Proceeding of the 2004 American Control Conference ThAO06.6
Boston, Massachusetts June 30 - July 2, 2004

Cost Distribution Shaping: The Relations Between Bode Integral,
Entropy, Risk-Sensitivity, and Cost Cumulant Control

Chang-Hee Won

Abstract— The cost function in stochastic optimal control
is viewed as a random variable. Then the classical linear- e
quadratic-Gaussian control, entropy control, risk-sensiive X . G(Z) » Yn
control, and cost cumulant control can be viewed as the cost -
distribution shaping methods. In this paper, we will survey
the existing relations between entropy, Bode integral, and
risk-sensitive cost function. Furthermore, we will relate the
cost cumulants with information theoretic entropy, and Boce
integral. The interpretation of cost cumulant control is given S(Z)
in terms of the control entropy minimization. The paper
also relates information theoretic entropy with exponental-of-
integral cost function using a Lagrange multiplier and calalus
of variations. Finally, the logarithmic-exponential-of-integral
cost function is related to the information theoretic entrqy
using large deviation theory. variety [28], and this is equal to zero if the system is open-

loop stable. Moreover, the Bode integral is equal to the sum
I. INTRODUCTION of open right half plane polegp; = 1} if the sytem is open

One of the well known results on the fundamentaloop unstable. In equations this relationship is given by
limit on a closegl loop system are Bode integral [2_, p- 0 if G(2) is stable
285]. Bode considered frequency response of single mpu)f, 1 jw _ B ,

: . LT . n | det S(e’*)|dw > —1In|p|
single output, open-loop stable, linear-time-invariddfl) 0
system. He stated that the integral of logarithm of the
magnitude of the sensitivity function is equal to zero In 1988, Glover and Doyle showed that the system
for an open-loop stable system. An interpretation of théheoretic entropy is related to the infinite horizon risk-
Bode’s integral is that reducing the sensitivity due to thaversive cost function [12]. This has been related to cost
system disturbances at one range of frequencies by feedbatknulant control in [23]. The system theoretic entropy is
control will amplify the transients and oscillations at eth related to the information theoretic entropy through the
frequencies. An extension of this Bode’s result has beatonditional entropies [21, p. 54].
given by Freudenberg and Looze for a general open-loop, Also, in 1988 Saridis provided an interpretation of
multivariable, LTI system [11]. stochastic optimal control in terms of information thearet
The time varying extension is studied by Iglesias anéntropy [24]. He claimed that the cost mean optimization
his coworkers. They studied the relations between thie equivalent to control entropy minimization where the
Bode integral, system theoretic entropy, and infinite fariz entropy density function is found to be the worst possible
risk-aversive control cost function [14]. Moreover, Iges case. Figure 2 summarizes the relationship between various
related Bode integral to the difference of the output andontrol methods. The researchers who related the two areas
input entropy rates [15]. This result can also be seen frosxe given near the arrows. Figure 2 also shows the section
the definition of the entropy rate [20, p. 534]. Consider amumber of this paper where the relations between two areas
LTI system as shown is Figure 1 with input,, output,y,,, are established.
the open loop transfer functioiy(z), and the sensitivity =~ Consider the cost function and the control action in
function, S(z). Now, assume tha$(z) is stable. Then the stochastic optimal control as a random variable. Then we
entropy rate is average uncertainty per sample and it is\givean view various control problems as the cost distribution

Fig. 1. Feedback System Block Diagram

if G(z) is unstable,
ie.,|pi| <1

by shaping methods. Moments or cumulants characterize a
i i I j distribution, thus by optimizing a particular moment such
H(y)=H(z) + — log |detS(e’*)|dw. 1 ' . S

() () + 20 ,/,U og|detS(e”)|dw @) as the mean, we are shaping the distribution of the cost

function. Conventionally, in optimal stochastic contrahe

The Bode integral is equal to output entropy rate minus . . S

: . : establishes a cost function and optimizes the controller

the input entropy rate. The second term in the right hand: ; o

S ) S ' with respect to the mean of the cost function. Optimizing

side is the Bode integral, which is also defined as the system ' L
only the mean (the first cumulant) of the cost function is

C. Won is with the Department of Electrical Engineering, \énsity of a Sp_ECIal cas_e of optimizing the _dlstrlbutlon of the cost
North Dakota, Grand Forks, ND 58202-7165, U.Swan@ind. edu function. For instance, the cost variance (second cumyulant
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Tgri?;?;c Tg:::;‘;c Eol ‘ LEO! ‘ Mean Variance | | Cumulants py
LI e oon e o Cost cumulant control is a form of cost distribution
- Section 2.1 shaplng method, and it is c_Ioser related to ent_ro_py_ cor_wtrol
Lo%8 S Jalesias 2001 [Automatics We will show that the optl_mal C(_)ntrol that mlr_llmlgatlon
1997 the entropy of the control is equivalent to minimizing
e Bode Sensitivity Integral Section 2.2 th moment of the cost function. Because moments are
[Automatical related to cumulants [18], cost cumulant control is related
. _ _ to minimum entropy control. In this paradigm, the cost
Fig. 2. Relations Among Various Robust Control Methods  fnctjon represents the energy of a system and optimization
is performed over the admissible control laws.
Define entropy asi = — [ p(u) Inp(u)dz where p(u)

is the density function. In minimum entropy control, we

can be minimized. The variance indicates to what exte@ﬁ1O| the density that would give the maximum entropy.

performance is spread around its mean. In some instan en we determine the control law, that would minimize
this variance is an important parameter to optimize. the entropy when the densitm(u') is the worst case
example, if a manufacturer wants to produce products abo}ﬂ%nsity. Conceptually this is similar 8, control, where
a certain quality level, the desirable production qualit3fhe infinity norm of the transfer funcot?on is m,inimized.

dl_strlbu'uon will be a sharp distribution wnr_] small varizs onsequently, entropy control arfdl,, control are related
with the mean pushed close to the rejection threshol 2]

Figure 3 shows how the distributions change as the fir tWe are ready to formulate the cost cumulant control in

three cumulants vary. This can be achieved if one can . . . ) .
. erms of information theoretic entropy. Consider a nordine
control any cumulant of the cost function.

system,

The information theoretic entropy is related to the sum ofy i = fz,u,w,t). @)
all the cost cumulants or moments, thus entropy optimiza- ’ C
tion is also a form of cost distribution shaping method. Thénd a nonquadratic cost function,
risk-sensitive cost function is also an infinite sum of a# th .
cumulants or moments[27], thus it is also a form of cost Jj= / " c(w, u, t)dt. 3)
distribution shaping method. 0 o

Cost moment or cumulant control can also be interpreteThen the n-th moment cost function is given as
in terms of entropy minimization, which is discussed in .
Section II-A. Also cost cumulant control is related to J=E{J"}, (4)
the Bode integral in Section II-B. We relate the entropy . )
with the risk-sensitive cost function in Section Ill. Be-Wherén =1,2,.-- If we consider/ as a random variable

cause risk-sensitive control can be formulated in terms df€n we can optimize this cost function in many different
exponential-of-integral (EOI) or logarithm-exponentig  Ways: We could minimize any of the moments or cumulants
integral (LEOI) cost functions, we will relate these twoOf the cost function. Moments and cumulants characterize

cases with information theoretic entropy. Then the concl? distribution. Thus, we could optimize the cost distribnti

sions are given in the final section. to suit our control purposes. _
Now, we will provide an interpretation of cost cumulant

control in terms of entropy. Leb(u) be the probability
0 somar<somz 100%™ 0 g0 cumancs o density of the control action and |62, denote a set of
admissible controls. Then

S N I\ g / p(u)dz = 1. (5)
Q,

15t cumulants 2" cumulants 3 cumulants
(mean) (variance) (skewness)

e mul < mu2

For p(u) we may assign the following entropy,
Fig. 3. Effects of Cumulants on the Distribution

H(u.p) = — /Q p(w) Inp(w)de = — Fo, {Inp(w)}. (6)
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We would like to minimize the entropy with the constraintsg op _ aj"p and from Eq. (8) we obtain
5 .

(4) and (5). So we create an unconstrained expression for Ou Rarm
the entropy using Lagrange multipliers.

A (1w =0
o= H) =B = - | [ st -] u
_ _/ p(u) In p(u)dz — 'u/ p(u)jndw o Forp # 0 and u # 1, it implies that aa]u =0oru* =
2 2 J"(zg, u*, t) is minimum.
-\ / p(u)dz + A;. For sufficient condition we assume that the conditions of
Qu interchanging integrations and minimizations are satisfie
Using calculus of variations (for exampe, see [3, p. 47])Thenu* that minimizes/" (zo, u) implies that it maximizes
we maximizel with respect top(u), p(zo,u) such that
g [—plnp —ppJ" = Xp| =0 Huw") = - / p(u”) lnp(u™)dz
p JQ

CInp—1— " — A = 0. ) .
b a ! = A+ / p(u™)puJ"dx
Therefore, the worst case density is s

p(u) = exp(—\ — lljn): = A /Q mgxp(u) muin pd"dx
where\ = \; + 1. And the corresponding entropy is - A+ / min p(u) min pJ"dz
~ Q“ u u
H(u) = A+ puE{J"}. @) A
) . = A+ / min[p(u)pJ"]|dz
Theorem 2.1:Consider the following system Q. U
da = min H (u)
d_.t/ = f(z,u,t) + g(z, )w(t); =z(to) = zo, b
2(t) = h(z,t) +o(t) where max,(-) = — min,(-) and min,(A) min,(B) =
l min, (AB) for A, B > 0. O

wherew andv are independent identically distributed (i.i.d.) Now, we consider a few special cases. flfis linear,
random processes. A necessary and sufficient condition fgr is quadratic andw is Gaussian process. Moreover, if
u*(z,t) to minimize J = E{J"} subject to the above p(y(z,t)) is the worst case (maximum entropy) density
dynamic constraints is that(z,¢) minimizes the entropy function andE{./} is the cost function. Then look far that
H(u(z,t)) where the associatgdu(z, )) is the maximum minimizes the above cost function such thaminimizes
entropy density function satisfying Jaynes’s maximum enthe entropyH (u) = — fy p(u) Inp(u)dz wherep(u(z,t))
tropy principle. is the maximum entropy density function satisfying Jayne's
Proof: The proof will closely follow the minimum mean maximum entropy principle. This is Saridis’s interpretati
case of Saridis [24]. For the necessary condition, considef the stochastic optimal control in terms of information
Jayne’s maximum entropy condition theoretic entropy. Saridis determined the worst case tensi
- to be in exponential form. Here it is interesting to note that
H(wo,u,p) = A+ pEL (20,0, )} at least froF;n 1955 it was known that for a si%gle variable

wherey is the constant satisfying case, the distribution that gives the maximum entropy for
OH a given mean and variance is a Gaussian distribution [1, p.
/ p(u)dz =1 and o = 0. 257]. Another interesting fact is that the conditional epir
Qu p is equal to the entropy rate for white and Markov processes.
Then
. OH B. Cost Cumulant Control and Bode Integral
min H(zg,u,p) & — =0
" 5?‘ . This section relates the cost cumulant cost function
& min E{J"(z0,u,1)} with Bode integral. We will relate the risk-sensitive cost
e funciton to the cost cumulant cost function as in [23].
= /Q min J"pdz. Then we will relate risk-sensitive cost function to the Bode

integral following the steps in [14]. This will result in

Using the lemma of the calculus of variations this iSglating the cost cumulant cost function with the Bode
equivalent to minimizing/™p or

integral.
ajn  8.Jn . Op Consider a linear time-invariant (LTI) system), = Sz,
90— ou Pt J T 0. (8) as shown in Figure 1. The corresponding quadratic cost
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function is
T—1

! !
Jp = E TpTk — €pek,
k=0

whereT is the terminal time. The risk-sensitive cost func-

tion is given as

2 0
Tns(Ip.0) = o log Besp (gJD> ®
The first charateristic function of is defined as
¢(s) = B{exp(—sJp)} =1+ f: (_1)1@32' (10)
= p(—=sJp)f = s
i=1

where a;'s are the i-th moments offp, and the second
characteristic function is given by

v(s) = log(s) = 3 = (1)

=1

where g;’s are i-th cumulants of/p. From Egs. (10) and
(11), we obtain

oo

log E{exp(—sJp)} = Z (2'1)75797 (12)
i=1 ’
Then substitute Eq. (12) into (9).
nstin )= x > S (5) @)

i=1

if |GJ|%2, < 1/|8]. We assum& = —1, which is the risk-
aversive case, and substitute Eq. (15) into (14) to obtain

™

log |detS(e?*)|dw =

T™J_n

. 1 1
mloga — Tlgnoo (TlogEexp <§]D>> . (16)

From Eq. (9), we obtain

log |detS(e?*)|dw =

-7

2w

1 oo
1 — lim —
mloga — lim Z

—o0 1" 4
=1

1

1 7
i(3) 8 an
We have used Egs. (9) and (13) on (16) to obtain the last
equality. Eq. (17) relates the Bode integral with the cost
cumulants ofJp.

For LTI and infinite horizon case, the above equation
provides an interpretation of the Bode integral in terms
of the cost cumulants. The Bode integral is zero for an
open loop stable system, and it is a sum of unstable poles
for an open loop unstable system. Thus, a sum of linear
combination of all the cumulants are equalnolog « for
the open loop stable system, andloga plus a sum of
unstable poles for the stable system.

Also if we substitute the Bode integral in Eq. (17) to (1),
we note that the entropy rate of the ouput minus the input is
the sum of all cumulants. This relates system variety to the
cumulants, and provides an interpretation of conservation

The above equation gives the relationship between the risRf the sum of cost cumulants.
sensitive cost function and the cost cumulant cost function
Following [14], we will now derive the relationship be- Ill. ENTROPY AELJDN%_?I}SEENSITNE cosT
tween the risk-sensitive cost function and the Bode integra
Risk-sensitive control can be viewed as optimizing the

Assume the sensitivity functiori(z), satisfies|S||. < .

Then by spectral factorization, we obtain infinite sum of all the moments or the cumulants of the cost
function. The moment case is related to the exponential-of-

integral (EOI) cost function and the cumulant case to the

logarithm-exponential-of-integral (LEOI) cost functif@v].

EOI control is also known as linear exponential quadratic

Gaussian (LEQG) control. In the next subsection we will

relate the information theoretic entropy to the EOI cost

function. Subsequently, we will relate entropy with the

LEOI cost function.

I —a?58%(2)S(z) = G*(2)G(2)

and
log |detS(e?*)| = %logdet (I — G* (/)G (7)) +mlog o,

wherem is the matrix dimension of the sensitivity function.
This can be rewritten as

QL / log |detS(e?*)|dw = A. Entropy and EOI Cost Function
L —

Here, a form of risk-sensitive cost function, EOI cost
function, is related to the information theoretic entropie
consider the nonlinear system given in Eq. (13), and a risk-
sensitive cost function,

mlog a + 4i / w log det (I - G*(eﬂ'w)G(ejw)) dw.
T J—n
(14)

From [12], we have

2 0
<_ﬁ log E exp (—5.]19))

= — 1 I — G*(ev jw
270 | ogdet (I — G*(e’*)G(e’)) dw,(15)

J = E{exp(8.J)}, (18)

where J is given in (3). Now, we consider the density
function for the controller:

lim
T—oo

p(u) = plula, ),
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and

/ plu)dz = 1.

Then the information theoretic entropy is given as

_ /Q p(u) In p(’ll,)d.%‘ = *EQH {lnp(“‘)}'

u

H(u)

(20) can be rewritten using the occupation distribution as

lim L log E {exp (tp((l'[tf,j)))} .

Aj) = Jim =
In Donsker and Varadhan’s notation [6], we note that
II;(T) = L (A). The asymptotic rate involving function-

als of L; ,, is then governed by thé-function (see [5, page

(21)

To find the density function that would maximize the en390])

tropy, we form an unconstrained expression for the entropy

using Lagrange multipliers.

I H(u) — p[E{exp(8.J)} — J] — /\1[' /Q p(u)dz — 1]

- / p(u) lnp(u)ds — p / p(u) exp(8.])dx + pJ

—)\] / p(u)dm + A] .
Q.

Using calculus of variations, we maximiZewith respect
to p(u),
0 .
5P Inp — upexp(8) — Aip] =0
p
—Inp—1— pexp(dJ) — A\ = 0.
Therefore, the worst case density is determined as
p(u) = exp(—A — pexp(8.])),
where\ = \; + 1. And the corresponding entropy is
H(u) = A+ pE{exp(6.])}. (19)

The interpretation in terms of EOI cost function is a
follows. The minimization of EOI cost function (18) is
equivalent to minimizing the information theoretic entyop

given by Eq. (19). Thus, in EOI control we are finding the
controller that would minimize the entropy (19) assuming

the worst case density functiop(u).

B. Entropy and LEOI Cost Function

More generally, in this Section we relate information,,

Lu

I(p) = — inf
(k) in ”

a5/

whereDT is the set of positive functions in the domain
of L. It was shown by Donsker [6] that thi&function is
related to the entropy functioH (Q)) by

I(p) H(Q),

) @), @)

= inf
QEMg(Q)

(Q)=p

where ) be a space of functions(-) on —© < t < ®©
with values in a Polish space X5 () denotes the space
of stationary processes dn, and ¢(()) = u means the
marginal of the stationary measu€g is u. We want to
relate this entropy function to the more familiar infornaati
theoretic entropy (Shannon’s entropy) of the form

() = — / F(2) log £ (2)A(dx)

if h(A; ) is finite. Let X, ¥ be a measurable space ang:
be the probability measures oA (X). For eachw € Q we
denote byw(t) the value of the functioo(-) at timet. We
also denote by;", the corresponding space of functions on

S[t, oo) with values inX and we denote by} the o-algebra

in © generated bw(o) for s <o <.
Note thath(A; i) is finite if and only if (a)u is absolutely
continuous with respect ta, and (b) the Radon-Nikodym

derivative,du (z), is such thatf(z) log f(z) € Li(}\).

n
Let {P;,} %e a homogeneous Markov family of measures
on Q;f, define {P, )} = P, with the starting point
= w(t), and define{Q: .} as the regular conditional

theoretic entropy (Shannon's entropy) to the LEOI cosbyopapility distributions of) givenF, . Finally, we have
function using large deviation theory [4], [7], [8], [10]. &N ihe relationship

still consider the general nonlinear state equation giwen b

Eq. (2). As in [22], we define the occupation distribution

of z; in " as
1

tr
L (1) = ;- /0 o (1) dt,

where xr is the indicator ofl’, I' ¢ R", andt € [0,tF].
The infinite horizon LEOI cost function is given as

{exp ( /0 " e dt> } . (20)

wherej : R" — IR is a continuous function. Let be
finite measure ofR™, and define forf € C,(IR") (bounded
continuous space oR")

() = [ f(@)plde).
.

1
A(j) = lim —logE

tp—o0 tF

H(Q) = H(1,Q) = —F {hzs (Po (o) Qo) }

where F} is the o-fields in 2 generated by (o) for 0 <

o < t. ThusH(Q) is the entropy of the stationary process
() with respect to the Markov proces} , at timel. In the
infinite horizon LEOI control problem, we are minimizing
(20) which corresponds to minimizing (21). To minimize
(21), we should minimize the exponent, which implies that
we are minimizing the occupation distributiob; ., (A).
Furthermore, from (22), minimizind.; .,(A) corresponds
to maximizingI(u), and maximizingl (u) corresponds to
maximizing the entropyH (@). And finally, maximizing
H(Q) corresponds to minimizing(\; ). Thus, as in the
EOI case the LEOI optimization is a minimum entropy
control method.
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IV. CONCLUSIONS
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In this paper, we surveyed various relations between en-
torpy control, risk-sensitive control, cost cumulant coht
and Bode integral. Then we provided an interpretation of
cost moment/cumulant control in terms of cost distribution
shaping and entorpy minimization. The infinite sum of al[23]
the cumulants is related to the entropy rate and system vari-
ety. Finally, we related risk-sensitive cost function witte
information theoretic entropy. Thus providing an interpre[24]
tation for risk-sensitive control as an entropy minimioati
method.
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