for certain biological and physiological systems, it is not
true in general; especially in certain pharmacokinetic and
pharmacodynamic models. For example, if a bolus of drug
is injected into the circulation and we seek its concentration
level in the extracellular and intercellular space of some
organ, there exists a time lag before it is detected in that
organ [3]. In this case, assuming instantaneous mass transfer
between compartments will yield erroneous models. Hence,
to accurately describe the distribution of pharmacological
agents in the human body, it is necessary to include in



any mathematical pharmacokinetic model some information
of the past system states. In this case, the state of the
system at any given time involves apiece of trajectories
in the space of continuous functions defined on an in-
terval in the nonnegative orthant. This of course leads to
(infinite-dimensional) delay dynamical systems [52]. This
is especially relevant to correctly address the time delay
inherent in equilibrating the effect site compartment with
the central compartment and would have ramifications in the
control design processes. For example, for adaptive control,
a nonlinear adaptive algorithm for compartmental systems
with unknowntime delay would need to be developed.

Optimal control for drug administration is also often
necessary in clinical pharmacology. For therapeutic reasons
in the intensive care unit, it may be desirable to regulate
(maintain) the amount of a drug in one compartment above
a certain minimum threshold (dosage) level, while maintain-
ing the amount below a certain maximum level in another
compartment. Furthermore, to minimize drug side effects, it
is desirable to minimize the total amount (dosage) of drugs
used. Drug administration in clinics and hospitals do not
generally satisfy the aforementioned conditions. To enforce
the specialized structure of compartmental and nonnegative
systems, nonnegative state and control constraints will need
to be enforced as part of the controller design. The optimal
nonnegative control law will need to be designed to main-
tain desired drug concentrations in the plasma dictated by
therapeutic effects while minimizing drug dosage to reduce
side effects.

A fundamental constraint for nonnegative linear system
stabilization with a nonnegative control signal arises in set-
point regulation. In particular, it can be shown that the
existence of an equilibrium point in the interior of the
nonnegative orthant of the state space is assured only if the
nonnegative dynamical system has a system matrix that does
not possess eigenvalues in the open right-half plane [46].
This condition implies that the largest eigenvalue of the
system lies on the imaginary axis. However, by the Perron-
Frobenius theorem this eigenvalue is real and therefore
equal to zero. Hence, the system matrix is semistable. In
light of this constraint, it can be shown using Brockett’s
necessary condition for asymptotic stabilizability that there
does not exist acontinuous nonnegativestabilizing feed-
back for set-point regulation in the nonnegative orthant for
a nonnegative system. However, that is not to say that
asymptotic feedback set-point regulation usingdiscontin-
uous nonnegative feedback is not possible. Of course, in
the case where the system matrix is asymptotically stable,
continuous nonnegative feedback for set-point regulation in
the nonnegative orthant can be used to improve system
performance. In light of the above, it may be desirable
to develop hybrid (discontinuous) adaptive controllers for
positive set-point regulation of semistable compartmental
systems. Hybrid adaptive control is virtually nonexistent in
the literature. Furthermore, the problem of active control of
sedation using an intermittent clinician assessment with an
ordinal sedation scoring system as a performance variable
necessitates hybrid control architectures to account for
abstract decision making units (nurses or physicians) per-
forming logical checks that identify system mode operation
and specify the lower-level continuous-time subcontroller to
be activated.

VII. C ONCLUSION

There is no doubt that control-system technology has a
great deal to offer pharmacology in general, and anesthesia
and critical care unit medicine in particular. Critical care
patients, whether undergoing surgery or recovering in in-
tensive care units, require drug administration to regulate
key physiological variables (e.g., blood pressure, cardiac
output, heart rate, degree of consciousness, etc.) within
desired levels. The rate of infusion of each administered
drug iscritical, requiring constant monitoring and frequent
adjustments. Open-loop control by clinical personnel can be
very tedious, imprecise, time consuming, and sometimes of
poor quality. Alternatively, closed-loop control can achieve
desirable system performance in the face of the highly un-
certain and hostile environment of surgery and the intensive
care unit. Since robust and adaptive controllers can achieve
system performance without excessive reliance on system
models, active robust and adaptive closed-loop control has
the potential for improving the quality of medical care as
well as curtailing the increasing costs of health care.

It is clear that closed-loop control for clinical pharmacol-
ogy would significantly advance our understanding of the
wide effects of pharmacological agents and anesthetics, as
well as advance the state-of-the-art in drug delivery systems.
While our focus in this paper has been to survey the recent
developments of active control methods to deliver sedation
to critically ill patients in an acute care environment and
outline some of the future challenges of active sedation
control, these control methods will have implications for
other uses of closed-loop control of drug delivery. There are
numerous potential applications such as control of glucose,
heart rate, blood pressure, etc., that may be improved as
a result of active drug dosing control. Payoffs would arise
from improvements in medical care, health care, reliability
of drug dosing equipment, as well as reduced cost for health
care.
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