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Abstract— Systems subject to nonholonomic constraints but does not consider optimization nor constraints ex-
or nonintegrable conservation laws may be modeled as plicitly. As a result, the on-line computation requirement
driftless nonlinear control systems. Such systems are not is much reduced. The motivation of this approach is

stabilizable using continuous time-invariant state feedback. b d th ol ina f hol . i .
Time varying or piecewise continuous feedback are the ased on path planning for nonholonomic systems using

only stabilization strategies currently available. This paper & gradient-type of iteration [3]-[5]. Though the lin-

presents a new feedback stabilization algorithm for this earized system about an equilibrium is not controllable,
class of systems by choosing the control action based on athe system linearized about a finite trajectory (result-
gradient matrix to reduce the predicted state error. This ing in a linear time varying system) is almost always

approach is similar to the model predictive control but trollable. Thi h tended t del
does not consider optimality nor constraints explicitly. As controliable. IS scheme was exiended 1o a moae

a result, the on-line computation load is greatly reduced. Predictive implementation in [6], in which the look-
Existing stability analysis techniques for model predictive ahead control vector is updated by a Newton descent

control are not directly applicable due to the lack of local  step based on the predicted error. Using linearized time
stabilizability. We show that under the full rank condition varying system in a Newton iteration is also employed

of a gradient matrix, the closed loop system is globally . . .
asymptotically stable. Examples of several nonlinear con- in an NMPC scheme introduced in [7]. However, here

trol systemsare included to illustrate the proposed method. We only require improvement of the predicted state error
instead of convergence of this error to zero.
Existing stability analysis techniques in NMPC are
not directly applicable to our gradient based control
Control systems subject to nonholonomic constraintscheme since the optimization index is not positive
such as the wheel no-slip constraint in vehicles, or nontefinite (it is zero over the entire prediction horizon)
integrable conservation laws, such as the conservatigihd the system is not locally stabilizable. The goal of
of angular momentum in multi-body systems in space ahis paper is to show globally asymptotically stability of
free fall, may be modeled as a continuous time driftlesghe desired state and to demonstrate the effectiveness of
nonlinear control system [1]: this controller through a number of nonlinear examples.
& =g(zx)u, z€R"ueR™ 1) The only assur_n_ptions that are required are the_ uniform
full rank condition of a gradient matrix (equivalent
Forn > m, this system linearized about any state is noto the controllability of the system linearized about
controllable, which means that it cannot be stabilizethe predicted state trajectory) and the boundedness of
by a linear controller. Furthermore, there does not evethe evolution of the predicted control sequence by the
exist a continuous time-invariant stabilizing feedbaclpredicted state error.
control law [2]. For these reasons, this class of nonlinear To illustrate the proposed nonlinear control scheme,
systems is considered to be challenging in terms afe have included several nonlinear control examples:

I. INTRODUCTION

control design. kinematic control of a unicycle (used in [8]), a so-
In this paper, we consider the finite difference approxealled double-chain system with 5 states and 3 inputs,
imation of (1): an under-actuated satellite orientation control using two

) angular velocities as the control inputs, and a nonlinear

affine system used in [9] to demonstrate the lack of
where t, is the sampling period. We present a newobustness in NMPC with the terminal constraint and
feedback stabilization scheme that chooses the contralshort horizon. Due to the space limitation, all proofs
action to reduce the predicted state error. This approaetne omitted. The complete version of the paper including
is similar to nonlinear model predictive control (NMPC)all proofs may be found in [10].

Tpy1 = Tk + tog(xr)u,
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Notation: We use||z|| to denote the Euclidean norm. where Ay, ,, is an (mM)-vector to be chosen.
All matrix norms are induced 2-norms (maximum sin- 2) Generate the control action;, from v, ,,:
gular value). The notation aof,, is used for then x m
. : . : _ k) _
identity matrix and0,,, denotes then x m zero matrix. up = vy = Avy (8)
Givenf: R" — R™, ag—(gf) denotes then x n gradient

. af(2) af(z) whereA = [ I, 0, ... O ]
matrix, and=5;~ denotes=5, r=z 3) Update of M-step-ahead sequence vector:
Il. MAIN RESULT LB+ 8
A. Overview of Algorithm b 2
We will state our algorithm for a general discrete time- Upi1, v = (k:+1) = (3k) = T'vy, p+Puy
invariant nonlinear control system: Ué\g—b Ups
+ ~
U U
Try1 = f(2r, ur) 3) M (9)
wherez), € R™, uy € R™, and f is smooth in both where i, is an m-vector to be chosen, an :
variables. Letz; € R™ be the desired closed loop Rm_'M — R™M and @ : R™ — R™M are
equilibrium state that satisfies defined as
Tq = f(.%‘d, ’LLd) (4) Om [m Om Om O
for some input vector, € R™. Note that for discretized O Im O, : /
driftless nonlinear systems (2); = 0. D=1 S R £ 0
We shall address the following full state feedback 0 I Im
stabilization problem: 0 o m
For eachk > 0, find u,, € R™ in terms of cur-
rent and past state Vecto@i 11 < k;}, such If the Newton algorithm is used in Step 1, then the
thatz, is an asymptotically stable equilibrium. control sequence update law is given by
At time k, given the stater;, and an)/-step-ahead
g k P Auy = —7]kD;2€k,Iwy (10)

control sequencey;, ,, € R™ x ... x R™,
’ —

0 (Tr,uy, )

M times where Dy, := € R™*(mM) s the gradient

Ou,,
_ [ T T T ®) of the predicted state with respect to thé-step-ahead
Ukm = | uy s Upy ’ control sequenceD,i is the Moore-Penrose pseudo-
the M-step-ahead error is defined as inverse (_)f Dk,_and e Wil be. determingd to satisfy
Assumption 1 in the next section. If (3) is a linear time
erM = Orr (T, Uy pr) — Ta (6) invariant (LTI) system, then Algorithm 1 with (10) is an
whereg,, denotes the state at the end/df steps with (mM)_th order linear compensator which degenera_tes to
the initial stater, and input sequence, . a static full state feedback faf, = 1. If M = n, it

The proposed algorithm is simple to describe: at thBecomes a dead beat controller with gain given by the
kth time step, the\/-step-ahead control sequenag, ;. Ac;kgrman formula placing all closed loop poles at the
is refined tov,, ,, based on thé/-step-ahead prediction 9N . .
error, exr (€.9., by using Newton descent, steepest If Dy is of full row rank (i.e., rankn), then D, is
descent, Levinson-Marquardt, etc.); the fisstelements  JUSt the right inverse oDy
of v are used as the actual contral,; thenv T TN—1
is sﬁff])[/[ed forwarded with the last: elements repllcé]\ged D’Tﬁ = D (Dx Dy )™ (11)
by an appropriately chosen vectar,. A more detailed | terms of implementation, the update law (10) can be
description is now given below. performed more efficiently by solving a matrix equation

Algorithm 1: Choose an initiall/ -step-ahead control jnstead of computing the pseudo-inverse explicitly [11]:
sequencey ;-

For k=0,1,..., DyAuy, ny = —nrer,m- (12)

1) Refine the)M-step-ahead control sequeneg ,, If D, is very large (e.g., due to a long prediction horizon
or large input and state dimensions), other efficient
numerical methods such as the matrix-free method used
in finite element analysis [12] may be employed to avoid
Ve = Up pp + Ay g (7)  explicit calculation and storage @d,.

T
o vy ar = [ vY")T v](v’j)T based on the
M-step-ahead predicted state erre; 5;:
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The gradient matrixDy, is related to the system 4) Finally, with u, ,, chosen to be continuous with
linearized about the predicted state trajectory (which is respect toxg, x4 IS stable in the sense of Lya-

a linear time varying system): punov. Combining with the global asymptotic con-
vergence in step 3¢, is a global asymptotically

Stppiv1 = Aibzpp + Bioul®,, sz, =0,  (13) stable equilibrium.

4 Of (@i, ulth) B Of (@i, ulth) 5

! oz o ou F

Dk = [AM—1-~-AlBO|~-~|B]\4—1]- (14) A
The full row rank condition onDy, is equivalent to the X B ]
controllability of the above linear time varying system. K
In fact, Dy, DI is precisely the controllability gramian of st €
this system. Givenz, the control sequences at which
Dy, loses rank are exactly the singular controls of the
optimal control problem for (3) with only the terminal ¢

state cost. These singularities have been shown to be
non-generic [5] for continuous time driftless systems in Fig. 1. Closed Loop System under Algorithm 1
the sense that the non-singular controls form a dense set
in C*°. In [13], a sufficient condition, called the strong
bracket generating condition, is derived for a driftles$- Asymptotic Convergence of the Predicted State Error
system to have only singular controls that are identically The first step of the stability proof is to show that the
zero. This condition is satisfied for the so-called unicycle\/-step-ahead prediction errar 5, converges to zero
model (see Sec. IlI-A), but is too stringent in generalunder the following assumption, which states that the
Singular controls for certain classes of driftless an@ombination ofA/-step-ahead control refinement and an
affine nonlinear systems (including multi-chain systemsjppropriate choice of;, will result in a decrease of the
are completely characterized in [14]. Singular controlg\/-step-ahead prediction error.
have also been considered in the context of mobile Assumption 1: For alk > 0, the following conditions
robots in [15]. hold:

With Algorithm 1, the closed loop system may be rep4. The M-step-ahead error under the refined -step-
resented as an interconnected system shown in Figureahead sequencey, ,,, satisfies the bound

P Trr1 = f(xr,ur), up = Avgp  (15) | onr (@, v pr) — @a| < Ak || Dnr (@, 2y 0r) — 24|
) L) pa(R) ARy a(R) (21)
K Biy = F@57, ML), &y =y (16) where )\, is a positive constantP > 0.

@’jr)l = rgg.’”, alf) = Uy 0 (17) 2. A control vectoriy, (in (9)) can be found to satisfy

Opar = Wons + NI TS (18) the following bound:

erM = :%E\l}) — x4 19) ||¢M+1(33k, (Vg ar> k) — fEdH < ag quM(CUk&k,M) —xq
22

Q: Wy =T + Plgler,nm). (20)

b

whereqy, is a positive constant.
We will use the following steps to show the closed loop?: The constants,, and . from (21)—(22) satisfy

asymptotic stability: k
1) We first show that under Assumption 1, which is Jim [T2e; = o0 (23)
essentially a full rank condition o®y,, Aug, s J=0
and @, may be chosen so that, ,; converges agA, < 1, forall k>0. (24)

asymptotically and monotonically.
2) We next show that under As§umpt|on 2, \.Nh'ChFor discretized driftless systems (2);, < 1. In fact,
imposes bounds ohu, ,, and i as a function we could also just choosg;, — uy — 0, anday — 1.
Of ex,nr, Uk converge; toua, andTQk’jM andvi 1 this case, Assumption 1 reduces to the uniform full
converge tou, := | uj o ug ] row rank condition onD;, (i.e., the minimum singular
3) From step 2y, andA4\") will be arbitrarily close value of Dy, is uniformly positive). If Dy, is of uniform
for k sufficiently large. By the continuity of, it  full row rank, thensn, may be updated by using a line
follows from (15)—(16) thatr,, s converges to search to ensur@; < 1 uniformly. This implies that

x%’? which in turn converges te,; from step 1.  Assumption 1.3 is satisfied with; A\, < 1 uniformly.
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It follows from Assumption 1 that thé/-step-ahead xy = z4. Suppose that Assumptions 1-2 hold. Thgn
error is non-increasing and converges to zero asymptas a globally asymptotically stable equilibrium.

ically. If the constant control sequenag; is not a singular
Lemma 1: Given the initialM-step-ahead control control, we can just choosaj(.o) = wy for all zo.
sequencey, ,, and the control law in Algorithm 1 that Otherwise, we may usag.o) = ug + an; wheren,

satisfies Assumpt'ions 1. Thep s converges to 0 as s g random vector bounded byn,|| < 1 anda is
k — oo and satisfies the bound, for &l j > 0: proportional to||zo — z4]|.

7j—1
lers sl < (H akﬂ,)\k“) lexasll . (25) I1l. SIMULATION RESULTS
i=0 We will present the results of applying Algorithm 1
a\p/ith the Newton update (10) to several nonlinear ex-
systems, ifDy, is of uniform full row rank, theney amples, mc_ludlng the k|nemat|c control of a unicycle, a
’ double-chain nonholonomic system, an under-actuated

converges to 0 exponentially. . . . ; :
Instead of the two-step approach in Assumption ;satellite orientation control, and a discrete time system

i.e., choosingAu based on (21) and; based on used in [9] to show the lack of robustness of conven-
.C., Yy M c

(22), we can chooséu,, ,,, ) together to satisfy the tional NMPC schemes, . . .
monotonically decreasihg requirement @y, In all the nonholonomic examples, we will consider
’ the unconstrained case as well as imposing an input

C. Asymptotic Convergence of the Control Signal  saturation constraint. Suppose a hard constraint<

We next show that the convergence of the predictetmax IS required for a given input channel, we will use
error implies the convergence af, ,/, v, ,;, anduy,.  the following transformation

As discussed earlier, for discretized driftless nonline

To this end, we assume thatu, ,, andiy in (19)—(20) . %
are bounded by the prediction errey, ;. u=s(v) = 5 max tan~" ( ) , (28)
Assumption 2: There exist positive constastand p T tmax
such that for allk > 0 and apply our algorithm withy as the input. Note that
with this transformation, an LTI system would become
HAMIC,]\4|| = Hyk:,M - Qk,]\l“ < 6 ||€k-7]\4|| (26) nonlinear.
lar —uall < pllernl - (27 The step sizen, in (10) is chosen with the

Amijo’s rule [16]. We start with an initial step size
0. The step size is repeatedly halved until either

ﬁ M (ke Wy py — hD;jek,M)H < ||¢M($kaﬂk,M)H or if

h < hmin in Which caseh is set to zero. Whe = 0,

the system essentially switches to the open loop control
using the control vectors in, ,,.

For the Newton update (10), the boundedness a
sumption onAwy, s, (26), is equivalent to the uniform
full row rank condition onD;, (which is also needed
for Assumption 1) sinceHD,i’ = 1/0min(Dy), where
Omin(Dg) is the minimum singular value ab;. Under
Assumptions 1-2, we can show thgt converges ta,;, A. Kinematic Model of Unicycle

andu, »; andu,, 5, both converge tay,, ask — oo. The kinematic model of a planar unicycle is com-

D. Asymptotic Convergence of the State monly used to represent mobile robots. Under the as-
sumption that the wheel does not slip, the kinematic

Given thatu, ,, converges tou,; and u; converges S
’ model is given by

to ug, we can show that;, ,; converges tcnég\’}), by
using the continuity off. This in turn shows thaty i=cosfuy, y=sinbu, 60=u (29)
converges tocg sinceey pr — 0 from Lemma 1. - ) )
Lemma 2: Given the control law in Algorithm 1. If Where (z,y,0) represent the position and orientation
Assumptions 1-2 hold, then for al € R™ andu, ,, € of the unicycle and(uy,us) the driving and steering

RM gy ask — oo. velocities.
) - We consider the finite difference discretization of the
E. Closed Loop Asymptotic Stability equation of motion witht, = 0.01sec. By calculating

The asymptotic stability of the desired statg re- the gradient matrixD;, in (14), it is straightforward to
quires stability in the sense of Lyapunov in additionshow that the singularity correspondsitpandu, being
to the asymptotic convergence. This can be shown iflentically zero for the entire prediction horizon. Since

the initial A/-step-ahead control sequence, ,;, is % and % are uniformly bounded inz, our control
appropriately chosen. scheme is globally asymptotically stable if the initial

Theorem 1: Consider the control law given in Algo-control sequence is not identically zero. We therefore
rithm 1 with Yo, v continuous inzg, and Up pr = Ug if choosezlo’M as a random vector with a small amplitude.
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To illustrate the parallel parking maneuver, the initiaboth the unconstrained case and the input constrained
state is chosen to hey = (0,5, 0). case with the saturation level &t 1, 1]. The predicted
First we consider the unconstrained problem with thetate error vs. the actual state error plots for the two cases
look-ahead horizons chosen to B¢ = 10. As shown are shown in Figure 4. In both cases, the predicted error
in Figure 2, the predicted state error converges mona@onverges monotonically, and the actual error converges
tonically. The actual state error increases initially buasymptotically. The convergence in the constrained input
eventually converges. The corresponding input trajectoryase takes about twice as long but the maximum state
is also shown. In general, when a smaller horizon igrror is much smaller.
used, the convergence is faster but with a larger contrc™ . a

effort.

Without the input constraint, the input can be very - \
large and renders the finite difference discretization i
invalid. We therefore apply the transformation (28) to
impose the input saturation constraint. With this con-
straint, the control signal becomes oscillatory, but the : e :
state still converges to zero, though over a longer period unconstrained input-constrained

(see Figure 3). Fig. 4. Double Chain Example: Convergence of predicted State
vs. actual state)M = 10, no input constraint VSumax = [1,1, 1]

C. Under-actuated Satellite System

Consider the orientation control of satellite using
only two of the angular velocities. Using the vector
guaternion representation, the continuous time equation
state input of motion is given by

0

Fig. 2. Unicycle Example: Convergence of predicted State vs. actual
state and input trajectory)/ = 10 1 5 Uy
= i(f:vx +\/1—||=||°I5) | w2 (31)

wherez = [ 21 zp w3 }T is the vector quaternion,
x> is the3 x 3 matrix representation of the vector cross
product, andu;, us) are the two angular velocities con-
sidered as the control variables. The equation of motion
ensures thatz(¢)|| < 1if |z(0)|] < 1. We discretize the
state input gqgation us'ing finite difference with, = 0.01sec. The

Fig. 3. Unicycle Example: Input trajectories fagax = [0.3,0.3], !n!t!al state is chosen to bﬁ_o =(0.1,0.1,0.707). The
M =10 initial control vector,u, ,;, is chosen to be all zeros.
The look ahead horizon i8/ = 10.

The predicted state error vs. the actual state error

B. Double-Chain System . ) . )
: . o __plots for the unconstrained input and input constrained
Certain nonholonomic systems occurring in practice,; [20,20] are shown in Figure 5. In both cases, the

can be transformed to the chain form (e.g., a multi-trailefy e gicted error converges monotonically, and the actual
system). We consider the following double-chain systergy o converges asymptotically. The convergence in the
where the depth of each chain is 2: constrained input case takes longer due to the input
1 = u1, T2 = U2, T3 = TauUr, Ly = U3, Ts = T4u1. constraint.

(30)
The singularity corresponds to when is identically
zero for the entire prediction horizon. We again dis- In [9], the following single input discrete time ex-
cretize the equation using finite difference with = ample is used to demonstrate the lack of robustness of
0.01sec. The initial state is arbitrarily chosen to beconventional NMPC schemes when a terminal constraint
xg = (-5,5,10,—20,8). The initial control vector is (the origin) is used together with a short horizav &
set to zero. Though this is a singular control, the initiaP):
predicted erroreq iz, is not in the null space oD},
therefore, the algorithm is able to proceed. We consider1, ., = Z1,(1 —ux), 2, = \/ I%k + ngulv (32)

D. A Nonlinear Example from [9]
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