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Abstract— Systems subject to nonholonomic constraints
or nonintegrable conservation laws may be modeled as
driftless nonlinear control systems. Such systems are not
stabilizable using continuous time-invariant state feedback.
Time varying or piecewise continuous feedback are the
only stabilization strategies currently available. This paper
presents a new feedback stabilization algorithm for this
class of systems by choosing the control action based on a
gradient matrix to reduce the predicted state error. This
approach is similar to the model predictive control but
does not consider optimality nor constraints explicitly. As
a result, the on-line computation load is greatly reduced.
Existing stability analysis techniques for model predictive
control are not directly applicable due to the lack of local
stabilizability. We show that under the full rank condition
of a gradient matrix, the closed loop system is globally
asymptotically stable. Examples of several nonlinear con-
trol systemsare included to illustrate the proposed method.

I. I NTRODUCTION

Control systems subject to nonholonomic constraints,
such as the wheel no-slip constraint in vehicles, or non-
integrable conservation laws, such as the conservation
of angular momentum in multi-body systems in space or
free fall, may be modeled as a continuous time driftless
nonlinear control system [1]:

ẋ = g(x)u, x ∈ Rn, u ∈ Rm. (1)

For n > m, this system linearized about any state is not
controllable, which means that it cannot be stabilized
by a linear controller. Furthermore, there does not even
exist a continuous time-invariant stabilizing feedback
control law [2]. For these reasons, this class of nonlinear
systems is considered to be challenging in terms of
control design.

In this paper, we consider the finite difference approx-
imation of (1):

xk+1 = xk + tsg(xk)uk, (2)

where ts is the sampling period. We present a new
feedback stabilization scheme that chooses the control
action to reduce the predicted state error. This approach
is similar to nonlinear model predictive control (NMPC)

but does not consider optimization nor constraints ex-
plicitly. As a result, the on-line computation requirement
is much reduced. The motivation of this approach is
based on path planning for nonholonomic systems using
a gradient-type of iteration [3]–[5]. Though the lin-
earized system about an equilibrium is not controllable,
the system linearized about a finite trajectory (result-
ing in a linear time varying system) is almost always
controllable. This scheme was extended to a model
predictive implementation in [6], in which the look-
ahead control vector is updated by a Newton descent
step based on the predicted error. Using linearized time
varying system in a Newton iteration is also employed
in an NMPC scheme introduced in [7]. However, here
we only require improvement of the predicted state error
instead of convergence of this error to zero.

Existing stability analysis techniques in NMPC are
not directly applicable to our gradient based control
scheme since the optimization index is not positive
definite (it is zero over the entire prediction horizon)
and the system is not locally stabilizable. The goal of
this paper is to show globally asymptotically stability of
the desired state and to demonstrate the effectiveness of
this controller through a number of nonlinear examples.
The only assumptions that are required are the uniform
full rank condition of a gradient matrix (equivalent
to the controllability of the system linearized about
the predicted state trajectory) and the boundedness of
the evolution of the predicted control sequence by the
predicted state error.

To illustrate the proposed nonlinear control scheme,
we have included several nonlinear control examples:
kinematic control of a unicycle (used in [8]), a so-
called double-chain system with 5 states and 3 inputs,
an under-actuated satellite orientation control using two
angular velocities as the control inputs, and a nonlinear
affine system used in [9] to demonstrate the lack of
robustness in NMPC with the terminal constraint and
a short horizon. Due to the space limitation, all proofs
are omitted. The complete version of the paper including
all proofs may be found in [10].



Notation: We use‖x‖ to denote the Euclidean norm.
All matrix norms are induced 2-norms (maximum sin-
gular value). The notation ofIm is used for them×m
identity matrix and0m denotes them×m zero matrix.
Givenf : Rn → Rm, ∂f(x)

∂x denotes them×n gradient

matrix, and∂f(z)
∂x denotes∂f(x)

∂x

∣∣∣
x=z

.

II. M AIN RESULT

A. Overview of Algorithm

We will state our algorithm for a general discrete time-
invariant nonlinear control system:

xk+1 = f(xk, uk) (3)

wherexk ∈ Rn, uk ∈ Rm, and f is smooth in both
variables. Letxd ∈ Rn be the desired closed loop
equilibrium state that satisfies

xd = f(xd, ud) (4)

for some input vectorud ∈ Rm. Note that for discretized
driftless nonlinear systems (2),ud = 0.

We shall address the following full state feedback
stabilization problem:

For eachk ≥ 0, find uk ∈ Rm in terms of cur-
rent and past state vectors,{xi : i ≤ k}, such
thatxd is an asymptotically stable equilibrium.

At time k, given the statexk and anM -step-ahead
control sequence,uk,M ∈ Rm × . . .×Rm︸ ︷︷ ︸

M times

,

uk,M =
[

u
(k)
1

T
. . . u

(k)
M

T
]T

, (5)

the M -step-ahead error is defined as

ek,M = φM (xk, uk,M )− xd (6)

whereφM denotes the state at the end ofM steps with
the initial statexk and input sequenceuk,M .

The proposed algorithm is simple to describe: at the
kth time step, theM -step-ahead control sequence,uk,M ,
is refined tovk,M based on theM -step-ahead prediction
error, ek,M (e.g., by using Newton descent, steepest
descent, Levinson-Marquardt, etc.); the firstm elements
of vk,M are used as the actual control,uk; then vk,M

is shifted forwarded with the lastm elements replaced
by an appropriately chosen vector,ũk. A more detailed
description is now given below.

Algorithm 1: Choose an initialM -step-ahead control
sequence,u0,M .

For k = 0, 1, . . .,

1) Refine theM -step-ahead control sequenceuk,M

to vk,M =
[

v
(k)
1

T
. . . v

(k)
M

T
]T

based on the
M -step-ahead predicted state error,ek,M :

vk,M = uk,M + ∆uk,M (7)

where∆uk,M is an (mM)-vector to be chosen.
2) Generate the control actionuk from vk,M :

uk = v
(k)
1 = Λvk,M (8)

whereΛ :=
[

Im 0m . . . 0m

]
.

3) Update ofM -step-ahead sequence vector:

uk+1,M =


u

(k+1)
1

...

u
(k+1)
M−1

u
(k+1)
M

 =


v
(k)
2
...

v
(k)
M

ũk

 = Γvk,M+Φũk

(9)
where ũk is an m-vector to be chosen, andΓ :
Rm·M → Rm·M and Φ : Rm → Rm·M are
defined as

Γ :=


0m Im 0m . . . 0m

0m Im
... 0m

...
...

...
...

0m Im

0m . . . 0m

 , Φ :=


0m

...
0m

Im

 .

If the Newton algorithm is used in Step 1, then the
control sequence update law is given by

∆uk,M = −ηkD†
kek,M , (10)

whereDk :=
∂φM (xk,u

k,M
)

∂u
k,M

∈ Rn×(mM) is the gradient
of the predicted state with respect to theM -step-ahead
control sequence,D†

k is the Moore-Penrose pseudo-
inverse of Dk, and ηk will be determined to satisfy
Assumption 1 in the next section. If (3) is a linear time
invariant (LTI) system, then Algorithm 1 with (10) is an
(mM )th order linear compensator which degenerates to
a static full state feedback forηk = 1. If M = n, it
becomes a dead beat controller with gain given by the
Ackerman formula placing all closed loop poles at the
origin.

If Dk is of full row rank (i.e., rankn), then D†
k is

just the right inverse ofDk:

D†
k = DT

k (DkDT
k )−1. (11)

In terms of implementation, the update law (10) can be
performed more efficiently by solving a matrix equation
instead of computing the pseudo-inverse explicitly [11]:

Dk∆uk,M = −ηkek,M . (12)

If Dk is very large (e.g., due to a long prediction horizon
or large input and state dimensions), other efficient
numerical methods such as the matrix-free method used
in finite element analysis [12] may be employed to avoid
explicit calculation and storage ofDk.
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The gradient matrixDk is related to the system
linearized about the predicted state trajectory (which is
a linear time varying system):

δxk+i+1 = Aiδxk+i + Biδu
(k)
i+1, δxk = 0, (13)

Ai :=
∂f(xk+i, u

(k)
i+1)

∂x
, Bi :=

∂f(xk+i, u
(k)
i+1)

∂u
Dk = [AM−1 . . . A1B0| . . . |BM−1] . (14)

The full row rank condition onDk is equivalent to the
controllability of the above linear time varying system.
In fact,DkDT

k is precisely the controllability gramian of
this system. Givenxk, the control sequences at which
Dk loses rank are exactly the singular controls of the
optimal control problem for (3) with only the terminal
state cost. These singularities have been shown to be
non-generic [5] for continuous time driftless systems in
the sense that the non-singular controls form a dense set
in C∞. In [13], a sufficient condition, called the strong
bracket generating condition, is derived for a driftless
system to have only singular controls that are identically
zero. This condition is satisfied for the so-called unicycle
model (see Sec. III-A), but is too stringent in general.
Singular controls for certain classes of driftless and
affine nonlinear systems (including multi-chain systems)
are completely characterized in [14]. Singular controls
have also been considered in the context of mobile
robots in [15].

With Algorithm 1, the closed loop system may be rep-
resented as an interconnected system shown in Figure 1:

P : xk+1 = f(xk, uk), uk = Λvk,M (15)

K : x̂
(k)
j+1 = f(x̂(k)

j ,Λû
(k)
j ), x̂

(k)
0 = xk (16)

û
(k)
j+1 = Γû

(k)
j , û

(k)
0 = uk,M (17)

vk,M = uk,M + ∆uk,M (ek,M ), (18)

ek,M = x̂
(k)
M − xd (19)

Q : uk+1,M = Γvk,M + Φũk(ek,M ). (20)

We will use the following steps to show the closed loop
asymptotic stability:

1) We first show that under Assumption 1, which is
essentially a full rank condition onDk, ∆uk,M

and ũk may be chosen so thatek,M converges
asymptotically and monotonically.

2) We next show that under Assumption 2, which
imposes bounds on∆uk,M and ũk as a function
of ek,M , uk converges toud, anduk,M andvk,M

converge toud :=
[

uT
d . . . uT

d

]T
.

3) From step 2,uk andΛû
(k)
j will be arbitrarily close

for k sufficiently large. By the continuity off , it
follows from (15)–(16) thatxk+M converges to
x̂

(k)
M which in turn converges toxd from step 1.

4) Finally, with u0,M chosen to be continuous with
respect tox0, xd is stable in the sense of Lya-
punov. Combining with the global asymptotic con-
vergence in step 3,xd is a global asymptotically
stable equilibrium.

Fig. 1. Closed Loop System under Algorithm 1

B. Asymptotic Convergence of the Predicted State Error

The first step of the stability proof is to show that the
M -step-ahead prediction error,ek,M , converges to zero
under the following assumption, which states that the
combination ofM -step-ahead control refinement and an
appropriate choice of̃uk will result in a decrease of the
M -step-ahead prediction error.

Assumption 1: For allk ≥ 0, the following conditions
hold:
1. TheM -step-ahead error under the refinedM -step-
ahead sequence,vk,M , satisfies the bound∥∥φM (xk, vk,M )− xd

∥∥ ≤ λk

∥∥φM (xk, uk,M )− xd

∥∥
(21)

whereλk is a positive constant,P > 0.
2. A control vectorũk (in (9)) can be found to satisfy
the following bound:∥∥φM+1(xk, (vk,M , ũk))− xd

∥∥ ≤ αk

∥∥φM (xk, vk,M )− xd

∥∥ ,
(22)

whereαk is a positive constant.
2. The constantsλk and αk from (21)–(22) satisfy

lim
k→∞

k∏
j=0

λjαj = 0 (23)

αkλk ≤ 1, for all k ≥ 0. (24)

For discretized driftless systems (2),αk ≤ 1. In fact,
we could also just choosẽuk = ud = 0, andαk = 1.
In this case, Assumption 1 reduces to the uniform full
row rank condition onDk (i.e., the minimum singular
value ofDk is uniformly positive). IfDk is of uniform
full row rank, thenηk may be updated by using a line
search to ensureλk < 1 uniformly. This implies that
Assumption 1.3 is satisfied withαkλk < 1 uniformly.
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It follows from Assumption 1 that theM -step-ahead
error is non-increasing and converges to zero asymptot-
ically.

Lemma 1: Given the initialM -step-ahead control
sequenceu0,M and the control law in Algorithm 1 that
satisfies Assumptions 1. Thenek,M converges to 0 as
k →∞ and satisfies the bound, for allk, j ≥ 0:

‖ek+j,M‖ ≤

(
j−1∏
i=0

αk+iλk+i

)
‖ek,M‖ . (25)

As discussed earlier, for discretized driftless nonlinear
systems, ifDk is of uniform full row rank, thenek,M

converges to 0 exponentially.
Instead of the two-step approach in Assumption 1,

i.e., choosing∆uk,M based on (21) and̃uk based on
(22), we can choose(uk,M , ũk) together to satisfy the
monotonically decreasing requirement onek,M .

C. Asymptotic Convergence of the Control Signal

We next show that the convergence of the predicted
error implies the convergence ofuk,M , vk,M , and uk.
To this end, we assume that∆uk,M andũk in (19)–(20)
are bounded by the prediction error,ek,M .

Assumption 2: There exist positive constantsβ andρ
such that for allk ≥ 0∥∥∆uk,M

∥∥ =
∥∥vk,M − uk,M

∥∥ ≤ β ‖ek,M‖ (26)

‖ũk − ud‖ ≤ ρ ‖ek,M‖ . (27)

For the Newton update (10), the boundedness as-
sumption on∆uk,M , (26), is equivalent to the uniform
full row rank condition onDk (which is also needed
for Assumption 1) since

∥∥∥D†
k

∥∥∥ = 1/σmin(Dk), where

σmin(Dk) is the minimum singular value ofDk. Under
Assumptions 1–2, we can show thatuk converges toud,
anduk,M andvk,M both converge toud, ask →∞.

D. Asymptotic Convergence of the State

Given thatuk,M converges toud and uk converges

to ud, we can show thatxk+M converges tôx(k)
M , by

using the continuity off . This in turn shows thatxk

converges toxd sinceek,M → 0 from Lemma 1.
Lemma 2: Given the control law in Algorithm 1. If

Assumptions 1–2 hold, then for allx0 ∈ Rn andu0,M ∈
RmM , xk → xd as k →∞.

E. Closed Loop Asymptotic Stability

The asymptotic stability of the desired statexd re-
quires stability in the sense of Lyapunov in addition
to the asymptotic convergence. This can be shown if
the initial M -step-ahead control sequence,u0,M , is
appropriately chosen.

Theorem 1: Consider the control law given in Algo-
rithm 1 with u0,M continuous inx0, and u0,M = ud if

x0 = xd. Suppose that Assumptions 1-2 hold. Thenxd

is a globally asymptotically stable equilibrium.
If the constant control sequenceud is not a singular
control, we can just chooseu(0)

j = ud for all x0.

Otherwise, we may useu(0)
j = ud + anj where nj

is a random vector bounded by‖nj‖ ≤ 1 and a is
proportional to‖x0 − xd‖.

III. S IMULATION RESULTS

We will present the results of applying Algorithm 1
with the Newton update (10) to several nonlinear ex-
amples, including the kinematic control of a unicycle, a
double-chain nonholonomic system, an under-actuated
satellite orientation control, and a discrete time system
used in [9] to show the lack of robustness of conven-
tional NMPC schemes.

In all the nonholonomic examples, we will consider
the unconstrained case as well as imposing an input
saturation constraint. Suppose a hard constraint|u| ≤
umax is required for a given input channel, we will use
the following transformation

u = s(v) =
π

2
umax tan−1

(
2v

πumax

)
, (28)

and apply our algorithm withv as the input. Note that
with this transformation, an LTI system would become
nonlinear.

The step sizeηk in (10) is chosen with the
Amijo’s rule [16]. We start with an initial step size
h0. The step size is repeatedly halved until either∥∥φM (xk, uk,M − hD+

k ek,M )
∥∥ <

∥∥φM (xk, uk,M )
∥∥ or if

h < hmin in which caseh is set to zero. Whenh = 0,
the system essentially switches to the open loop control
using the control vectors inuk,M .

A. Kinematic Model of Unicycle

The kinematic model of a planar unicycle is com-
monly used to represent mobile robots. Under the as-
sumption that the wheel does not slip, the kinematic
model is given by

ẋ = cos θ u1, ẏ = sin θ u1, θ̇ = u2 (29)

where (x, y, θ) represent the position and orientation
of the unicycle and(u1, u2) the driving and steering
velocities.

We consider the finite difference discretization of the
equation of motion withts = 0.01sec. By calculating
the gradient matrixDk in (14), it is straightforward to
show that the singularity corresponds tou1 andu2 being
identically zero for the entire prediction horizon. Since
∂f
∂x and ∂f

∂u are uniformly bounded inx, our control
scheme is globally asymptotically stable if the initial
control sequence is not identically zero. We therefore
chooseu0,M as a random vector with a small amplitude.
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To illustrate the parallel parking maneuver, the initial
state is chosen to bex0 = (0, 5, 0).

First we consider the unconstrained problem with the
look-ahead horizons chosen to beM = 10. As shown
in Figure 2, the predicted state error converges mono-
tonically. The actual state error increases initially but
eventually converges. The corresponding input trajectory
is also shown. In general, when a smaller horizon is
used, the convergence is faster but with a larger control
effort.

Without the input constraint, the input can be very
large and renders the finite difference discretization
invalid. We therefore apply the transformation (28) to
impose the input saturation constraint. With this con-
straint, the control signal becomes oscillatory, but the
state still converges to zero, though over a longer period
(see Figure 3).

state input

Fig. 2. Unicycle Example: Convergence of predicted State vs. actual
state and input trajectory,M = 10

state input
Fig. 3. Unicycle Example: Input trajectories forumax = [0.3, 0.3],
M = 10

B. Double-Chain System

Certain nonholonomic systems occurring in practice
can be transformed to the chain form (e.g., a multi-trailer
system). We consider the following double-chain system
where the depth of each chain is 2:

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1, ẋ4 = u3, ẋ5 = x4u1.
(30)

The singularity corresponds to whenu1 is identically
zero for the entire prediction horizon. We again dis-
cretize the equation using finite difference withts =
0.01sec. The initial state is arbitrarily chosen to be
x0 = (−5, 5, 10,−20, 8). The initial control vector is
set to zero. Though this is a singular control, the initial
predicted error,e0,M , is not in the null space ofD†

0,
therefore, the algorithm is able to proceed. We consider

both the unconstrained case and the input constrained
case with the saturation level at[1, 1, 1]. The predicted
state error vs. the actual state error plots for the two cases
are shown in Figure 4. In both cases, the predicted error
converges monotonically, and the actual error converges
asymptotically. The convergence in the constrained input
case takes about twice as long but the maximum state
error is much smaller.

unconstrained input-constrained

Fig. 4. Double Chain Example: Convergence of predicted State
vs. actual state,M = 10, no input constraint vs.umax = [1, 1, 1]

C. Under-actuated Satellite System

Consider the orientation control of satellite using
only two of the angular velocities. Using the vector
quaternion representation, the continuous time equation
of motion is given by

ẋ =
1
2
(−x× +

√
1− ‖x‖2I3)

 u1

u2

0

 (31)

wherex =
[

x1 x2 x3

]T
is the vector quaternion,

x× is the3×3 matrix representation of the vector cross
product, and(u1, u2) are the two angular velocities con-
sidered as the control variables. The equation of motion
ensures that‖x(t)‖ ≤ 1 if ‖x(0)‖ ≤ 1. We discretize the
equation using finite difference withts = 0.01sec. The
initial state is chosen to bex0 = (0.1, 0.1, 0.707). The
initial control vector,u0,M , is chosen to be all zeros.
The look ahead horizon isM = 10.

The predicted state error vs. the actual state error
plots for the unconstrained input and input constrained
at [20, 20] are shown in Figure 5. In both cases, the
predicted error converges monotonically, and the actual
error converges asymptotically. The convergence in the
constrained input case takes longer due to the input
constraint.

D. A Nonlinear Example from [9]

In [9], the following single input discrete time ex-
ample is used to demonstrate the lack of robustness of
conventional NMPC schemes when a terminal constraint
(the origin) is used together with a short horizon (M =
2):

x1k+1 = x1k
(1−uk), x2k+1 =

√
x2

1k
+ x2

2k
uk. (32)
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unconstrained input-constrained

Fig. 5. Satellite Example: Convergence of predicted State vs. actual
state,M = 10, no input constraint vs.umax = [20, 20]

Note that in contrast to the earlier nonlinear examples,
this system does not correspond to the finite difference
discretization of a continuous time driftless system.
The initial condition is arbitrarily chosen to bex0 =
(5, 10). Since this example was used to show the lack
of robustness when the prediction horizon is small, we
set M = 1; other prediction horizons produced similar
results. In addition to the nominal case, we also consider
the case when a random state noise is added (which
would cause any NMPC with terminal constraint and
M = 2 to be unstable). The predicted state vs. actual
state plots for the nominal and perturbed cases are shown
in Figure 6. Though we have not proven robustness of
our method, it can be seen at least for this example that
the system remains stable in the perturbed case.

nominal disturbed

Fig. 6. Example from [9]: Convergence of predicted State vs. actual
state, nominal vs. disturbed,M = 1

IV. CONCLUSIONS

This paper presents a gradient-based nonlinear feed-
back stabilization strategy for discrete time nonlinear
systems. The approach is similar to NMPC but the
control vector is updated to reduce predicted state error
rather than minimizing an optimization index. We show
that under the full rank assumption of a gradient matrix
and the boundedness of the predicted control sequence
refinement by the predicted state error, the closed loop
system is globally asymptotically stable. These assump-
tions are reasonable for the finite difference approxima-
tion of driftless nonlinear systems motivated by systems
subject to nonholonomic constraints or non-integrable
conservation laws. The efficacy of the algorithm is
demonstrated by several nonlinear examples.
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