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Abstract— The problem of accurately locating the origin
of contaminant particles from noisy measurements obtained
from a finite number of fixed sensors is treated here. The
main methodology used here is particle filtering techniques
in conjunction with model reduction. The physical system
considered here consists of contaminant particles originating
from an unknown location in a confined space which are being
carried away by the airflow inside a room. The path of the
particles is influenced by both air flow inside the room as well as
the inherent random movement of the particles. Concentration
of the particles at each sensor is measured at discrete time
instances. These measurements are inaccurate due to additive
random noise and will be processed under a particle filter algo-
rithm to estimate the origin of contaminant particles. Particle
filters in nature involve heavy computational cost and it is
shown that it can be greatly reduced by executing the algorithm
in multi stages, modifying the importance weights formula,
generating initial points using observations and reducing the
dimensionality of the mathematical model. Extensive simulation
experiments are carried out to show the effectiveness of particle
filters in calculating the origin of contaminant.

I. INTRODUCTION

There is no question that revolutionary technological ad-
vancements have brought many comforts to the man, yet
they also have their own undesirable and complicated side
effects. Nature on its own, sometimes expel hazardous gases
or liquids into the atmosphere. In comparison, manufacturing
plants constantly produce chemical agents at a much higher
scale, and many are eventually released to the environment.
Advancements in chemical and biological agents allow hu-
man life to be elevated to a whole new higher level, yet
in wrong hands their use had produced devastating results
in past. Unarguably it is vital to develop methods to track
and trace the origin of hazardous contaminant particles in
order to minimize the damages they are capable of causing,
and contain their ill effects. Here we consider the problem
of devising filtering methods in order to estimate the origin
of contaminant particles using information gathered from a
finite number of sensors.

The Kalman filter is the optimal solution to the Bayesian
estimation problem for a given linear, stochastic, state-space
system with additive Gaussian noise. Closed form solutions
have been derived for the aforementioned problem and have
been extremely popular in the past [2], [3]. However, if the
actual dynamical system deviates from a linear dynamical
system or assumptions on characteristics of noise are incor-

rect, the filter may tend to diverge. A variety of algorithmic
modifications were invented in an attempt to compensate for
the model errors that caused the misbehavior of the filter. This
issue had been addressed to some extent byExtended Kalman
Filter, where an approximated linear system is derived for
every calculation step. The practicality of this approach has
limited application to large complicated dynamical systems.

In the past two decades, the essential ideas behind Kalman
filtering have been extended in many forms to cope with
more complicated problems. Unscented Kalman filter, and
Gaussian sum filter [8] are two of the examples resulted from
this line of thinking. Since they either directly or indirectly
use Kalman estimation techniques, they also suffer from
similar shortcomings as the extended Kalman filter.

In recent years, computational power has reached to an
extraordinary peak, hence one can implement algorithms
once discarded due to their extensive computational cost.
One type of powerful algorithm that resurfaced in recent
years is the particle filter (PF) algorithm, which belong to
the family of Sequential Monte-Carlo algorithms [6], [7],
[9], [14]. Recently particle based sampling filters have been
proposed and used successfully to recursively update the
posterior distribution ofp(xk/{y1, . . . , yk}) usingsequential
importance sampling and resampling. In contrast to Kalman
filters, particle filters in general can be used with non-
linear, non-Gaussian dynamical systems. However, it needs
to use a large amount of samples (particles) for a robust
operation and accurate estimation, which in many cases can
be computationally expensive.

In our problem, we need to estimate the initial statex0

by processing the observations{y1, . . . , yk} available up to
t = k. This class of problems tend to be more difficult
and computationally more expensive compared to estimating
a state fort > 0 given x0 [10], [16]. Here it is shown
that particle filtering provides a solution to the localization
problem and it exhibits excellent results.

In recent years there is a great deal of suspicion that
chemical and biological warfare agents have reached into
the hands of terrorists, and it is considered that chances of
them being used against civilians is a near certainty. Since
the consequences of biological agents are unimaginable, it
is foremost important to locate the origin of such a source
in a very short amount of time to contain the contaminant
or to evacuate the people to a safer place. In addition, quick



location of the source of release would be of a great deal of
help to identify culprits and apprehend them. Here it is shown
that appropriate modification of particle filtering is feasible
so as to dramatically reduce computational time, and can be
carried out only using desktop computing power well within
practical limits required for containment or evacuation.

II. PARTICLE FILTERING

Consider the following discrete time non-linear system

xk+1 = f(xk) + ωk (1)

yk = g(xk) + θk (2)

wherexk ∈ Rn, yk ∈ Rd andωk, θk are independent noise
processes of appropriate dimensions. It is assumed that the
initial distribution x0 is independent ofωk and θk. Mean
and variance ofωk, θk are assumed to be known. Here we
consider the Markovian state space models where state of
the systemxk depend only on the previous statexk−1 in a
probabilistic sense.

It is assumed that the probability distribution ofx0 is p(x0)
and the distribution for the transition isp(xk|xk−1). It is also
assumed that the conditional distribution of the outputs is
p(yk|xk).

The particle filter is to estimate the distributionp(xk|Yk)
usingposterior probability distributionp(Yk|Xk) with Xk =
{x0, x1, · · · , xk} and Yk = {y1, y2, · · · , yk}. Then it
allows us to calculate any optimal estimate of the state, such
as the conditional mean

x̂ = E [xk|Yk] =
∫

xkp(xk|Yk)dxk (3)

Bayes’ rule can be used to rearrange the the posterior
distribution,

p(Xk|Yk) =
p(Yk|Xk)p(Xk)∫

p(Yk|Xk)p(Xk)dXk
. (4)

(5)

A recursive formula for the aforementioned can be obtained
as follows [6]:

p(Xk+1|Yk+1) = p(Xk|Yk)
p(yk+1|xk+1)p(xk+1|xk)

p(yk+1|Yk)
. (6)

Marginal distribution ofp(xk|Yk) can be calculated as fol-
lows:

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)∫

p(yk|xk)p(xk|Yk−1)dxk
(7)

Particle filter (PF) is an approximation that uses sequential
Monte Carlo methods to reach a solution with a finite
number of calculations. This method involves representing
marginal distribution using particles and a set of correspond-
ing weights [6].

When the initial state is unknown, and needs to be found,
the initial distribution is approximated by a uniform distribu-
tion over an appropriate region of the state space. Following
steps describe the algorithm in detail.

A. Algorithm Particle Filtering

Step 1

• Draw N samplesx0 from the state space with impor-
tance weights= 1

N and sett = 1
Step 2

• Draw N samples̃x(i)
t from p(xt|x(i)

t−1) i = 1, . . . , N
• Evaluate the importance weights

w̃
(i)
k = p(yk|x̃(i)

k )

• Normalize the weights
Step 3

• Resample with replacementN particles fromx̃
(i)
t ac-

cording to the weights.
• Set t → t + 1 and go to step 2

Conditional probability of each particle (x
(i)
t ) at t = k is

changed at step 2. Resampling in step 3 is based on the
weights associated with the particles that could result in
small, average and large values according to the conditional
probability. Resampling drawsN samples fromx

(i)
t i =

1, . . . , N by repeating the particles with larger weight and
removing the ones with smaller weights. Even though this
step improves the resolution of the area with higher prob-
ability, it does not improve the accuracy of the initial state
x0.

III. B ROWNIAN MOTION

Dispersion of small solid and gaseous particles plays an
important role in many natural processes and environments
and lead to the formation of complex structures. As such
processes are very hard to model, detailed empirical work on
the physical conditions and the parameter space for a variety
of different dispersion scenarios is needed. Applications for
these basic physical processes ranges from environmental
science to astrophysics

In the past few years, particle dispersion in buildings
and urban areas have received increasing attention from
the scientific community. Much focus is being concentrated
on the study of chemical and biological particle dispersion
where models incorporate ultra-fine particles to solid parti-
cles. However, knowledge and technology are still far from
mature and much can be done by increasingly understanding
the underlying physics of the different practical applications.
A number of recent successful theories of particle transport
is based on the ideas of Brownian motion [1].

Consider a foreign particle immersed in a flow of dense
fluid. The trajectory of such particle follow an irregular and
random path. The force on such a particle is regarded to be
the result of two components. First one is the frictional force
due to the drag extended on the particle and the other being
the fluctuating force,A′(t). If u represents the velocity of the
particle then the frictional force is assumed to be proportional
to u. Using the Stoke’s law it is calculated to be−γ′u where
γ′ is the frictional constant.γ′ is given by6πaη, whereη



is the viscosity of the medium anda is the radius of the
particle. The random forceA′(t) represents the continuous
collision the particle with the particles in immersed media.
Using Langevin equation:

m
du
dt

= −γ′u + A′(t) (8)

wherem is the mass of the particle. The above equation can
be expressed as,

du
dt

= −ζu + A(t) (9)

where ζ = γ′/m and A(t) = A′(t)/m. The following
assumptions are crucial for the solution of (9).

1) The mean of the fluctuating forceA(t) over the ensem-
ble of particles starting with the same initial velocity
u0 at t = 0 is zero

E{A(t)} = 0

2) It is assumed thatA′(t) is independent ofu. The
values ofA(t) at two different timest1 and t2 are
not correlated except for small intervals(t1 − t2).

E{A(t1)A(t2)} = φ(|t1 − T2|)
whereφ(x) is a function with a very sharp maximum
at x = 0, φ(x) being very small forx 6= 0.

3) The correlation ofA(t) obey the following:

E{A(t1)A(t2) . . . A(t2n+1)} = 0

E{A(t1)A(t2) . . . A(t2n)} =
∑

all pairs

E{A(ti)A(tj)}E{A(tk)A(tl)} . . .

Assumption (2) describes the sampling interval of time∆t
during which, rapid changes toA(t) is expected where as
changes inu(t) is expected to be very small. To solve
the above equation, we must solve a stochastic differential
equation. That is the probability of the solutionW (u, t;u0)
is u at the timet, given u− u0 at t = 0. It can be shown
that probability distribution ofW is Gaussian.

Using the knowledge of linear first order differential
equations we can solve equation (9)

u = u0e−ζt + e−ζt

∫ t

0

eζτA(τ)dτ. (10)

Since an analytical solution involve rigorous calculations, a
numerical solution is adopted in many situations.

Rewrite (9),

uk − uk−1 = −ζuk−1∆tk + σAk(∆tk) (11)

where∆tk = tk − tk−1. Then

uk = uk−1(1− ζ∆tk) + σAk(∆tk) (12)

and this can be solved iteratively.

IV. SIMULATIONS & RESULTS

Flow inside a building is defined by the Navier-Stokes
equations which can be found in any standard text book in
fluid mechanics [4],[5]. Three dimensional (3D) fluid flow is
analyzed using Airpak/Fluent. Models are created and solved
to extract the velocity information of the fluid flow within the
framework. Data is extracted for node points in the space of
fluid flow that are not necessarily placed in a equally spaced
grid. Data is exported into Matlab where it is processed and
placed in a multi-dimensional array that represents an equally
spaced grid. This is done by approximating the velocities in
x, y and in z direction using spline curves. It is assumed
that the origin of contaminant is within the scope of one
or more sensors. Thus the time of contaminant release can
be calculated using the characteristics of the sensor. A fair
estimate of the number of particles released is also assumed
to be known.

Consider a three dimensional room with length 20 meters,
width 20 meters and height 10 meters. Fig. 1 shows the fluid
flow inside the room while table I shows the system param-
eters. Contaminant particles are introduced at co-ordinates
x = 4.0, y = 6.0, z = 14.0. Fig. 2 shows the contam-
inant transport for 100 particles. Six sensors are placed to
record the contaminant concentration at locations given by
(6, 4, 0.0), (0.0, 7.5, 10.0), (6.5, 5.0, 20.0), (20.0, 2.5, 10.0),
(10.0, 0.0, 10.0), (3.5, 7.0, 15.0).

TABLE I

SYSTEM DATA

Name of the parameter Value

Number of particles used 100
time step 0.15 sec
Process noise variance 0.05
System noise variance 0.05
velocity coefficient 0.25
random coefficient 1.0



Fig. 1. Fluid flow in a 3D room
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Fig. 2. Contaminant dispersion inside a room

The sensor characteristics for this examples are described
by

y =
N∑

i=1

ea
√

(xs−x)2+(ys−y)2)+(zs−z)2 + ωk, (13)

where N is the number of particles that falls within the scope
of the particular sensor,a < 0 is a constant specific to the
sensor,xs, ys, zs are the coordinate of a given sensor, and
x, y, z represent the coordinates of a contaminant particle

324 initial points are generated from a grid spaced with
2.0m in x, y, z directions. Table II shows the convergence
of the solution. It should be noted that the origin of the
contaminant is covered by the initial points generated.

A. Modified Importance Weights Formula

In order to test the stability and reliability of the impor-
tance weight formula, let us introduce the contaminant at

TABLE II

CONVERGENCE OF ESTIMATED(x0, y0, z0)

Step Time (sec) x0 y0 z0

1 0.8440 4.000 6.000 14.000
2 1.6410 4.000 6.000 14.000

x = 3.80, y = 6.20, z = 13.80. Let us use the same initial
points as before and we expect the solution to converge to
the closest point on the grid(4, 6, 14). Table III shows that
solution converge to the point(4, 8, 14).

It was noted that accuracy of the solution can be improved
by multiplying each importance weightqold(i) by a factor
determined by considering all the observations at sensors.

Let

aij =
output at sensori for initial point j∑N

j=1 output at sensori for initial point j
(14)

Let

v =




∑6
i=1 ai1

...∑6
i=1 aiN


 (15)

where N is the number of initial points. Now importance
weights are multiplied byv and normalized to obtain modi-
fied importance weightsqnew(i).

qnew(i) =
v(i)qold(i)∑N
i=1 v(i)qold(i)

(16)

Table IV shows the solution after modifying the impor-
tance weights formula and it converges to the anticipated
point.

B. Expanding initial points in multi-stages

Contaminants are introduced at (x = 8.320, y = 7.400,
z = 6.760) and initial points (14,079 points) are generated
at the nodes of a grid with intervals of 1.0 , 0.5, 0.5 meters

TABLE III

WITHOUT MODIFIED IMPORTANCE WEIGHTS

Step Time (sec) x0 y0 z0

1 0.8280 4.000 7.9505 14.000
2 1.6100 4.000 8.0000 14.000
3 2.3910 4.000 8.0000 14.000



TABLE IV

WITH MODIFIED IMPORTANCE WEIGHTS

Step Time (sec) x0 y0 z0

1 0.844 4.000 7.0526 14.000
2 1.625 4.000 6.0062 14.000
3 2.406 4.000 6.0000 14.000

TABLE V

USING A DENSE SET OF INITIAL POINTS IN A SINGLE STAGE

Step Time (sec) x0 y0 z0

1 122.8900 8.0566 7.4800 6.8041
2 245.0930 8.0018 7.5045 6.8015

in x, y and z direction respectively. Table V indicates that it
takes considerable time with large number of initial points
while resulting a less accurate estimate.

Let us try to solve the same problem by introducing initial
points at different resolutions in multi-stages. First initial
points are generated to cover the whole space and PF is exe-
cuted for a sufficient number of iterations to obtain a subset
of initial points. These initial points are further expanded
into their surrounding in order to obtain improved accuracy.
In the first stage, 729 points generated from a grid with (in
x, y, z order) 2, 1, 2 meter intervals are used. Four steps are
calculated using particle filter algorithm and the solution is
expanded to its surrounding creating 343 points in the second
stage. The solution reached in second stage is expanded as
before to obtain 637 points after five steps of calculation.
Table VI shows that the solution reach an accurate estimate
while dramatically reducing the computational time (clearly
more than ten times faster compared to single stage result).

C. Use of observations to generate initial states

Limiting the number of initial points in particle filters can
dramatically improve the computational time. One way of
doing this is to generate initial points that falls into the scope
of sensors that reports a concentration level. This idea can be
further extended by considering the intersection of the scopes
of sensors whose output records contaminant particles at time
t = 0. Contaminants are introduced at(x = 8.3200, y =
7.4000, z = 6.7600). Consider the scopes of two sensors
and generate initial points with intervals 0.25, 0.125, 0.25
in x, y and z direction respectively. For this example we
generate 1086 points to compute the solution (Table VII).

If three sensors report positive concentrations att = 0,
the number of initial points reduces to 50 and the results are

TABLE VI

SOLUTION IN MULTI -STAGES

Stage 1 with 729 points
Step Time (sec) x0 y0 z0

1 1.8750 7.9314 7.8573 6.0027
2 3.6720 8.0027 8.0000 6.0000
3 5.4690 8.0000 8.0000 6.0000
4 7.2820 8.0000 8.0000 6.0000

Stage 2 with 343 points
5 8.1720 8.2895 7.6082 6.7968
6 9.0000 8.3450 7.5570 6.7295
7 9.8280 8.3372 7.5440 6.5938
8 10.6410 8.3971 7.5037 6.7000
9 11.4530 8.4985 7.5007 6.5426

Stage 3 with 637 points
10 13.1250 8.2807 7.5831 6.8125
11 14.7030 8.2870 7.5185 6.7476
12 16.2500 8.2512 7.4998 6.7500
13 17.7970 8.2504 7.4923 6.7500
14 19.3440 8.2504 7.4962 6.7500
15 20.8910 8.2500 7.4988 6.7500
16 22.4530 8.2500 7.4994 6.7500
17 24.0160 8.2500 7.4998 6.7500

TABLE VII

USING OBSERVATIONS OF TWO SENSORS

Step Time (sec) x0 y0 z0

1 6.6560 8.2000 7.4281 6.8105
2 9.4530 8.2917 7.5061 6.7618
3 12.2190 8.2493 7.4818 6.7500
4 15.0160 8.2500 7.4859 6.7500
5 17.7970 8.2500 7.4963 6.7500
6 20.5630 8.2500 7.4988 6.7500
7 23.3280 8.2500 7.4998 6.7500
8 26.0940 8.2500 7.4998 6.7500
9 28.8750 8.2500 7.5000 6.7500

shown in table VIII.

V. CONCLUSIONS AND SUGGESTIONS FOR
FUTURE WORK

A. Conclusions

This paper considers a simple form of particle filter
algorithm along with modifications to importance weights
formula. In addition, initial points were introduced at multi
stages and generated based on sensor observations. This
results in an increased performance with a dramatic reduction
in computational cost. Extensive simulation experiments are
carried out to show the effectiveness of particle filters in
calculating the origin of contaminant.



TABLE VIII

USING OBSERVATIONS OF THREE SENSORS

Step Time (sec) x0 y0 z0

1 3.9850 8.1429 7.3878 6.8265
2 4.1100 8.2917 7.5859 6.7865
3 4.2350 8.2553 7.5266 6.7500
4 4.3440 8.2553 7.5000 6.7500
5 4.4530 8.2500 7.5000 6.7500

The simulations were performed on a 2.0Ghz computer
using Matlab routines that generally consumes more time
compared to low level languages. The calculation time can
be further reduced by implementing the code in a lower
level language (e.g. C, Fortran) or/and using faster computing
power. It is also noticed that calculations for each initial
point is independent of the other initial points, hence one
can further reduce the computational time by executing the
code on a parallel computer with multiple processors.

B. Future Works

In recent times, many improvements has been made to
the particle filter algorithms to improve convergence prop-
erties. Use of Kalman filters (e.g. extended Kalman filter,
unscented Kalman filter) have given rise to a better class
of particle filters. These modification contribute additional
computational time while improving the convergence. One
should weigh the computational time against the accuracy
for time sensitive applications (e.g. hazardous particle detec-
tion/tracking, missile tracking) It is clear that the avenues of
possibilities in improving particle filters are immense in this
type of problems.
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