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Abstract— In this paper, we consider observer design for a
towed seismic cable, attached to a depth controller at one
end and with a prescribed motion at the other. Based on
a finite number of measurements, a globally asymptotically
stable observer is proposed. Locally, the proposed observer is
exponentially stable. The stability analysis of the observer is
based on Lyapunov theory. The existence and uniqueness of
the solutions of the observer are based on semigroup theory.
The implementation of the observer requires at least two
measurements: The position of the cable, and the slope of
the cable at the location of the depth controller.

I. INTRODUCTION

In surveying of hydrocarbon reservoirs under seabed,
offshore towing of seismic sensor arrays is extensively
used. These operations are accomplished by a towed cable
configuration which consists of a negatively buoyant lead-
in cable attached to a towing vessel at one end, and to a
neutrally buoyant cable called streamer at the other end. To
detect the reflected acoustic pulses from a towed acoustic
source, hydrophones are embedded in the streamers. To
obtain better stability and controllability of the motion of the
streamers, a surface tail buoy is attached to the downstream
end of the streamers. The length of the lead-in cable varies
typically between 200 m to 400 m, and the length of the
streamers is normally between 3000 m and 6000 m. In
special cases, the length of the streamers can be as long
as 10000 m. A typical towed cable configuration is shown
in Figure 1.

The dynamics of towed cables have been studied by
several authors [6],[9],[13],[14],[15],[19] and references
therein. Most of these consider towing of neutrally buoyant
cable with a free downstream end. Paidoussis [14],[15]
derived the equations of motion for the transverse displace-
ment of a towed neutrally buoyant element. Dowling [6]
determined the form of the linear displacements of a neu-
trally buoyant cylinder. Triantafyllou and Chryssostomidis
[19] developed a procedure for calculating the response of
a towed array of seismic hydrophones when a harmonic
excitation was applied at the upstream end.

Knowledge of the accurate position of the whole cable
is of great importance, not only for precise maneuvering,
monitoring and control-related concerns, but also because
accurate knowledge of the configuration of the cable is the
first step of other tasks, e.g. to prevent the streamers from
getting tangled during surveying operations. More impor-
tantly, this knowledge can be used to depress the influence
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of the signal noise of the recorded seismic data, which leads
to a better interpretation of recorded data and thus to a
more accurate depiction of the sea floor [17]. However, the
configuration of the cable can not be measured directly.
Since this requires continuous distribution of sensors along
the whole cable, which is not possible in practice. Typically,
there is a finite number of sensors collocated with the
depth controllers. So to get information on the position of
unmeasured points on the cable, we need an observer. The
main purpose of an observer is to estimate unmeasured
physical quantities, e.g. position, velocity etc., based on
available measurements. In this paper, we present one such
observer.

Observer design based on Lyapunov theory is well known
and widely used for both linear systems and nonlinear
systems. Balas [1] considered observer design for linear
flexible structures described by FEM. Demetriou [4] pre-
sented a method for construction of observer for linear
second order lumped and distributed parameter systems
using parameter-dependent Lyapunov functions. Kristiansen
[10] applied contraction theory [11] in observer design for a
class of linear distributed parameter systems. The structural
damping forces were included in the last two cases. Hence,
exponentially stable observers can easily be designed.

In this paper, we consider observer design for a part
of a cable towing configuration shown in Figure 1. We
consider a streamer, which is attached to a depth controller
at one end, and has a prescribed motion at the other (Figure
2). The equation of motion for the seismic streamer is in
the form of a nonlinear partial differential equation (PDE),
adopted from [14]. The dynamics of the depth controller
are described by an ordinary differential equation (ODE).
Based on a finite number of measurements, a globally
asymptotically stable observer is designed. Locally, the
proposed observer is exponentially stable. The stability
analysis of the observer is based on Lyapunov theory. The
existence and uniqueness of the solutions are established
using semigroup theory.

The paper is organized as follows. First, a model of
the towed seismic cable is presented. Then, a globally
asymptotically stable observer is designed. After that, we
consider the existence and uniqueness (and stability) of the
solutions of the observer.

II. SYSTEM MODEL

Neglecting the bending stiffness and the material damp-
ing, the equation of motion for a neutral, flexible cylinder
with small transverse excitations in the axial flow is given



Fig. 1. A typical towed cable configuration.

by the nonlinear model [14],

mwtt = (Twx)x − (2aUwt)x

−Fn (α) , x ∈ ]0, L[ (1)

Mwtt = −Twx + 2aUwt + τ , x = L (2)

w = W0 + A0 sin (ωt) , x = 0 (3)

w (x, 0) = w0 (x) , wt (x, 0) = v0 (x) , x ∈ [0, L] (4)

where

m = ρc + a =
ρwπd2

4
· (Cm + Ca) (5)

T (x) = T0 + Ft · (L − x) − Bh − aU2 (6)

B = ρwgπ
d2

4
(7)

Ft =
1
2
ρwπdCfU2 (8)

β =
1
U

wt + wx (9)

α = arctanβ (10)

Fn (α) = Fn1 sinα + Fn2 sin α |sin α| (11)

where the nonlinearity is due to Fn (α). Here, L is the
length of the cable, m is the sum of the structural and added
mass per unit length, ρc is the density of the cable per unit
length, a is added mass per unit length, Cm is the structural
mass coefficient, Ca is the added mass coefficient, ρw is
the density of the ambient water, d is the diameter of the
cable, T (x) is the effective tension of the cable at x, T0

is the aft tension, B is the buoyancy force per unit length,
h is the distance to the free surface, g is the gravitation
constant, Ft is the tangential hydrodynamic force per unit
length of the cable, Cf is the friction coefficient, α is the
angle of attach, Fn is the normal hydrodynamic force per
unit length of the cable, U > 0 is the tow speed of the
towing vessel, W0 is the initial position of the tow point,
A0 is the amplitude of the prescribed harmonic motion at
the upstream end (x = 0), M is the total mass of the depth
controller at the downstream end (x = L), w(x, t) is the
vertical displacement of the cable at point x and time t,
τ : R

+ → R is the control force generated by the depth
controller at x = L (see Figure 2). The subscripts (·)t

and (·)x denote the partial derivative respect to t and x,

respectively, and w0 and v0 are some given initial conditions
of the cable.

For further discussion on this topic and the model (1)-(3),
see [6],[9],[14],[13] and the references therein.

Remark 1: The model (1)-(3) has been considered by
numerous authors, e.g. [9],[14],[13]. One important term
has been excluded, namely, the instantaneous tangential
dragforce. This was pointed out by e.g. [6],[15]. The
complete model will therefore be considered in future work.

U
M

x
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Fig. 2. Towed seismic cable.

A. Assumptions and Problem Statements

Without loss of generality, we assume that

Assumption 1: The tension T (x) satisfies the inequality

0 < Tmin ≤ T (x) < ∞, x ∈ [0, L]

and T (x) � {a, m, U}, ∀x ∈ [0, L].

Assumption 1 does not cause any restriction in practice.
Typically, the tow speed of the towing vessel U is between
0 m/s and 2.5 m/s, the added mass a ≤ 1 and the structural
mass m ≤ 1, while the value of the tension T (x) is of order
103. Assumption 1 is thus reasonable.

Assume that the system (1)-(3) is perfectly known. We
consider the following two problems:

Problem 1: Design an observer for the system based on
the measurements: w(L, t) and wx(L, t), t ≥ 0.

Problem 2: In addition to the measurements in Problem
1, we have N −1 measurements of the position of the cable
and N − 1 measurements of the slope of the cable at x i,
where xi ∈ ]0, L[, i = 1, ..., N − 1. Design an observer for
the system based on these measurements.

III. OBSERVER DESIGN

Let us start with Problem 1. We denote the measurements
as follows: y1 = w|L and y2 = wx|L. Using the coordinate



error feedback [11], we propose the observer

w̄t = ŵt − 1
M

[H1y1

+H2Ty2] · δ(x − L), x ∈ ]0, L] (12)

mw̄tt = (T ŵx)x − (2aUŵt)x

−Fn (α̂) , x ∈ ]0, L[ (13)

Mw̄tt = −T ŵx + 2aUŵt + τ

−H1ŵt − H2T ŵxt, x = L (14)

ŵ = W0 + A0 sin (ωt) , x = 0 (15)

ŵ(x, 0) = ŵ0(x), ŵt(x, 0) = v̂0(x), x ∈ [0, L] (16)

where ŵ is the observed value of w, δ(·) denotes the Dirac
delta function, Fn (·) is given by (11), α̂ is similarly defined
as α, H1 and H2 are positive observer gains, and ŵ0 and
v̂0 are initial conditions of the observer. The observer (12)-
(15) is inspired from the work by [3],[12]. Combination of
(12) and (13)-(14) gives the observer dynamics

mŵtt = (T ŵx)x − (2aUŵt)x

−Fn (α̂) , x ∈ ]0, L[ (17)

Mŵtt|L = −T ŵx + 2aUŵt

−H1w̃t − H2T w̃xt + τ (18)

ŵ|0 = W0 + A0 sin (ωt) (19)

where w̃ = ŵ − w denotes the observer error. Subtracting
(17)-(19) by (1)-(3) gives the observer error dynamics

mw̃tt = (T w̃x)x − (2aUw̃t)x

−F̃n , x ∈ ]0, L[ (20)

Mw̃tt|L = −T w̃x − H̃1w̃t − H2T w̃xt (21)

w̃|0 = 0 (22)

where

H̃1 = H1 − 2aU (23)

F̃n = Fn(α̂) − Fn (α) (24)

To analyse (20)-(22), we define the Lyapunov function

E(t, w̃t, w̃x) = E1 + E2 + E3 (25)

where

E1 =
1
2

(M w̃t|L + H2 T w̃x|L)2

M + H̃1H2

E2 =
1
2

∫ L

0

[
T (x) + 2aU2 − mU2

]
w̃2

x dx

E3 =
1
2
mU2

∫ L

0

(
1
U

w̃t + w̃x

)2

dx

Note that due to Assumption 1, E2 > 0, ∀w̃x �= 0.
Differentiation of E1, E2 and E3 with respect to time along

the solution trajectories of (20)-(22) gives

Ė1 = − w̃tT w̃x|L − MH̃1 ( w̃t|L)2

M + H̃1H2

− H2 (T w̃x|L)2

M + H̃1H2

Ė2 =
∫ L

0

[
T (x) + 2aU2 − mU2

]
w̃xw̃xt dx

Ė3 = −
∫ L

0

[
T (x) + 2aU2 − mU2

]
w̃xw̃xt dx

+ w̃tT w̃x|L +
[
1
2
mU − aU

]
( w̃t|L)2

+
U

2
w̃xT w̃x|L − U

2
w̃xT w̃x|0

+
U

2

∫ L

0

dT

dx
w̃2

x dx − U

∫ L

0

(
1
U

w̃t + w̃x

)
F̃ndx

where integration by parts has been successively applied.
Note that dT/dx = −Ft < 0. Hence, we get

Ė = −
[

H̃1M

M + H̃1H2

− 1
2
mU

]
( w̃t|L)2

−
[

H2

M + H̃1H2

− U

2 T |L

]
(T w̃x|L)2

−aU ( w̃t|L)2 − U

2
w̃xT w̃x|0 −

FtU

2

∫ L

0

w̃2
x dx

−Fn2U

∫ L

0

(β̂ − β) (sin α̂ |sin α̂| − sin α |sin α|) dx

−Fn1U

∫ L

0

(β̂ − β) (sin α̂ − sin α) dx (26)

where α and β are given by (10)-(9), respectively, and
α̂ and β̂ are the corresponding observed values. It is
straightforward to verify that the last two terms of (26) are
non-positive for ∀β, β̂ ∈ R. Let the observer gains H̃1 and
H2 be selected according to

H̃1M

M + H̃1H2

≥ 1
2
mU (27)

H2

M + H̃1H2

>
U

2 T |L
(28)

Hence, the first two terms of (26) become negative. Thus,
we get

Ė(t, w̃x, w̃t) < 0, t ≥ 0, ∀ {w̃x, w̃t} �= 0

According to Lyapunov’s stability theorem, the origin
(w̃x, w̃t) = (0, 0) of (20)-(22) is globally asymptotically
stable. Using the inequality

w̃(x, t)2 ≤ L

∫ L

0

w̃x(x, t)2dx, x ∈ [0, L]

which a simple consequence of integration by parts and the
boundary condition (22), it follows that w̃ = 0 is asymp-
totically stable. Hence, the origin (w̃, w̃x, w̃t) = (0, 0, 0) of
(20)-(22) is globally asymptotically stable.



The angle of attach α can locally be approximated as

sinα ≈ β =
1
U

wt + wx (29)

Using (29) in (26) gives

Ė = −
[

H̃1M

M + H̃1H2

− 1
2
mU

]
( w̃t|L)2

−
[

H2

M + H̃1H2

− U

2 T |L

]
(T w̃x|L)2

−aU ( w̃t|L)2 − U

2
w̃xT w̃x|0 −

FtU

2

∫ L

0

w̃2
xdx

−Fn1U

∫ L

0

(
1
U

w̃t + w̃x

)2

dx

−Fn2U

∫ L

0

(
β̂ − β

)(
β̂

∣∣∣β̂∣∣∣ − β |β|
)

dx

Thus, there exists a constant C > 0 such that

Ė(t) ≤ −C · E(t), t ≥ 0

Hence, the origin (w̃, w̃x, w̃t) = (0, 0, 0) of (20)-(22) is
locally exponentially stable. Problem 1 is thus solved.

Theorem 1: Consider the observer error dynamics (20)-
(22). Assume that τ is chosen such that the solutions of
the closed loop system of (1)-(3) are well-posed. Let the
observer gains H1 and H2 be chosen according to (27)-
(28). Then the origin of (20)-(22) is globally asymptotically
stable and locally exponentially stable.

Consider now the problem 2. Let the measurements be
denoted as follows: y1 = w|L, y2 = wx|L, and yi1 = w|xi

,
yi2 = wx|xi

, i = 1, ..., N − 1. Then, we replace equations
(12)-(14) by

w̄t = ŵt −
N−1∑
i=1

hiyi1

m
· δ (x − xi)

−H1y1 + H2Ty2

M
· δ (x − L) , x ∈ ]0, L] (30)

mw̄tt = −
N−1∑
i=1

hi [ŵt + U (ŵx − yi2)] · δ (x − xi)

+ (T ŵx)x − (2aUŵt)x − Fn (α̂) , x ∈ ]0, L[ (31)

Mw̄tt|L = −T ŵx + 2aUŵt − H1ŵt − H2T ŵxt (32)

where δ(·) again denotes the Dirac delta function, and H1,
H2 and hi are positive observer gains. Using (30) in (31)
and (32), and subtracting the resulting equations by (1)-(3),
we get the observer error dynamics

mw̃tt = −
N−1∑
i=1

hi · [w̃t + Uw̃x] · δ (x − xi)

+ (T w̃x)x − (2aUw̃t)x − F̃n , x ∈ ]0, L[ (33)

Mw̃tt|L = −T w̃x − H̃1w̃t − H2T w̃xt (34)

w̃|0 = 0 (35)

where H̃1 and F̃n(·) are given by (23)-(24), respectively.
To analyse (33)-(35), we use the Lyapunov function (25).

It can be verified that the time derivative of the Lyapunov
function (25) along the solution trajectories of (33)-(35) is

Ė = (∗) −
N−1∑
i=1

hi ·
(
w̃t|xi

+ U w̃x|xi

)2

where (∗) is the expression given in equation (26). Let h i >
0, and choose H1 and H2 according to (27)-(28). Hence,
we obtain

Ė < 0, t ≥ 0, ∀ {w̃x, w̃t} �= 0

This shows that the origin (w̃x, w̃t) = (0, 0) of (33)-(35)
is globally asymptotically stable. Moreover, by replacing
the locally approximation (29), the locally exponentially
stability of the origin (w̃x, w̃t) = (0, 0) is established.
Problem 2 is thus solved.

Lemma 2: Consider the observer error dynamics (33)-
(35). Assume that τ is chosen such that the solutions of the
closed loop system of (1)-(3) are well-posed. Let h i > 0 ,
i = 1, . . . , N−1, and choose H1 and H2 according to (27)-
(28). Then the origin of (33)-(35) is globally asymptotically
stable and locally exponentially stable.

IV. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section, we consider existence and uniqueness of
the solutions of the proposed observers. This will be done
by using semigroup theory. First, we assume that the control
law τ is chosen such that the solutions of the closed loop
system of (1)-(3) are well-posed. Hence, by showing the
existence and uniqueness of the solutions of the observer
error dynamics (20)-(22) and (33)-(35), we get the existence
and uniqueness of the solutions of the proposed observers.

Consider the observer error dynamics (20)-(22). Let
w̃(x, t) be a regular solution of (20)-(22) and define w (t) =
(w̃(·, t), w̃t(·, t), w̃t(L, t)). Equations (20)-(22) can be com-
pactly written as

ẇ = Aw + F(w), w0 ∈ H (36)

where

Aw =
[
w̃2,

(T w̃1,x)x − 2aUw̃2,x

m
,− T w̃1,x|L

M

− H̃1w̃3 + H2 T w̃2,x|L
M

]T

, w ∈ D(A)

F(w) = −
[
0,

Fn(α̂) − Fn(α)
m

, 0
]T

, w ∈ H

where w = (w̃1, w̃2, w̃3), w0 denotes the initial condition
of the problem, and w̃j,x denotes ∂w̃j/∂x, j = 1, 2. For
notational simplicity, the symbol ˜ will be left out in the
following, i.e. w̃ will be replaced by w. The space H and
the domain of operator A are defined as

H = H1
0 (Ω) × L2(Ω) × R

D(A) =
{
w ∈ H2

0 (Ω) × H1
0 (Ω) × R

∣∣ w2|L = w3

}



where Ω = ]0, L[ and

L2(Ω) =
{

f |
∫

Ω

|f(x)|2 dx < ∞
}

Hk
0 (Ω) =

{
f | f, f ′, . . . , f (k) ∈ L2(Ω); f(0) = 0

}
In H , we define the inner-product

〈w,v〉H =
∫ L

0

(
T + 2aU2 − mU2

)
w1,x · v1,x dx

+mU2

∫ L

0

(w2

U
+ w1,x

)(v2

U
+ v1,x

)
dx

+

(
Mw3 + H2 Tw1,x|L

) (
Mv3 + H2 Tv1,x|L

)
M + H̃1H2

where v = (v1, v2, v3) ∈ H and w = (w1, w2, w3) ∈ H .
It can be verified that (H, 〈·, ·〉H) is a Hilbert space. Note
that the Lyapunov function (25) can be expressed as

E(t) =
1
2
〈w(t),w(t)〉H =

1
2
‖w(t)‖2

H (37)

Theorem 3: Let H1 and H2 be given by (27)-(28). Then,
A generates a C0-semigroup

{
eAt

}
t≥0

of contractions on
H , and this semigroup is exponentially stable.

Proof: With Lumer-Phillips theorem (see e.g.[16]), it
is straightforward to show that A generates a C0-semigroup
of contractions on H . Note that A is dissipative since,

Ė = 〈w,Aw〉H ≤ 0, t ≥ 0 (38)

The last part of the theorem follows from the energy
multipliers method and (Th. 4.1, p. 116, [16]). Consider
the following functional

W (t) = t · E(t) + W1 (t) (39)

where

W1 (t) = 2m

∫ L

0

xwtwx dx + 2aU

∫ L

0

xwxwx dx

and E (t) is given by (37). It is straightforward to verify
that there is a constant C > 0 such that the following holds

(t − C) · E(t) ≤ W (t) ≤ (t + C) · E(t), t ≥ 0 (40)

Moreover, it can be shown that the time derivative of (39)
along the solution trajectories of (36) (with F = 0) satisfies

Ẇ (t) ≤ 0, t ≥ t1 (41)

for sufficiently large time t1 > 0. By combining (40)-(41)
and (38), we get

E(t) ≤ t1 + C

t − C
E(0), tmax > max(C, t1)

i.e. E(t) decays as O(1/t), t > tmax. Since, ‖w(t)‖2
H =∥∥eAtw0

∥∥2

H
= 2E(t), it follows that the solution of (36) is

bounded for ∀t ≥ 0, and decays as O(1/
√

t), t > tmax.
Hence, there exists an integer p > 1 such that∫ ∞

0

∥∥eAtw(0)
∥∥p

H
dt < ∞, ∀w0 ∈ D(A)

According to (Th. 4.1, p. 116, [16]), there exist M ≥ 1 and
µ > 0 such that∥∥eAt

∥∥
H

≤ Me−µt, t ≥ 0, ∀w0 ∈ D(A) (42)

Since D(A) = H , the inequality (42) holds for ∀w0 ∈ H .

To show the existence, uniqueness and stability of the so-
lutions of the abstract problem (36), we need the following
lemma:

Lemma 4: The operator A−1 exists and is compact; and
(λI− A)−1 is compact for ∀λ > 0. Moreover, the non-
linear operator F(·) is monotone, dissipative, and globally
Lipschitz on H .

Theorem 5: The abstract problem (36) has a unique mild
solution,

w(t;w0) = Z(t)w0 = eAtw0

+
∫ t

0

eA(t−ξ)F(Z(ξ)w0)dξ, t ≥ 0 (43)

for ∀w0 ∈ H , where
{
eAt

}
t≥0

is the linear C0-semigroup
generated by A and {Z(t)}t≥0 is the nonlinear semigroup
generated by the sum operator A + F(·). The unique mild
solution (43) tends asymptotically to zero as t → ∞ for
∀w0 ∈ H .

Proof: Since F is dissipative and globally Lipschitz,
it follows from (Th. 4.2, [18]) that (36) has a unique weak
solution w(t;w0) defined on R

+ for every w0 ∈ H .
To prove that the solution (43) tends asymptotically to

zero as t → ∞ for ∀w0 ∈ H , we apply (Th. 4, [5]).
This theorem requires that: i) A � − (A + F) is maximal
monotone and densely defined on H ; ii) 0 ∈ R(A), where
R(A) is the range of the operator A; iii) the operator
(λI + A)−1 is compact for some λ > 0, i.e. the solution of
(36) is precompact for some λ > 0.

Since A is an infinitesimal generator of a C0-semigroup
of contractions, it follows from Hiller-Yosida theorem (see
e.g. [16]) that −A is maximal monotone. From Lemma 4,
it follows that F is continuous monotone. Thus, by (Th.
1 and Prop. 3.15, [20]) A defined on H is also maximal
monotone on D(A) = D(A). Moreover, since D(A) = H
(since A generates a C0-semigroup of contractions on H),
it follows that D(A) = H . The condition i) is thus satisfied.

It can be verified that 0 ∈ R(A), which can simplest be
shown by using a contradiction argument, i.e. assume that
0 /∈ R(A), and show that this assumption is not true.

Using the fact that A and F are dissipative, it can be
shown that (λI + A)−1 is a compact operator for all λ > 0.

By (Th. 4, [5]), −A generates a nonlinear semigroup
{Z(t)}t≥0 on H . The unique mild solution of the problem
(36) is given by (43). According to (Th. 4, [5]), the
mild solution (43) tends to a compact subset Ω(w0) ⊂
{w ∈ H | ‖w‖H ≤ ‖w0‖H}, as t → ∞. This subset is
Z(t)-invariant. So to prove that every solution of (36)
converges to zero as t → ∞, we have to show that
Ω(w0) = {0}.



Assume that w0 ∈ D(A). In this case Ω(w0) ⊂ D(A),
and the solution w(t) is a strong one, i.e. w(t;w0) is
differentiable and w(t;w0) lies in the set D(A) for ∀t ≥ 0.
Let v ∈ Ω(w0). Since Ω(w0) is Z(t)-invariant, the
following holds

v(t) =
1
2
‖Z(t)v‖2

H =
1
2
‖v‖2

H , ∀t ∈ R
+

Differentiation of v(t) along the solutions of (36) gives

d

dt
v(t) = 〈Z(t)v,AZ(t)v〉H + 〈Z(t)v,F(Z(t)v)〉H

= 0

Using the dissipativity of A, we get

F(Z(t)v) = 0, ∀t ∈ R
+

From (43), we get Z(t)v = eAtv (i.e. Ω(w0) is eAt-
invariant). Now, using the fact that Z(t)v = eAtv converges
exponentially to zero (from Theorem 3), we get v = 0 and
Ω(w0) = {0} for ∀w0 ∈ D(A). Further, since D(A) = H
and {Z(t)}t≥0 is a contraction semigroup on H , it follows
that Ω(w0) = {0} for ∀w0 ∈ H .

Finally, let us consider the existence, uniqueness and sta-
bility of the solutions of the observer error dynamics (33)-
(35). Again, let w̃(x, t) be a regular solution of (33)-(35)
and define w (t) = (w̃(·, t), w̃t(·, t), w̃t(L, t)). Equations
(33)-(35) can be compactly written as

ẇ = Aw + Bw + F(w), w0 ∈ H (44)

where

Bw =

[
0,−

n−1∑
i=1

hi

m
(w̃2 + Uw̃1,x) · δ(x − xi), 0

]T

for ∀w ∈ H . It is straightforward to show that B is
monotone, dissipative and globally Lipschitz. Hence, we
have the following result.

Lemma 6: The abstract problem (44) has a unique mild
solution,

w (t;w0) = Z(t)w0 = eAtw0

+
∫ t

0

eA(t−ξ)BZ(ξ)w0 dξ

+
∫ t

0

eA(t−ξ)F(Z(ξ)w0) dξ, t ≥ 0 (45)

for ∀w0 ∈ H . The unique mild solution (45) tends asymp-
totically to zero for ∀w0 ∈ H .

V. CONCLUSION

In this paper, we studied observer design for a seismic
streamer, attached to a depth controller at the downstream
end and with a prescribed motion at the upstream end.
Based on a finite number of measurements, a globally
asymptotically stable observer is designed. Locally, the
proposed observer is exponentially stable. The stability

analysis of the observer is based on Lyapunov theory. The
existence and uniqueness of the solutions of the observer
are based on semigroup theory. The stability analysis of
the observer based on semigroup theory has also been
discussed. There is agreement between the results obtained
by Lyapunov theory and semigroup theory.
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