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Abstract—We investigate some fundamental limitations transient response, and rule out saturation in both velocity
and tradeoffs in the control of vehicular platoons. These and control. These requirements are used to generate the
systems are of considerable practical importance as they trajectories around which the states of the string of vehicles
represent an example of systems on lattices in which differ- are driven to their desired values without the excessive use of
ent units are dynamically coupled only through feedback control effort.
controls. We demonstrate that in very long platoons, to Our presentation is organized as follows: §nll, we
avoid large position, velocity, and control amplitudes, one formulate a control problem and propose a distributed control
needs to explicitly account for the initial deviations of strategy that solves it. If Ill, we illustrate that commanding
vehicles from their desired trajectories. We further derive  a uniform rate of convergence for all vehicles towards their
explicit constraints on feedback gains—for any given set desired trajectories may require large control effortsg I,
of initial conditions—to achieve desired position transients we remark on some basic design limitations and tradeoffs in
without magnitude and rate saturation. These constraints vehicular platoons and determine the conditions that control
are used to generate the trajectories around which the gains need to satisfy to provide operation within the imposed
states of the platoon system are driven towards their saturation limits. In§ V, we redesign the controller df II
desired values without the excessive use of control effort. to provide the desired quality of transient response and avoid
All results are illustrated using computer simulations of large control excursions. We summarize the major contribu-

platoons containing a large number of vehicles. tions and the ongoing research directions iN|1.
Index Terms— Vehicular Platoons; Spatially Intercon-
nected Systems; Distributed Control. II. CONTROL OF VEHICULAR PLATOONS
A system of identical unit mass vehicles in an infinite string
|. INTRODUCTION is shown in Figure 1. The dynamics of this system can be

Control of vehicular platoons has been an intensive arezaptured by representing each vehicle as a moving mass with
of research for almost four decades [1]-[6]. These systenthe second order dynamics
belong to the class of systems on lattices in which the .
interactions between different subsystems originate because of Zn = un, n € No, (1)
a specific control objective that designer wants to accomplis ihere,, represents the position of theth vehicle,u, is the

Additional examples of systems on lattices with this propert : : o o
include unmanned aerial vehicles in formation [7]-[9] anaggn{“); apglled on thex-th vehicle, andNo := {0} UN =

satellites in synchronous orbit [10]-[12]. These interaction

often generate surprisingly complex responses that cannot be

inferred by analyzing the individual plant units. Rather, intri-

cate behavioral patterns, an instance of which is the so-called *** & & & & &

string instability[13] (or, more generally, thepatio-temporal 3 1 3 i i
- L -

instability [14]), arise because of the aggregate effects. Another by bep

particularity of this class of systems is that every subsys- Tn Un - Tn-1) Un-1 2t Lt %0, U
tem is equipped with sensing and actuating capabilities. The
controller design problem is thus dominated by architectural Fig. 1. Platoon of vehicles.

questions such as the choice of localized vs centralized control.

Recent article [15] addressed some fundamental design
limitations in vehicular platoons. In particular, it was shown A control objective is to provide a desired constant cruising
that string stability of a finite platoon with linear dynamicsvelocity v; and to keep the inter-vehicular distance at a
cannot be achieved with any linear controller that uses onlgonstant pre-specified levél. A coordinate transformation of
information about relative distance between the vehicle othe form
which it acts and its immediate predecessor. A similar result
was previously established for a spatially invariant infinite en(t) == anbn(t) + Bamn(t), n € No, )
string of vehicles with static feedback controllers having the .
same information passing properties [3]. This necessitates u&hders (1) into

of distributed strategies for control of platoons and under- _
scores the importance of developing distributed schemes with ‘?" = Yn neNo, (3)
favorable architectures. We refer the reader to the references <, = — Brun—1 + (an + Bn)un ’

above for a fuller discussion of various algorithms that can be
used for platoon control. Additional information about recentvhere «,, and 3,, represent nonnegative parameters that are
work on distributed control of systems on lattices can be foundot simultaneously equal to zero, withy = 0, and {¢,, :=
in [14], [16]-[20] and references therein. én, ¥n := én}. On the other hands,, andn, respectively

In this paper we study some fundamental limitations andlenote the position error variables of theth vehicle with
tradeoffs in the control of vehicular platoons. We illustraterespect to the absolute and relative reference fragjgs) :=
that in very long platoons one needs to account explicitly for,, (t) — vat + nL, 7n(t) = xn(t) — xn-1(t) + L. By
the initial distances of vehicles from their desired trajectorieassigning different values te,, and 3, we can adjust the
in order to avoid large position and velocity deviations andelative importance of these two quantities.
the excessive use of control effort. We further derive an initial The appropriate state-space for system (3) is a Banach
condition dependent set of requirements that the control gaispacel.. x l~. This choice of the state-space implies that
need to satisfy to guarantee the desired quality of positiomitially, at ¢ = 0, no vehicle is infinitely far from its desired
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absolute position. Control design should provide boundedne — _ 1 n—k+1 L
of position and velocity error variables for evety> 0 and Talt) = vat nk ﬂ;q exlt) + Qo co(t).
their asymptotic convergence to zero. nll, we illustrate, 1 n
by means of an example, that choosing a Hilbert spacel, in(t) =va + 7an—k+1ék(t) + Léo(t)7 n € N, and
rather than a Banach spatg x I, for the underlying state- ﬂkﬂ Qo
space can be rather restrictive. Namely, this choice of the statgre fact thaflim;_. .. en(t) = 0, lim;—o0 é,(t) = 0, for every

space can exclude an entire set of relevant initial conditions ¢ N,. Therefore, controller (6a,8) provides boundedness of

from the analysis. all signals in the closed-loop and asymptotic convergence of
In particular, a choice of control law of the form the platoon of vehicles to its desired cruising formation.
3 1 In & 11l, we illustrate that, even though our design provides
Up = — Uy ————(andn + bnn), (4) boundedness of controls for all times and all vehicles, the lack
an + Bn an + B of uniform bound onf|u, || May result in an excessive use

with {a, > 0, b, > 0, Vn € No}, yields an infinite number ©f control effort.
of stable, fully decoupled second order subsystems m

Yo = —anbn — bty In this section, we show that imposing a uniform rate of
) convergence for all vehicles towards their desired trajectories

Therefore, we conclude boundedness of hoift) andé,.(t), may generate large control magnitudes. To illustrate this,
vVt > 0, and their asymptotic convergence to zero, for everyve consider a platoon of vehicles with controller (6a,8) and

. | SSUES ARISING IN CONTROL STRATEGIES WITH

) UNIFORM CONVERGENCE RATES

n € Np. _ ) . {an := a = const., b, := b= const., Vn € No}. Clearly, in
In the remainder of this section, we assume that :=  this case botk., () andé, (t) converge towards zero with the
a = const., B, := B = const., Vn € N; ap # 0, 5o = 0}. rates that are independent of the spatial location. Furthermore,
In this case, controller (4) simplifies to we assume that each vehicle has a limited amount of control
1 effort at its disposal, that is,(t) € [ Umax, Umax], for all
uo = — —(aodo + botbo), (6a) t>0,n € No, With tmax > 0.
Qo In particular, we study the situation in which at= 0
_ 1 the string of vehicles cruises at the desired veloeiiywith
un = Y Ty +ﬂ(an¢n +bntn), nEN, the lead vehicle being at its desired spatial location. We also
L o assume that the distance between the vehicles indexedhy
which in turn implies n—1,foreveryn € {1,...,N}, N € N, is equal toL + S,,.
" n ek The position initial conditions of the remaining vehicles can
w — B wo — Z B (ardi + brie) be chosen to ensure boundedness,gf0) for n > N. For
" (a+B)™ P (a+ B)r—k+1 ’ simplicity, we assume that for > N the spacing between

1 the neighboring vehicles is at the desired level In other

7 . > S o
for everyn € N. If {a # 0, 8 = 0}, controller (6a,7) doeg r)10t words, we consider the initial conditions of the form
take information about the preceding vehicle into consideration. () — v N
since it only accounts for the error variable with respect to the n(0) vd, ¥ € o,

absolute desired trajectory. Therefore, this control strategy is 0 n =0,

unsafe and because of that we chogse: 0. On the other zn(0)={ — (mL+>7_,Sx) nef{l,...,N}, (10)
hand, if {o = 0, 8 # 0}, the information about all vehicles N

enters into (7) with the same importance which is not desirable —(nL+3,_15) n>N,

from communication point of view. For these reasons, we | . S

consider the situation in which both and 3 have positive Which translates into:{¢,.(0) = 0, Vn € No}, and

en(0) = {0,n = 0; _(azzngk + BSn), n €

N {1,...,N}; —a>>~ .Sk, n > N} Clearly, for this choice

1 n—k+1 of initial condition {e,,(0)}nen, ¢ l2, unlessy Y . Sy = 0.

B Zq (axdk +bitp), n €N, (8) Hence, despite the fact that the entire platoén 'cruises at the
k=1 desired velocityv; and the inter-vehicular spacing for most
where ¢ := 3/(a + ) < 1. With this choice of design of the vehicles is kept at the desired leve| a relevant
parametersa. and 3 the gains in (8) decay geometrically initial condition that does not belong fe x I> can be easily

as a function of spatial location. Thus, in the very longconstructed. This implies that a Hilbert spdgex /> represents
string of vehicles, the positions and velocities of vehicleg rather restrictive choice for the underlying state-space.

in the beginning of the platoon do not have a significant The absence of uniform bound in (9) indicates that the
influence on controls that act on vehicles in the end of théarge states will lead to the large control signals if the
platoon. This feature is of paramount importance for practiceedback gains are not appropriately selected. In particular,

values and rewrite (7) as

_n
Un = q U0 —

implementations. we observe that large initial states are readily obtained if
Using (8), we can establish the following bound on thethere existsm € {1,..., N} such that{Si,..., S} sum
infinity-norm of u,, (¢): to a big number. Moreover, it is not difficult to see that if

{sign S,, = const. # 0, Vn € {1,...,N}}, then| S0 Sy
represents a monotonically increasing functiomafThus, for
©) N large enough, very large initial conditions are possible if,
q(1—q™) for example, allS,,’s are either positive or negative. Because
1— of that, we study a spatially constant non-zero sequence of
. ) . .. Sy’s, that is we assumgsS,, := S = const. # 0, Vn €
which, together with the properties of system (5), implies(1,... N}}. In this case, (10) simplifies to
boundedness af,(t) for all t > 0, n € Ny. Based on (2), we

1
lunlloe < q"[uolloo + = (supy [I¢k[loo sup, ax +

Supy, ||wk‘|00 SUpy bk) , N € N?

also conclude boundedness of bétt{t) andn, (¢) for all ¢t > 2n(0) = wv4, Vn € N,

0, n € Np. Asymptotic convergence of these two quantities and 0 n=0

their temporal derivatives to zero follows from the following ' (11)
) 1 . ) zn(0) = —n(L+S) ne{l,...,N},

expressionsto(t) = vqt + a—oeo(t), Zo(t) = vq + P (t), —(nL+NS) n> N,
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or equivalently{é,(0) = 0, ¥n € No}, en(0) = {0, n.= &% = = >0 zne™?
0; —(na + B)S, ne{l,...,N}; —NaS, n> N}. For
this choice of initial conditions.g = 0, whereas the initial

"k e {0,...,M — 1}, and

the inverse DFT is defined by, := ﬁ Ziw:?)l Fped

amount of control effort for the remaining vehicles is givenn € {0,..., M —1}. Using this, system (12) and quadratic
by performance index (13) transform to
aS, ag q(1—¢")(B — (a+ B)g) ‘ 0 1 3 0
un(0) = —(n + , S | — &k N
O (1=a) ) & {0 OH@C} {1}“ (14)

for everyn € {1,..., N}, and = Ap¢r + Bipix, ke {0,...,M —1},

aS « nNEL — MY B = (a+ 8 and
un(0) = (N2 4 1 ( q_)( i (a+Bla)y

B 1-gq (1-q VT ML e R .
for everyn > N, which implies that for any choice of design ¥ = —5 > /0 (64 (1) Qupr(t) + i () Ryt (1)) dit,

k=0

parameter there existn € N such thatju, (0)| > umax, for
everyn > m, provided thatN is large enough. For example, -
fa=f=a=1b=2 S =0.5 tn = 5 for N =50, WhereR, >0 and
210(0) = Umax = 5, and |un (0)] > Umax, Y1 > 10, with R Gur G
limp . |un(0)| = 25. Simulation results for this choice of Qr = [ . -
design parameters and initial conditions given by (11), using 921k 922k

controler (6a,8), are shown in Figure 2. for everyk € {0,...,M — 1}. Clearly, the pair(Ay, By)
A. LQR design for a platoon on a circle is stabilizable for everys € {0,...,M — 1}. On the other

To illustrate that the above raised issues are not causf@‘”d' the pai(Qx, Ay is detectable if and only ifi1x > 0
by the specific control strategy, we also consider a LinedPf veryk € {0,..., M —1}. These conditions are necessary
Quadratic Regulator (LQR) design for a platoon on a circle tha["lmd sufficient for the existence of a stabilizing optimal solution
consists ofM vehicles. By exploiting thespatial invariance  t© the LQR problem (12,13). o B
we analytically establish thatny LQR design leads to large It IS readily shown that foti,, (0) = vg, i.. for,(0) =0,
control signalis for the appropriately selected set of initiaWwe have:> . " up (0) = 325 —" “R=&(0)€x(0), which in

| =0

conditions. turn implies
ot wagy @00 w0 P M—1 M—1 P M—1
VISRV . 11k 2 2 11k 2
vz N inf 225 D" €2 (0) < D un(0) < supE Y €2(0).
22, up k Rk n=0 n=0 k Rk n=0

Thus, we have established the lower and upper bounds on the
Ny initial amount of control effort for a formation that cruises at
sl the desired velocitw,. These bounds are determined by the
' _ _ deviations of vehicles from their absolute desired trajectories
Fig. 3. Circular platoon of\/ vehicles. att = 0, and by the LQR design parameteis anq Ry.
Clearly, sincegiix > 0 (for detectability) infy Gi1x/ Rk is
always greater than zero. We note that this quantity can be

The control objective is the same as §nll: to drive the  made smaller by increasing the control penalty. In particular,
entire platoon at the constant cruising veloeity and keep the f%r 2,(0) =n(L — S), 0 < S < L, we have
e

distance between the neighboring vehicles at a pre-specifi

constant levelL. Clearly, this is possible only if the radius of M-1 52 .

a circle is given byry; = M L/2w. We rewrite system (1) for Z ur(0) > =M (M —1)(2M — 1) inf q{”ﬂ

n € {0,...,M — 1} in terms of a state-space realization of o -6 ko Ry

the form
. which illustrates an unfavorable scaling of the initial amount
| — |01 & | |0, of control effort with the number of vehicles in formation.
Sn 0 0 Sn L™ (12)  Hence, unles$iuma. > S*(M —1)(2M — 1) inf, G115 /6 Ry,

= Anpn + Brun, there exist at least one vehicle for whigh, (0)| > umax.

. The results of this section illustrate that in very large
whereg,, (t) := xn(t) — vat —nL ande,(t) := @a(t) —va  platoons one needs to take into account the initial distance of
denote the absolute position and velocity errors of #hth  yehicles from their desired trajectories and to adjust the control
vehicle, respectively. We propose the following cost functionazins accordingly in order to avoid large velocity deviations

| poo MM and the excessive use of control effort. In the next section,
1 * we give conditions that the feedback gains need to satisfy
J o= 2/0 Z Z Pn(t)@n—mem(t)dt + to prevent saturation in both velocity and control and discuss
L e n=0m=0 (13) some design limitations and tradeoffs in vehicular platoons.
5/0 ZO ZO tn () Bt (8) IV. DESIGN LIMITATIONS AND TRADEOFFS IN
e VEHICULAR PLATOONS
M-1~M-1 =« * . . . .
where {3 ,"" >, 20 #n@n-mpm > 0, QZ, = Qn}, for In this section, we determine the conditions that control

all sequencesp,,, and {> M 'S Ml 4t Ry mum > 0, gains need to satisfy to provide operation within the imposed

R*, = R,}, for all non-zero sequences,. saturation limits. Our analysis yields the explicit constraints
We utilize the fact that system (12) has spatially invari-on these gainsfor any given set of initial conditionsto

ant dynamics over a circle. This implies that the Discretechieve desired position transients without magnitude and rate

Fourier Transform (DFT) can be used to convert analysisaturation. We also remark on some of the basic limitations and

and quadratic design problems into those for a parameterizéhdeoffs that need to be addressed in the control of vehicular

family of second order systems [14]. DFT is defined by:platoons.
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n

dg (1)/dt

Fig. 2. Simulation results of vehicular platoon using control law (6a,8) wite- 3 = a = 1, andb = 2. The initial state of the platoon
system is given by (11) wittV = 50 and S = 0.5.

We rewrite system (1) as Therefore, if sequence of positive numbéys, }.cn, is cho-
. B sen such that
Tn = Un, N € No. (15) 1 (O)]
T
The justification for the notation used in (15) is givensitv. D + (0] < Tnmax, Vno€ No, (21)

We want to drive each vehicle towards its desired absolute ) - L
position vat — nL, and its desired velocity,. For the time ~ condition (20a) will be satisfied for every> 0. This implies
being we are not concerned with the relative spacing betwedhat, for good position transient response (that is, for small

the vehicles. If we introduce the error variabfe,(t) := POsition overshoots), design parametgrs have to assume
Zn(t) — vat + nL, n € No}, we can rewrite (15) as large enough values determined by (21).
Clearly, (20b) is going to be violated unlggs (0)| < vmax,
n = Un, n € Ny, (16) for everyn € Ny. If 7, has a maximum or a minimum at some

B L ) non-zero finite time,,, the absolute value of (18b) at that point
and choosei, to meet the control objective. In particular, we can pe upper bounded by

take @,, of the form i
(T —Pnin :
[Fn(tn)] = ldnle™™™ < ldn| < |rn(0)lpn + |70 (0)].

Thus, to avoid velocity saturation, sequence of positive design

where, for everyn € Ny, p, represents a positive design narameter has to be small enough to satis
parameter. With this choice of control, the solution of sys-p dPntneno 9 fy

Un = — pirn - 2pn7:"n7 n < N07 (17)

tem (16,17) is for any: € Ny given by [72.(0)[pr. + [ (0)] < Umax, Vn € No. (22)
ra(t) = (cn + dnt)efpnﬁ (18a) Finally, to rule out saturation in control we need to make
. pnt sure that condition (20c) is satisfied for both= 0 and
Fn(t) = (dn — capn — dnpat)e ™, (18b) 7, > 0, where the potential extremum af, takes place.
Un(t) = (cap2 — 2dnpn + dnpit)e*p”ﬂ (18c) The absolute values of (18c) at these two time instants are
respectively given byi, (0)| = | — 7. (0)p2 — 27, (0)pn| <
where for everyn & Ny P (O + 207 (0)lpn, a0 [ (£)| = [dnlpne P <
— _ dulpn < |rn(0)lpn + [7n(0)|pn. Sincep, > 0, for every
cn = 1tn(0) = Zn(0) + nL, ! o ! !
dn = ma(0)pr + 7x(0) . a9) ™€No, condition (20c) is met if
= (Zn(0) + nL)pn + (Zn(0) — va). 7 (0)|p2 + 2|70 (0)[pn < Umax, Vn € No.  (23)
We want to determine conditions that the sequence ghequalities (21), (22), and (23) establish conditions for posi-
positive numbergp, }ren, has to satisfy to guarantee tive design parameteys, to prevent saturation in velocity and

control, and guarantee a good position transient response. We

Irn ()] < 7nmax, vt 2 0, (208)  remark that these conditions can be somewhat conservative, but
[7n(t)] < Vmax, vt > 0, (20b)  they are good enough to illustrate the major point. Clearly, for
T (t)] < Umax, vt > 0, (20c) small excursions from the desired position trajectories control

gains have to assume large values, determined by (21). On
With {7y max > 0, V1 € No}, Umax > 0, andumax > 0  the other hand, for small velocity deviations and small control
being the pre-specified numbers. For notational conveniencefforts these gains have to be small enough to satisfy (22) and
we have assumed that all vehicles have the same velocity af@B). These facts illustrate some basic tradeoffs that designer
control saturation limits, given byn,a.x and umax, respec- faces in the control of vehicular platoons. In particular, the
tively. Typically, the sequencrn, max fnen, iS given in terms  set of control gains that satisfies (22) and (23) determines
of position initial conditions{r,(0)}nen, as {rn,max := the maximal position deviations and the rates of convergence
Yn |7 (0)|}nen,, Where sequence of numbefrs, > 1,Vn €  towards the desired trajectories. In other words, the position
No} determines the allowed overshoot with respect to thevershoots and settling times can be significantly increased in
desired position trajectory of the-th vehicle. Clearly, for this the presence of stringent requirements on velocity and control
choice of {ry, max neng, {7(0)}nen, Satisfies (20a). Based saturation limits. . ] o .

on (18a),r,(t) asymptotically goes to zero, so we only need For the example considered #lll with the initial condi-

to determine conditions under which (20a) is violated foitions of the form

finite non-zero times. If (18a) achieves an extremum for some; 0) = v, VneEN

t, € (0, o0), the absolute value of, at that point is given " & 0

by: 0 n =0,
. —(mL+Y"_8) nefl,...,N}, @4
P 2l g ldal _ [a(0)] (0= . B
pra(E)] = rlemrete < ldnl o + O] v
Pn = pn Pn — (TLL =+ Ek:lsk) n > ]\/v7
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condition (21) is always satisfied, which implies that thewhere {9, := ¢,, v, := €,}. In particular, this system can
largest deviation for all vehicles from their desired absobe stabilized by the following feedback
lute positions takes place d@t = 0. Therefore, the chosen

initial conditions do not impose any lower bounds on the 5 — _ i(aoﬁo + bowo) (29a)
control gains. On the other hand, whereas conditions (22) Qo ’

and (23) do not put any constraints gp, they respectively n L n

dictate the following upper bounds ofip,}nen: pn < i =0 [[ax = ﬂ—(amk +brv) [ @, (29b)
{Vmax/ | 0_ Skl 7 € {1,..., N}; Vmax/|>n_ySk|, n > k=1 k=1 1k i=k

N}, andpn < {vumax/[252086 no€ AL s NE - with g0 = Bi/(an + Br), provided that{ 8, # 0, Vn € N}.
\ /umx/|z£’:15k‘7 n > N}. In particular, the following It is noteworthy that, if parameters,, and 3,, are such that
choice of {pn }ner {an := a = const., 3, :=0 = const., Vn € N}, then con-
i troller (29) has the same properties as controller (6a,7). For the
same choices of design parametéss, }.cn, and {b, }neng,
. { OnUmax OnUmax } these two control strategies are only distinguished by the
min | n < N,

IS Skl I2r_, Sk regions from where the states of systems (3) and (28) have to
— - - (25) be brought to the origin. Namely, due to different formulations
. OnVUmax Trlimax of control objectives, the initial states of system (3) may
min AR AN = N, occupy a portion of the state-space that is significantly larger
k=1°F k=1°k

than a region to which the initial conditions of system (28)
with {0 < on <1, 0 < on <1, Vn € N}, clearly satisfies the maximal deviations from the desired absolute trajectories

belong. In the former case, this region is determined by

the above requirements. Figure 4 illustrates the solution ait ¢ = 0, whereas, in the latter case, it is determined by
system (16,17) for initial conditions determined by (24) withthe precision of measurement devices, that is their ability to
N =50andS, = 0.5, foreveryn € {1,..., N}. The control vyield an accurate information about the initial positions and
gains are chosen using (25) withax = umax = 5, {on =  velocities. As illustrated if 111, the initial conditions may have
1, o, = 0.8, ¥n € N}, to prevent reaching imposed velocity an unfavorable scaling with discrete spatial variabjavhich
and control saturation limits. The dependence of these gaimsay result in the very large initial position deviations (and
on discrete spatial variable is also illustrated in Figure 4.  consequently, a large amount of the initial control effort) for

Thus we have shown that controller (17) with the gaindargen’s, unless the size of the initial conditions is explicitly
satisfying (21), (22), and (23) precludes saturation in botlaccounted for. We have shown §nlV how to generate the
velocity and control and takes into account the desired qualitipitial condition dependent trajectories around which the states
of position transient response. However, this control strategy if vehicular platoon can be driven to zero without extensive
unsafe, since it does not account for the inter-vehicular spaase of control effort and large position and velocity overshoots.
ings. Because of that, ifi V we redesign controller (6a,7) by  Using the definition ofii,,, we finally give the expressions
incorporating the constraints imposed by (20) in the synthesi$or {u,, }nen,

Un = Un + Un, (30)

V. CONTROL WITHOUT REACHING SATURATION where@,, andi,, are respectively given by (17) and (29). We
mark tha{u,, = 4., Vn € No} if perfect information about

e initial conditions is available. The only role ¢fi, }»en,

is to account for the discrepancies in the initial conditions due
to measurement imperfections.

We again consider system (1), and introduce an erro[ﬁ
variable of the form

en(t) = anCa(t) + Buxa(t), n€No, (26) Asymptotic convergence @k, xn, ¢, andy, to the origin
. for everyn € Ny can be easily established. Therefore, con-
where: {(a(t) = xn(t) — vat + nl — ra(t) = &a(t) = troller (30) provides operation within the imposed saturation

ra(t), n € Nob, {xn(t) = Ca(t) = Cu-1(t) = za(t) —  pounds and asymptotic convergence of the platoon of vehicles
Tp_1(t) + L — ro(t) + ra-1(t), n € N}, with ra(t) 9 'its desired cruising formation.

being defined by (18a,19)p,}nen, satisfying (21), (22), Simulation results of the platoon system withl vehicles

and (23), and parameterS, fneng and {fn}ner, having 3/~ —"100) using controller (30) with{ao = 1, an =

the properties discussed if Il. The initial conditions on =1,Vn e {1 MY}, {an = 1, by = 2, Vn €
these two variables and their first derivatives are given by?(’)l ..., M}} are shown in F'igurne 5. The measured initial

{¢n(0) = @n(0) — 2a(0) =: pn, n € No}, {¢a(0) = condition is given by (24) withN = 50 and S, = 0.5,
@n(0) — Zn(0) =t wn, n € No}t, {xn(0) = Gu(0) — for everyn € {1,..., N}, whereas the numbeys, and v,
Cn-1(0) = pn — pn-1, n € N}, {Xxn(0) = (.(0) — that determine the actual positions and velocitieg at 0
¢n-1(0) = v, — vp_1, n € N}, where{z,,(0),2,(0)}ren, are randomly selected. The rates of convergence towards the
and{z,(0), Z,(0) }new, represent the actual and the measure@rigin are chosen using (25) Withmax = umax = 5,
initial conditions, respectively. If perfect information about{e. = 1, 0 = 08, Vn € {1,...,M}}, to prevent

the initial positions and velocities is available, then clearlyeaching imposed velocity and control saturation limits, and
{in = vn =0, Vn € No}. However, since initial condition "po iS set tol. These convergence rates are shown in the far
uncertainties are always present we want to design a controlléght plot in Figure 4. Clearly, the desired control objective

to guard against them. is successfully accomplished with the quality of the transient

Double differentiation of (26) with respect to time yields response determined by the prescribed saturation bounds.

En = (an + Bn)(tn — iin) — Bultn_1 — Un_1) VI. CONCLUDING REMARKS
tn

. ~ The main purpose of this paper is to illustrate some funda-
= (an + fn) Batin—1,  n € No, 27 mental desigﬁ Iir?ﬂtations angtgdeoﬁs in automated highway
ystems. We show that in very large platoons the designer
eeds to pay attention to the initial deviations of vehicles
from their desired trajectories when selecting control gains.
. We also establish explicit constraints on these gafos any
In Un, neNo, (28) given set of initial conditionsto assure the desired quality
On = —Bnlin—1 + (n + Bn)ln ’ of position transients without magnitude and rate saturation.
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whereu,, is given by (17). System (27) can be represented irﬁ
terms of its state-space realization of the form



u (1)

n

0 10 20 30 40 50 60

Fig. 4.

) 10 20 31() 40 50 60 0 20 40 60 80

Solution of system (16,17) for initial conditions determined by (24) wth= 50 and S, = 0.5, for everyn € {1,...,N}. The

control gains (far right plot) are determined using (25) Withax = Umax = 5, and{on =1, on = 0.8, Vn € N}.

n

d€ (ty/dt

40 50 60

Fig. 5. Simulation results of platoon witt01 vehicles (/ = 100) using controller (30) withwg = 1, {ap = 8n =1, Vn € {1,...,M}},
{an =1,bp, =2,Vn € {0,..., M}}. The measured initial condition is given by (24) with= 50 andS,, = 0.5, for everyn € {1,..., N},
whereas the numbeys, andv,, that determine the actual initial condition are randomly selected.

These requirements are used to generate the trajectories arouf@d ——, “A formation flight experiment,”IEEE Control Systems

which the states of the platoon system are driven towards their
desired values without the excessive use of control effort.
Ongoing research effort is directed towards the design of
robust controllers for vehicular platoons with favorable archi-
tecture. The main drawback of the control strategy employe
in this paper is that it only guards against the initial conditio
uncertainties. The robust design will also provide satisfactory

performance in the presence of external disturbances and un-
modelled dynamics. Sensitivity of distributed control strategie§l2]

to communication noise and delays is another topic worth
considering.
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