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Certainty Equivalence in Constrained Linear Systems subject to
Stochastic Disturbances

Ivo Batina

Abstract— A sufficient condition is provided under which
the optimal controller of a constrained optimization problem
can be synthesized by combining an optimal state estimator
with an optimal static state feedback. An application of a
model predictive controller is considered that involves both
input and state constraints in a system that is subject to
stochastic disturbances.

I. INTRODUCTION

In this paper we consider a linear dynamical system
subject to input constraints, incomplete state observations
and stochastic disturbances. The aim is to find a controller
that minimizes the expected value of a cost criterion that is
defined over a finite horizon.

If imperfect observations of the state are available, then
a rather common approach is to substitute an estimate of
the state in an optimal state feedback law. The certainty
equivalence principle is a rigorous justification for such
a substitution. If this principle applies then the design of
a dynamic controller is separated in two tasks. One of
state estimation and one of state feedback. Because of its
recursive implementation and the minimum error variance
properties, the Kalman filter [10] is often implemented
for producing an optimal estimate of the state, which is
subsequently fed into an optimal state feedback that is
designed as if the full state of the system could be mea-
sured. This so called separation principle gives an optimal
controller in some well defined problems such as LQG,
LEQG (‘E’ stands for ‘exponential’ [13]). For nonlinear
systems a similar separation applies under the assumption
that errors introduced by the observer or the state feedback
are sufficiently small.

Because of the constraints these results do not apply in
general and hence it can not be taken for granted that
a certainty equivalence is justified in constrained optimal
control problems. We refer to [2], [12], [9], [7] for ap-
proaches of observer design in the context of control of
nonlinear systems. However, these papers deal mainly with
the nominal, non-stochastic case.
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In this paper we derive conditions under which sep-
aration of static state feedback design and optimal state
estimation will be optimal for the problem of constrained
optimizations. We formulate three constrained optimization
problems in Section II and provide the main result and its
proof in Section III. A discussion on implications and gen-
eralizations of the main results to include state constraints
is presented in Section IV. Applications to model predictive
control are discussed in Section V. A numerical example is
presented in Section VI. Finally, conclusions are collected
in Section VIIL.

II. PROBLEM FORMULATIONS

Consider the system described by the discrete time state
space equations

z(t+1)
y(t)
2(t)

As usual, u is the control input, x is the state, y is the
measured output (or observed variable), z is the to-be-
controlled output (or controlled variable) and w and 7 are
state and measurement noise, respectively. We assume a
finite dimensional setting in that u(t), z(t), y(¢t) and z(t)
are real vector valued signals of dimension m, n, d and
p, respectively. The disturbance w and the measurement
noise 7 are two mutually independent stochastic processes
with w(t) € N(0,Q.) and n(t) € N(0,Q,), where
N (u, Q) denotes the family of normally distributed random
variables with mean p and covariance Q = Q' > 0.
The initial state x(0) = xo in (1) is supposed to belong
to N(Z,Q.). Moreover, for ¢’ # ¢, the random vectors
w(t'),w(t”),n(t"),n(t") and xo are assumed to be inde-
pendent. Hence, the state x, the measurement y and the
controlled output z are stochastic processes.

Let U C R™ be a closed, not necessarily bounded,
convex set which contains an open neighborhood of the
origin. Assume that the time evolution of the input u in (1)
is constrained in the sense that for all ¢ > 0,

= Az(t) + Bu(t) + Ew(t)
= Cyx(t) +n(t) (1
= C,z(t) + D,u(t)

u(t) € U. @)

The constrained system (1)-(2) is said to be globally asymp-
totically stabilizable if there exists a controller such that in
the absence of the external input w, the equilibrium point
x = 0 of the controlled system is globally asymptotically
stable. It is well known that if U is bounded and if y = x,
then global asymptotic stability can be achieved if and only
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if the poles of the open loop system lie inside or on the unit
circle of the complex plane. The following assumption will
be made to allow the stabilization of system (1) by means
of a measurement feedback controller.

Assumption 1 All eigenvalues A\ of A satisfy || < 1 and
the matrix pair (Cy, A) is detectable.

This assumption is rather natural in that no measurement
feedback controller will exist that stabilizes (1)-(2) if As-
sumption 1 is not true [3].

Let T > 0 denote the length of the control horizon, let E
denote the expectation operator and let j : R” x R™ — R
be a strictly convex function with j(0,0) = 0. Define the
cost criterion

_—
J(x,u) = lim ]E? ;](x(t),u(t)) 3)

T—o00

where u(t) and x(t) satisfy (1) with initial condition x(0) =
z.
It is assumed that at time ¢ the measurements y(7), 0 <
T < t are available for feedback and that a controller for
(1) is a system o that allows a state representation of the
= fcon(r(t)v y(t))

form
{r(t +1)
u(t) = Geon(7(t))

with 7(0) = 0, feon : R? x R? — RP and geon : RP — R™
continuous functions with f,,(0,0) = 0 and geon(0) = 0
and where p = dim(r) is the (undecided) state dimension
of the controller. Let >.,, denote the set of all feedback
controllers of the form (4).

4)

" "oz
w —— >  System
U Yy
0 € Yeon

Fig. 1. Plant-controller configuration

Equations (1) and (4) define a controlled system with
inputs w and 7 and output z as depicted in Figure 1. The
cost invoked by connecting a controller ¢ € X o, to the
system will, with some abuse of notation, be denoted by
J(x,0). Due to the stochastic nature of the noise and the
initial condition z(0) = =z, also the criterion J(z,0) will
be stochastic for any o € ¥ o,. It is for this reason that
we consider the conditional expectation with respect to the
initial condition z of the plant E,J(z,0), to assess per-
formance of a specific controller. This yields the following
problem formulation.

Problem II.1 Consider the system (1) with initial condition
xo € N(Z,Q,). Find an optimal controller ¢ € Yo, such
that (2) holds for all ¢ > 0 and

By J(20,5) < By d (20, 0) 5)
for all o € Xcop.

Finding an optimal, dynamic feedback controller & &€
Ycon that solves Problem II.1 is a difficult task. As men-
tioned in the introduction, a rather common approach is
to separate the design of a controller in the two separate
tasks of state estimation and state feedback. Here, we will
implement the Kalman filter for producing an optimal (i.e.,
minimum error variance) estimate z* of the state x, and
subsequently feed x* into an optimal static state feedback.
We therefore define a second optimization problem as
follows. Let

2 (t+1) = Az*(t) + Bu(t) + G(t) (y(t) — Cyz* (1)) (6)

with 2*(0) = Z denote the Kalman filter associated with
(1), where G(t), the Kalman gain, is given by

G(t) = AQ)Cy (Qy +CyQ(1C )

and where Q(t) is the estimation error covariance which
is a solution of the following recursive relationship

-1

Qt+1)=AQt)A" + EQ.E"
—AQ()C] (Qy +C()C]) T QAT

with Q(0) = @, and t > 0. The plant data, together with
the noise assumptions allow to compute Q(¢) and G(t)
for all ¢ > 0. Note that the Kalman filter produces an
estimate =™ (optimal in a well defined sense) of the state x
as function of the measurement y and the input w.

N — —
w —— > System

¥ Kalman [«
filter

_____________________________________________

Fig. 2. Kalman filter and static state feedback

A static state feedback is a continuous function ¢ : R" —
U with the property that ©(0) = 0. Let Xy denote the class
of all such feedbacks. With ¢ € Y, the control input w is
now computed according to

u(t) = ¢ (z*(t)) ©)

where x* is the state of the Kalman filter (6). With this
structure we actually assemble a strictly causal dynamic
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controller of the form (4) as depicted in Figure 2. Let Yyt
denote the set of all controllers obtained by combining
the Kalman filter (6) with (7) where ¢ € ¥. Obviously,
Yikfrst € 2con and this controller structure defines the
following optimization problem.

Problem IL.2 Consider the system (1) with an initial condi-
tion zg € N(Z, Q). Find an optimal controller & € Sgpf
such that (2) holds for all ¢ > 0 and

EroJ(x0,6) < EgyJ(20,0) (8)
for all o € Yyt

We emphasize that the filter (6) in the controller structure
of Problem II.2 depends only on the plant data and can be
assumed fixed in the optimization over the state feedback
laws. Hence, the optimization in Problem II.2 basically runs
over Y.

To investigate the relation between Problem II.1 and
Problem I1.2 we define a third problem as follows. Consider
the auxiliary system

x(t + 1) = Az(t) + Bu(t) + G(t)¢(t) )

where ¢ is a white noise stochastic process with zero
mean and time dependent covariance matrix ()(t). That
is ¢(t) € N(0,Q(t)) for all ¢ > 0 and ((¢') and ((t")
are independent for all ¢ = t”. Note that, if the initial
condition x(0) of (9) coincides with the initial condition
2*(0) of the Kalman filter (6), then the stochastic properties
(mean and variance) of the state z(t) of (9) and x*(¢) of
(6) coincide for all time ¢ > 0. Let (3) be the cost function
for the auxiliary system (9) with z(0) = Z and consider the
following static state feedback problem for system (9).

Problem II.3 Consider the auxiliary system (9) with initial
condition z(0) := Z. Find an optimal static state feedback
controller p* € Y such that

J(@, %) < J (@, p) (10)
for all ¢ € Xgt.

This control structure is shown in Figure 3.

¢ ——— Auxiliary .
system
u
wE Zsf
Fig. 3. The auxiliary system (9) with state feedback

III. MAIN RESULTS

The main result of this section shows that, under certain
conditions, the state feedback (* that is optimal for the aux-
iliary Problem II.3 is, in combination with the Kalman filter
(6), an optimal solution for Problem II.2 and Problem II.1.
That is, the configuration of Figure 2 for Problem II.2 will
be optimal for Problem II.1 by solving Problem II.3. The
result is as follows.

Theorem III.1 Suppose that the function j is a non-
negative quadratic form in its arguments. Let p* € X
be an optimal controller that solves Problem II.3. Then the
controller given by (6) and

u(t) = ¢* (27 (1)) (11)

will be an optimal solution to both Problem II.2 and Prob-
lem I1.1.

Proof: A non-negative quadratic function j allows a
representation of the form j(z,u) = ||C.x + D,u||* for
suitable matrices C, and D.. To distinguish between the
states of (1) and (9), let x® denote the state variable of the
auxiliary system (9). Similarly, let J(x,u) denote the cost
(3) associated with the auxiliary system subject to input u
and initial condition 2%(0) = Z. Then

E{j(l‘(t), u(t))|y(0)7 T ay(t - 1)7u(0)’ T vu(t - 1)}
=Ej(z(t),u(t))
+ Trace E{C. (z(t) — 2°(t))(z(t) — 2°(t)) ' C. }.
Note that
E{C.(x(t) — 2“()(2(t) — 2*(t)) ' C. } = C.Q(H)C)

where Q)(t) is the estimation error covariance matrix.
Next, we can rewrite the cost criterion (3) in terms of the
state 2% (t) instead of x(t) as

12)

.
. 1
+ Tlgréo T ; Trace C,Q(t)C)
where z(0) = Z. In turn, (12) can be rewritten as
J(z,u) = J%x,u) +c (13)

where c is a constant given by

T
.1
c= Tlgréo T tz_% Trace C,Q(t)C)
Since ¢ does not depend on u, (13) implies that the input
u that minimizes J“ also minimizes J and vice versa. This
gives the result. [ ]
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IV. GENERALIZATION TO INCLUDE STATE
CONSTRAINTS

The separation result of Theorem III.1 is well known
for unconstrained optimization problems (LQG control),
but is new for constrained optimizations as formulated
in Problem II.1. The result facilitates the synthesis of
controllers that solve Problem II.1 in that it amounts to
solving two separate optimization problems: the optimal
state estimator defined by the Kalman filter (6) and the
optimal static state feedback defined in Problem IL.3. The
latter problem (i.e., Problem II.3) has been solved in [3]
where explicit algorithms were given to compute optimal
state feedbacks ¢* € Y.

We will next discuss to what extent Theorem III.1 can
be generalized to problems that include both input and state
constraints. For this, let X C R"™ be a closed, not necessarily
bounded, convex set which contains an open neighborhood
of the origin and suppose that time evolutions of (1) are
constrained in the sense that for all ¢ > 0, u(¢) € U and
x(t) € X. The approach in [6] amounts to incorporating the
state constraint into the cost criterion by a soft exponential
weighting on constraint violations. That is, the function j
in cost (3) is decomposed according to

j(z,u) = g(z,u) + h(z), z € R"”

where h : R" — R, is a convex function that vanishes
on X and where g and h are chosen so that j is in
the class of functions that have “polynomial-exponential
growth”. This choice implies that j is not quadratic, but
grows exponentially with ||z| i.e.,

weU (14)

j(z,u) ~ ellzl as ||z|| — oo.

Here, ||z||% = (x, Rx) where R > 0 denotes the exponen-
tial growth of j. Hence, Theorem III.1 does not apply in
this case, but with x the state of (1) and x® the state of (9),
the expectation of the exponential cost function satisfies

E ezl — g ol +at 1%

_ Ee(w—ma)TR(w—ma)eHwaH%e2(1—za)TRwa.

Since the probablhty distribution of x — z® is known, this
shows that E ellll% is basically a function of z“ only. This
suggests that also in this case some kind of separation
will be possible. However, details for a generalization of
Theorem III.1 in this direction are still under investigation.

V. MODEL PREDICTIVE CONTROL BY
MEASUREMENT FEEDBACK FOR STOCHASTIC
SYSTEMS

Within the model predictive framework, a receding hori-
zon controller is obtained by solving an optimization prob-
lem at each time instant ¢. The usual formulation of this
problem amounts to finding a control input » that minimizes
a cost criterion defined on an interval I, := {¢t + k|k € T}
where T' denotes the control horizon T' := {0,--- ,N}
and N > 0. Only the control at time ¢, u(t), is fed into

the system, after which the optimization is repeated at the
next time instant. Because (1) is time-invariant, all variables
involved in the optimization can be viewed, without loss of
generality, as functions of k € T, rather than the current
time t. To cope with the noise acting on the system, we
will not optimize over time trajectories u(-), but over time-
varying feedback laws of the form

u(k) = m(En(K))

where £ € T and x5 : T — R" is a state sequence
of length N and 7 is a continuous feedback mapping.
Formally, let II denote the set of feedback laws where
m € Il is a vector (wk)szo of continuous mappings 7y, :
R™ — U. With m € II, the dynamics of the controlled
plant on the control interval is described by

zn(k+1) = Azn(k) + Bmp(Zn(k)) + Ew(k)
yn(k) = Cyan(k) + n(k)

where £ € T and the disturbances w and 7 are mutually
independent Gaussian white noise processes with w(k) €
N(0,Q.) and n(k) € N(0,Q,). The initial condition for
the recursion (15) is given by zn(0) € N (z}, Q:) where
xy and (), are the state estimate and the error covariance
matrix obtained by the Kalman filter (6) at time ¢ i.e., ;7 =
x*(t) and Q: = Q(¢). The state sequence (iN(k))in)l is
generated as follows

5)

g;N(k+ 1) = Ain(k) + By (in(k))+
(yzv(k) C va(k)), k=0,1,---,N (16)
where 2 (0) =
G(k) := AP(k)OyT (@, + CyP(k)C, )

The matrix P (k) is the covariance matrix of the estimation
error and a solution of the Riccati equation
P(k+1)=AP(k)AT — AP(k)C,
x (Qy + C,P(K)C]) T C,P(K)AT + EQ,ET  (17)
with P(0) = Q.. Note that the difference between the
Kalman filter (6) and the sequence (16) lies in the fact

that the innovation in the Kalman filter depends on the
measurement y which is not available in (16). Define

w(k) :=yn(k) — Cyan(k),

which is a normally distributed random vector with zero
mean and covariance given by

E (w(k)w(k)") = C,P(K)C, + Qy

while w(t') and w(t"”) are independent for all ¢’ # t”. With
the decomposition (14), the cost criterion is given by

(18)

19)

J(x,m) = ]E{ Z {g(czi’N(

keT

+ h(zn (k)

k) + D.m(in(k)))

)} +len (N + DB} @0
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where Zn(0) = = and m € II is the control. Here,
Hx||2Q = (z,Qz) with @ > 0 is an end point penalty.
The optimization problem to be solved is stated next.

Problem V.1 Find, for given initial condition z € R", a
vector of optimal feedback mappings 7* € II such that
J(xz,7*) < J(x,n) for all m € II and determine the optimal
cost V(z) := infren J(z, 7).

An analytical computation of the ‘cost-to-go’ associated
with the criterion function (20) is generally a difficult task.
We therefore replace (20) by its empirical mean

J(z,7) = E{ 3 {9(Coin(k) + Domi(@n (k)))

keT
+hian ()} + len (N + D3} @D

where Ef := L >0ty f(0;) and 6y, ..., 6, € © are m in-
dependent identically distributed samples drawn according
to the probability measure on ©.

Problem V.1 is replaced by the optimal control problem
in which the empirical cost (21) is minimized instead of
(20). In a receding horizon implementation of an optimal
feedback 7* € II, only the first element of 7* is significant.
The model predictive controller in our setting is thus given
by u(t) = w§(z*(t)) t € Z. The algorithm to compute
such a feedback is based on the following result from [4].

Theorem V.2 Consider Problem V.1 in which the empiri-
cal cost (21) is minimized instead of (20). Suppose As-
sumption 1 holds. The empirical optimal cost V(z) :=
inf, J(z,) is given by V (x) = Vy(z) where V,(z) and the
vector of feedback mappings m can be obtained recursively
from

Vi(w) == inf {g(Cox + Do) + h(w)+
+ B, Viy1 (Az + Bu+ K(s)w(s)) @2
with Viy 41 () == |||, and s ranging from N to 0.

To compute the empirical mean (22), a number of realiza-
tions of the innovation process (18) is needed. The samples
are chosen randomly, according to the distribution of the
innovation process w. For the details of this algorithm, we
refer to [4] and [6].

VI. NUMERICAL EXAMPLES

In this section we present an example in which we
consider a “double integrator” of the form:

y(t)  =(0 1)a(®)+nw)
0 0 0.33

2(t) =107 0 [z(t)+ | 0 |u(®)
0 0.7 0

(23)

Physically, this can be a system that describes the 1-
dimensional motion of a unit mass under influence of a
force. The force is the input to the system and the position
of the mass is measured.

Here, w(k) € N(0,0.4) and n(k) € N(0,0.2) are
mutually independent. The input and state are constrained

as:
U=[-0505, X= {(“) | 20 > 0}
T2

and it is assumed that x(0) = (0, 10)7 is the initial state.
The task is to steer the state from the initial state to the
origin while respecting the state constraints.

The design of the Kalman filter for this system is straight-
forward. The remaining task is to approximate the static
state feedback (7). For this, we design the model predictive
controller based on Theorem V.2. Specifically, we use (16)
with asymptotic gain

K= klim G(k) = (0'5857> .

1.4142

The innovation process w defined in (18) then satisfies
w(k) € N(0,1.1657) which is sampled to determine the
empirical cost (21) with g(z) = ||z]|> and constraint
violation cost

0
h(z) = {64.5z§ 1

With these specifications, the controller minimizes the ex-
pectation of a quadratic cost when the state is away from the
constraint x5 > 0. When the state is near or on the boundary
of the constraint the exponential constraint violation cost
h dominates and the main objective of the controller is to
avoid a constraint violation. Conditions derived in [6] prove
that this optimization problem is, in fact, solvable.

Let N = 10 and let w be sampled according to its
distribution. We take 10 samples at the first time instant and
5 samples at the second time instant in the control horizon.
In this way, we obtain 50 samples of the innovation process
over the control horizon. To assess the performance of the
stochastic predictive controller we perform 100 simulations.
Each of them is performed with a different realization of the
disturbance w and the measurement noise 7. The resulting
measurement trajectories y are plotted in Figure 4.

To compare the performance of the stochastic predictive
controller we also implement a standard predictive con-
troller which is designed under the assumption that the
innovation process w takes its mean value over the control
horizon i.e., we assume that w(k) = 0 for all &k € T. The
controller is then obtained by minimizing the same criterion
function, but now in an open-loop optimization. The results
of 100 simulations are plotted in Figure 5.

The two controllers show very different performance. The
standard MPC controller is not able to realistically predict
a constraint violation. On the other hand, the stochastic
predictive controller computes an optimal map from the

1fx220
if zo <0
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stochastic predictive controller

15 T T T

L I L
5 10 15 20 25 30

time instants (k)

Fig. 4. Double integrator controlled by stochastic predictive controller

state to the input for a number of points in the state space.
Points are determined with the stochastic sampling of the
innovation process and therefore there is a large probability
that the optimal map for the predicted states is computed
in the region in which the estimated state of the system
will be. This leads to the more realistic “prediction” and
the control strategy that respects the state constraints better.

standard predictive controller
15 T T T T T

time instants (k)

Fig. 5. “Double integrator” controlled by standard predictive controller

In Figure 6 we also plot the mean and variance of
the obtained trajectories. The mean of the standard MPC
scheme converges to a point that is in the region xo < 0,
i.e., it violates the state constraint. The mean response of
the system controlled by the stochastic predictive controller
converges to a point in the region xo > 0. This point is
larger than the set point.

VII. CONCLUSION

In this paper we considered optimal control of linear,
constrained stochastic systems via measurement feedback.
It has been shown that if the cost criterion is a quadratic
function, then the optimal dynamic controllers can be de-
composed in a Kalman filter and a static state feedback that

standard predictive goftroller

variance

stochastic predictive controller

stochagflc predictive controller

g 0 £ 2

W5 3
time instants (k) time instants (k)

Fig. 6. Mean and the variance of the trajectories from figures 5 and 4

is derived from the solution of a constrained optimization
problem of an auxiliary system in which the state is assumed
to be measured. We have shown how such a controller can
be designed within the model predictive control framework.
To make prediction in the model predictive controller as
realistic as possible, the estimation structure of the Kalman
filter has been exploited in the prediction. A difficulty is that
there is no measurement available over the control horizon.
It has been shown that the innovation process of the Kalman
filter can substitute such a measurement by sampling the
innovation process according to its stochastic properties. By
doing so, a cost criterion with an empirical mean has been
minimized so as to synthesize a dynamic feedback control
law in a receding horizon setting. An example shows that
this stochastic predictive controller outperforms a standard
MPC controller even for relatively small number of samples.
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