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Abstract

The Wielandt inequality is important in many applications.
It involves functions of the extreme eigenvalues of a positive
definite matrix. In this paper, we derive a few extensions
of the Wielandt inequality and new inequalities involving
the two largest and two smallest eigenvalues. The result-
ing inequalities are shown to be the best possible. A uni-
fied approach involving constrained optimization techniques
are used to derive these results. The proposed inequalities
are then utilized to obtain several bounds for the extremum
eigenvalues and eigen spread of real symmetric matrices.
A collection of bounds for functions of the eigenvalues of
positive definite and general symmetric matrices are then
derived in terms of the entries of the matrix. Additionally,
lower bounds for the condition number of positive definite
matrices as well as lower bounds for the minimum separa-
tion of eigenvalues are developed.

1 Introduction

The Wielandt inequality is an improvement on the general
Cauchy-Schwarz inequality which asserts that if A is a pos-
itive definite matrix, then

|xT Ay| ≤
√

(xT Ax)(yT Ay), (1a)

for every pair of vectors x and y. There are several matrix
versions of the Cauchy-Schwarz inequalities (1a) in the lit-
erature. In the last decade considerable progress has been
made in deriving many equivalent forms. Mond and Pecaric
[1] and Pecaric et al. [2] derived some general Cauchy-
Schwarz type inequalities. Many other related versions can
be found in [3]-[9].

In this paper, further improvement on the Cauchy-
Schwarz and the Wielandt inequalities will be developed.
The key idea here is to use optimization techniques to de-
rive bounds for functions of the eigenvalues of a matrix.
Some of these results apply to positive definite or semidefi-
nite matrices while others apply to general symmetric ma-
trices. The proposed approach is very effective in deriving
many other matrix inequalities.

In the following sections we use the following notation.
The vector ei denotes the ith column of an identity ma-
trix. The magnitude of a vector x will be denoted by

||x|| =
√

xT x. The notation I denotes an identity matrix
of appropriate size.

2. Wielandt-Like Inequalities

In this section we derive a few extensions of the well-known
Wielandt inequality. Let A ∈ IRn×n be a positive definite
matrix and let x and y ∈ IRn×1 be two vectors such that
|x| = |y| = 1 and xT y = 0. Assume that the eigenvalues
of A, in increasing order, are λ1 ≤ λ2 · · · ≤ λn, then the

Wielandt inequality asserts that

|xT Ay| ≤ λn − λ1

λn + λ1

√
(xT Ax)(yT Ay). (1b)

Moreover, there exists an orthonormal pair of vectors x; y
for which equality holds. This inequality is an improvement
of that of Cauchy-Schwarz. A matrix version of (1a) and
its applications to statistics is presented in [3]. Also, as in
[4], it is an extension of the Kantorovich inequality. In the
next development, we derive a few generalizations of (1b).

2.1 Generalization 1

Let x and y be unit vectors, then x+y√
2(1+xT y)

and x−y√
2(1−xT y)

are orthonormal vectors and therefore (1b) simplifies as fol-
lows

(x + y)T√
2(1 + xT y)

A
(x − y)√
2(1 − xT y)

≤ λn − λ1

λn + λ1
×

√
(x + y)T√
2(1 + xT y)

A
(x + y)√
2(1 + xT y)

×
√

(x − y)T√
2(1 − xT y)

A
(x − y)√
2(1 − xT y)

or

|xT Ax−yT Ay| ≤ λn − λ1

(λn + λ1)

√
(xT Ax + yT Ay)2 − 4(xT Ay)2.

(1c)
Consequently,

(xT Ax − yT Ay)2 ≤ (
λn − λ1

λn + λ1
)2×

{(xT Ax)2 + 2(xT Ax)(yT Ay) + (yT Ay)2 − 4(xT Ay)2}.
(1d)

By rearraning the terms of (1d), we obtain the follow-
ing generalization of the Cauchy-Schwarz and Wielandt in-
equalities:

(xT Ay)2 ≤ {xT Ax + yT Ay

2
−

λn + λ1

λn − λ1

xT Ax − yT Ay

2
}{xT Ax + yT Ay

2
+

λn + λ1

λn − λ1

xT Ax − yT Ay

2
}.

(1e)

Note that this inequality holds for any two vectors having
the same length. By setting x = ei and y = ej , i �= j, we
obtain the following

aiiajj − a2
ij ≥ λ1λn

(λ1 + λn)2
(aii − ajj)

2.



The last inequality can be used to derive bounds for the
condition number of A. Let k = λn

λ1
be the condition num-

ber of A, then bounds on k can be obtained from solving
the inequality

(aii − ajj)
2

aiiajj − a2
ij

≤ (1 + k)2

k
.

Since A is positive definite, the denominator of the left hand
side is always positive.

2.2 Generalization 2

In this section we derive a second extension of the Wielandt
inequality.

Theorem 1. Let A ∈ IRn×n be a positive definite matrix
and let x and y ∈ IRn×1 be two vectors such that |x| =
|y| = 1 and xT y = 0. Assume that the eigenvalues of A, in
increasing order, are λ1 ≤ λ2 · · · ≤ λn with corresponding
eigenvectors q1, · · · , qn. Then

|xT Ay|2 ≤ max{( λi − λj

λr
i + λr

j

)2}n
i,j=1
i�=j

(xT Arx)(yT Ary). (2)

Proof: We prove this result for the case where all eigen-
values are distinct. Consider the optimization problem

{Maximize
(xT Ay)(yT Ax)

(xT Arx)(yT Ary)
: xT y = 0}. (3a)

which is equivalent to the optimization problem

{Maximize (xT AyyT Ax) : xT Arx = 1, yT Ary = 1 : xT y = 0}.
(3b)

The Lagrangian of this problem is given by

L =
1

2
(xT AyyT Ax)−µ1(x

T Arx−1)−µ2

2
(yT Ary−1)−µ3x

T y.

(3c)
The first order necessary condition for optimality implies

∇x,yL =

[
(yT Ax)Ay − µ1A

rx − µ3y
(xT Ay)Ax− µ2A

ry − µ3x

]
= 0. (3d)

Thus the optimal solutions of (3b) satisfy the following re-
lations:

µ1 = µ2 = α2 = (yT Ax)2 = µ

µ3 = (yT Ax)(yT Ary) = (yT Ax)(xT Arx),

where α = yT Ax = xT Ay. Note that xT Arx = (yT Ary)
provided that yT Ax �= 0. Clearly, if yT Ax = 0, then x and
y are not optimal solutions since one can always find two
orthogonal vectors for which yT Ax �= 0. Therefore (3d) can
be expressed as

(αA − µ3I)y = µArx,

(αA − µ3I)x = µAry.
(3e)

To solve these two equations, let x =
∑n

i=1
aiqi, y =∑n

i=1
biqi and D = diag(λ1, · · · , λn). This implies that

(αD − µ3I)b = µDra,

(αD − µ3I)a = µDrb,

where a = [ a1 · · · an ] and b = [ b1 · · · bn ]. Equiva-
lently,

(αdi − µ3)bi = µdr
i ai,

(αdi − µ3)ai = µdr
i bi,

for i = 1, · · · , n. Since the eigenvalues of A are distinct, it
follows that ak �= 0 for exactly two indices k = i, j and ak =
0 otherwise, and that a2

i = b2
i , a2

j = b2
j , and aibi +ajbj = 0.

Thus a = ± ei+ej√
2

and b = ± ei−ej√
2

. Therefore the solution

of this system of equation is of the form

µ = α
λi − λj

λr
i + λr

j

,

µ3 = αλiλj

λr−1
i + λr−1

j

λr
i + λr

j

,

(3f)

for some i, j = 1, · · · , n. Since µ = α2, it follows that µ =

(
λi−λj

λr
i
+λr

j
)2. It can be shown that the Hessian matrix ∇x,yL is

definite on the null space of the gradient of the constraints.
This proves the generalized Wielandt inequality. It should

be noted that the maximum of µ = (
λi−λj

λr
i
+λr

j
)2 occurs at

(i, j) = (1, n) when r = 0, 1. Howvere, this may not be the
case if r ≥ 2.

Remark 1: The classical Wielandt inequality of (1b) can
be obtained by setting r = 1, in which case (3e) can be
rewritten as

(A−1 − α

µ3I
)y =

−µ

µ3
x

(A−1 − α

µ3I
)x =

−µ

µ3
y.

(3g)

As shown in Lemma 3 below, it follows that

α

µ3
=

λ−1
i + λ−1

j

2
,

−µ

µ3
=

λ−1
i − λ−1

j

2
.

Solving these two equations for µ and µ3, we obtain

µ = (
λ−1

i − λ−1
j

λ−1
i + λ−1

j

)2 = (
λj − λi

λi + λj
)2,

for some i, j = 1, · · · , n. The maximum occurs at (i, j) =
(1, n) or (i, j) = (n, 1) since for each (i, j)

λn − λ1

λn + λ1
− λi − λj

λi + λj
=

2(λnλj − λiλ1)

(λi + λj)(λn + λ1)
> 0,

i.e., max{(λi−λj

λi+λj
)2}n

i,j=1 occurs at (i, j) = (1, n) or (i, j) =

(n, 1).
For r = 0 another useful inequality is obtained as shown

next.

Proposition 2. Let A, x, y, λ1, λn be as in Theorem 1,
then

min
i,j=1
i�=j

{|λi − λj

2
|} ≤ |xT Ay| ≤ λn − λ1

2
. (4)

To prove Proposition 2, the following Lemma is needed.

Lemma 3. Let A ∈ IRn×n be a symmetric matrix of size n.
Assume that the eigenvalues of A are λ1 < λ2 < · · · < λn

with corresponding eigenvectors q1, · · · , qn. Let x, y ∈ IRn

such that ||x|| = ||y|| = 1 and xT y = 0. Then the solution
of the system

(A − µ1I)x = µ2y,

(A − µ1I)y = µ2x.



has the form

µ1 =
λi + λj

2
, x =

qi + qj√
2

,

µ2 =
λi − λj

2
, y =

qi − qj√
2

,

where i, j = 1, · · · , n.

Proof of Proposition 2: We solve the optimization prob-
lem

{Optimize xT Ay : xT x = 1, yT y = 1, xT y = 0}. (5a)

Let x =
∑n

k=1
αkqk and y =

∑n

k=1
βkqk, where {qk}n

k=1

is the set of eigenvectors of A so that Aqk = λkqk, for
k = 1, · · · , n. Thus the above optimization problem can be
expressed as

{Optimize αT Dβ : αT α = 1, βT β = 1, αT β = 0}. (5b)

Let L be the Lagrangian of this problem given by

L = αT Dβ − µ1

2
(αT α− 1)− µ2

2
(βT β − 1)− µ3

2
αT β, (5c)

where D = diag{λ1, · · · , λn}. We will assume that eigen-
values are simple. The first order necessary condition for
optimality implies

∇α,βL =

[
Dβ − µ1α − µ3β
Dα − µ2β − µ3α

]
= 0. (5d)

To solve these equations for α and β, we note that at opti-
mal solutions the following holds:

µ1 = αT Dβ, µ2 = βT Dα,

µ3 = αT Dα, µ3 = βT Dβ.

Consequently, µ1 = µ2 = µ, and αT Dα = βT Dβ. Since
eigenvalues of D are distinct, the last equality implies that
α and β can not be eigenvectors of D. Now,

(D − µ3I)β = µα,

(D − µ3I)α = µβ.
(5e)

Equations (5d) yield

(D − µI)2α = µ2α

(D − µI)2β = µ2β.
(5f)

This means that

(λi − µ3)
2αi = µ2αi,

(di − µ3)
2βi = µ2βi.

(5g)

for i = 1, · · · , n. If αk �= 0 and βk �= 0 for some k = i, j,
then (λi − µ3)

2 = µ2, (λj − µ3)
2 = µ2, α2

i = β2
i , and

α2
j = β2

j . The assumption that the eigenvalues of A are
distinct implies that ak = βk = 0 for k �= i, j. Hence,

µ =
λi+λj

2
and µ3 =

λi−λj

2
. Now, since α and β are unit

vectors and orthogonal,

α = αiei + αiej =
ei + ej√

2
,

and

β = βiei + βjej = αiei − αiej =
ei − ej√

2
. (5h)

Clearly, αT Dβ =
λi−λj

2
, which is maximum if i = n and

j = 1. Thus this maximum is attained at α = en+e1√
2

,

and β = en−e1√
2

. It can be shown that the Hessian ∇2L
is negative definite on the null space of the gradient of the
constraints. Thus this solution is a maximizer of (5a). Sim-
ilar analysis may apply to show that the minimum of xT Ay

is of the form
λi−λj

2
.

Remark 2: Assume that xT y = 0, then xT (A + cI)y =
xT Ay for each positive number c. Thus Proposition 2 is
also valid for general symmetric matrices.

Corollary 4. Let A, λ1, λn be as in Theorem 1 and let
x, y be unit vectors, then

(a) min i,j=1
i�=j

{|λi−λj

2
|} ≤ xT A2x − (xT Ax)2 ≤ (λn−λ1

2
)2

(b) |xT Ax − yT Ay| ≤ (λn − λ1)
√

1 − (xT y)2

(c) Let B be a symmetric matrix, then for each unit vec-
tors x and z the following hold

|xT ABz − (xT Ax)(xT Bz| ≤ (
λn − λ1

2
)(

µn − µ1

2
),

(6)
where µn and µ1 is the largest and smallest eigenvalues
of B.

(d) xT A3x−(xT Ax)(xT A2x)√
xT A4x−(xT A2x)2

≤ λn−λ1
2

.

Proof: To prove (a), assume that ||x|| = 1 and set
y = Ax − xT Axx. Then xT y = 0 and ||y|| =√

xT A2x − (xT Ax)2. Thus,

xT A
y

|y| = xT A
(Ax − xT Axx)√
xT A2x − (xT Ax)2

=
xT A2x − (xT Ax)2√
xT A2x − (xT Ax)2

=
√

xT A2x − (xT Ax)2 ≤ λn − λ1

2
.

(b) Let x and y be unit vectors, then x+y√
2(1+xT y)

and

x−y√
2(1−xT y)

are orthonormal vectors and therefore (4) sim-

plifies to

(x + y)T√
2(1 + xT y)

A
(x − y)√
2(1 − xT y)

≤ λn − λ1

2
.

(c) Let y = Bz − (xT Bz)x, then xT y = 0 and ||y|| =√
zT B2z − (xT Bz)2. It follows from Proposition 2 that

xT A
y

||y|| = |x
T ABz − (xT Ax)(xT Bz)√

zT B2z − (xT Bz)2
| ≤ λn − λ1

2
.

(d) follows from (c) by setting B = A2 ans z = x.

3. Inequalities Involving the Largest Two and
Smallest Two Eigenvalues

In this section we use optimization techniques to derive
matrix inequalities which are then used to provide bounds
for the extremum eigenvalues of hermitian matrices.

Theorem 5. Let A ∈ Rn×n (n ≥ 2) be a positive definite
matrix and let x and y ∈ Rn×1 be two vectors such that
|x| = |y| = 1 and xT y = 0. Assume that the eigenvalues of
A, in increasing order, are λ1 ≤ λ2 · · · ≤ λn, then(

λ1 + λ2

2

)2

≤ (xT Ax)(yT Ay) ≤
(

λn−1 + λn

2

)2

. (7a)



Proof: Consider the optimization problem

{Maximize (xT Ax)(yT Ay) : xT x = 1, yT y = 1, xT y = 0}.
Then the Lagrangian of this problem is given by

L =
1

2
(xT Ax)(yT Ay)−µ1x

T y− µ2

2
(xT x−1)− µ3

2
(yT y−1),

(7b)
where µ1, µ2 and µ3 are Lagrange multipliers. The first
order necessary condition for optimality is

∇x,yL =

[
(yT Ay)Ax− µ1y − µ2x
(xT Ax)Ay − µ1x − µ3y

]
= 0. (7c)

At optimal solutions, the following hold:

µ2 = µ3 = (xT Ax)(yT Ay)

µ1 = (yT Ay)(xT Ay) = (xT Ax)(yT Ax),

i.e. xT Ax = yT Ay provided that xT Ay = yT Ax �= 0.
It follows from Lemma 3 that x = α1q + α2p and y =
β1q + β2p, where p and q are two distinct unit eigenvectors
of A corresponding to the eigenvalues λ and µ. Note that
||p|| = ||q|| = 1 and pT q = 0. The optimality conditions
yield:

λα2
1 + µα2

2 = λβ2
1 + µβ2

2 ,

α2
1 + α2

2 = 1, β2
1 + β2

2 = 1, α1β1 + α2β2 = 0.

Hence,
λα2

1 + µ(1 − α2
1) = λβ2

1 + µ(1 − β2
1).

α2
1(λ − µ) = β2

1(λ − µ) or α2
1 = β2

1 which implies that
α1 = ∓β1. Similarly, α2

2 = β2
2 or α2 = ∓β2,

0 = α1β1 + α2β2 = α2
1 − α2

2

and therefore, α1 = ∓α2. This yields x = ± q+p√
2

, y =

± q−p√
2

. Hence (xT Ax)(yT Ay) = (µ+λ
2

)2. This quantity is

maximum if x = ± qn+qn−1√
2

, and y = ± qn−qn−1√
2

, in which

case (xT Ax)(yT Ay) = (
λn+λn−1

2
)2. Similarly, the mini-

mum of (xT Ax)(yT Ay) = (λ1+λ2
2

)2, which is attained at

x = ± q1+q2√
2

, y = ± q1−q2√
2

.

It can be verified that the second order optimality con-
dition implies ∇2L is negative definite on the null space of
the gradient of the constraints.

Corollary 6. Let A ∈ Rn×n be a positive definite matrix
and let x and y ∈ Rn×1 be two vectors such that ||x|| =
||y|| = 1. Assume that the eigenvalues of A, in increasing
order, are λ1 ≤ λ2 · · · ≤ λn, then

(
λ1 + λ2

2
)2

√
1 − (xT y)2 ≤ (xT Ax + yT Ay)2 − 4(xT Ay)2

≤ (
λn + λn−1

2
)2

√
1 − (xT y)2.

(8a)

Proof: The vectors x+y√
2(1+xT y)

and x−y√
2(1−xT y)

are ortho-

normal and hence Theorem 5 guarantees that

(
(x + y)T√
2(1 + xT y)

A
x + y√

2(1 + xT y)
)(

(x − y)T√
2(1 − xT y)

A
x − y√

2(1 − xT y)
)

≤ (
λn + λn−1

2
)2.

Equivalently,

{xT Ax + yT Ay + 2(xT Ay)}{(xT Ax + yT Ay) − 2(xT Ay)}
≤ (λn + λn−1)

2
√

1 − (xT y)2.
(8b)

Theorem 5 and Corollary 6 can be applied to deduce
lower bounds for the maximum eigenvalues of a positive

definite matrix. Let A = [aij ] and let x =
ei+ej√

2
and y =

ei−ej√
2

, then it implies from Corollary 6 that

(λn + λn−1)
2 ≥ (aii + ajj)

2 − 4a2
ij .

This also implies that

λn ≥
√

(aii + ajj)2 − 4a2
ij .

Thus we have the following result:

Proposition 7. Let A be a positive definite matrix of size
n. Assume that the eigenvalues of A are λ1 < λ2 ≤ · · · <
λn, then

λn + λn−1 ≥ max{
√

(aii + ajj)2 − 4a2
ij}n

i,j=1,

λ1 + λ2 ≤ min{
√

(aii + ajj)2 − 4a2
ij}n

i,j=1.

As a result, the following hold:

λn ≥ max{
√

(aii + ajj)2 − 4a2
ij}n

i,j=1,

λ1 ≤ min{
√

(aii + ajj)2 − 4a2
ij}n

i,j=1.

The next result provides another version of Wielandt-
like inequality.

Proposition 8. Let A ∈ Rn×n be a positive definite ma-
trix and let x and y ∈ Rn×1 be two vectors such that
||x|| = ||y|| = 1 and xT y = 0. Assume that the eigenvalues
of A, in increasing order, are λ1 ≤ λ2 · · · ≤ λn, then

|xT A2y| ≤ (λn − λ1)
√

(xT Ax)(yT Ay).

It is known that |xT Ay| ≤ xT Ax+yT Ay
2

for every two
vectors x and y. In the next proposition we generalize this
inequality for the case where x and y are orthogonal.

Proposition 9. Let A ∈ Rn×n be a positive definite ma-
trix and let x and y ∈ Rn×1 be two vectors such that
||x|| = ||y|| and xT y = 0. Assume that the eigenvalues
of A, in increasing order, are λ1 ≤ λ2 · · · ≤ λn, then

|xT Ay| ≤ 1

2

λn − λ1

λn + λ1
(xT Ax + yT Ay).

It is know that if A is a positive definite matrix of size n,
then all diagonal elements of A are positive, and therefore
|aii − ajj | < aii + ajj for all i, j = 1, · · ·n. The next result
is a generalization of this simple observation.

Corollary 10. Assume that A is a positive definite matrix
of size n, and let the eigenvalues of A, in increasing order,
be λ1 ≤ λ2 · · · ≤ λn, then

|xT Ax − yT Ay| ≤ λn − λ1

λn + λ1
(xT Ax + yT Ay).



Corollary 11. Assume that A = [aij ] is positive definite
matrix of size n, and let the eigenvalues of A, in increasing
order, be λ1 ≤ λ2 · · · ≤ λn, then for every i �= j

1. |aij | ≤ 1
2

λn−λ1
λn+λ1

(aii + ajj).

2. If k = λn
λ1

is the condition number of A, then

k ≥ aii + 2aij + ajj

aii − 2aij + ajj
.

3. |aii − ajj | ≤ λn−λ1
λn+λ1

(aii + ajj) and hence

k ≥ n
max
i=1
i�=j

aii

ajj
.

4. Miscellaneous Results and Conjectures

In this section, we state some results that can be developed
using the adopted approach of constrained optimization.
The following results is a generalization of Proposition 2.

Proposition 12. Let A ∈ Rn×n be a positive definite ma-
trix and let x and y, b ∈ Rn×1 be three vectors such that
||x|| = ||y|| = ||b|| = 1, xT y = 0, xT b = 0, and yT b = 0.
Then

|xT Ay| ≤ λn(Ab) − λ1(Ab)

2
,

where Ab = (I − bbT )A(I − bbT ).

Remark 3: It can be shown that λn(Ab) ≤ λn(A) and
λ1(Ab) ≥ λ1(A), hence

|xT Ay| ≤ λn(Ab) − λ1(Ab)

2
≤ λn(A) − λ1(A)

2
.

Proposition 13. Assume that A = is a positive definite
matrix of size n, and let the eigenvalues of A, in increasing
order, be λ1 ≤ λ2 · · · ≤ λn, then

(xT Ax)(yT Ay) − (xT Ay)2 ≤ λnλn−1.

Proof: Let x =
∑n

i=1
αiqi and y =

∑n

i=1
βiqi, where

{q1, · · · , qn} is the set of eigenvectors of A. The proof fol-
lows directly from the identity:

(xT Ax)(yT Ay) − (xT Ay)2 = (

n∑
i=1

λiα
2
i )(

n∑
j=1

λjβ
2
j )

− (

n∑
k=1

λkαkβk)2 =

n∑
i=1

λiλj(αiβj − αjβi)
2.

Another generalization of Waielandt inequality is given
next.

Proposition 14. Let A ∈ Rn×n be a positive definite ma-
trix and let x and y ∈ Rn×1 be two vectors such that
||x|| = ||y|| and xT y = 0. Assume that the eigenvalues
of A, in increasing order, are λ1 ≤ λ2 · · · ≤ λn, then for
every two positive integers r and s

|xT Asy| ≤ max
i,j=1
i�=j

1

2
|λ

s
i − λs

j

λr
i + λr

j

|(xT Arx)(yT Ary).

Corollary 15. Let A ∈ IRn×n be a positive definite matrix
of size n. Assume that the eigenvalues of A are λ1 < λ2 ≤
· · · < λn, then for any unit vector x ∈ IRn:

{xT A2x − (xT Ax)2} 3
2

xT A3x − (xT Ax)(xT A2Ax)
≤ 1

2

λn − λ1

λn + λ1
.

The following two conjectures are generalizations of The-
orem 5 and Proposition 9.

Conjecture 1. Let A ∈ Rn×n (n ≥ 3) be a positive def-
inite matrix and assume that the eigenvalues of A, in in-
creasing order, are λ1 ≤ λ2 · · · ≤ λn. Then for any three
orthonormal vectors x, y, z ∈ Rn×1

(
λ1 + λ2 + λ3

3

)3

< (xT Ax)(yT Ay)(zT Az)

<

(
λn−2 + λn−1 + λn

3

)3

,

and that the strick inequalities always hold.

Conjecture 2. Let A ∈ Rn×n be a positive definite matrix
and assume that the eigenvalues of A, in increasing order,
are λ1 ≤ λ2 · · · ≤ λn. Then for any three orthonormal
vectors x, y, z ∈ Rn×1

|xT Ay+xT Az+yT Az| ≤ 1

2

λn − λ1

λn + λ1
(xT Ax+yT Ay+zT Az).

5. Miscellaneous Inequalities

In this section, we list a few inequalities that can be derived
from the framework of the previous sections. Some of these
results are known in the literature.

Corollary 15. Let A ∈ IRn×n be a positive definite matrix
of size n. Assume that the eigenvalues of A are λ1 < λ2 ≤
· · · < λn, then for any two unit vectors x, y ∈ IRn

(a) xT Ay ≤ cos(θ)(xT Ax+yT Ay
2

) + λn−λ1
2

sin(θ), where θ
is the angle between x and y.

(b) |λk − aii| ≤ λn − λ1, k, i = 1, · · · , n
(c) |aiiajj | ≤ (

λn+λn−1
2

)2, i, j = 1, · · · , n
(d) |Trace(A)

n
− λk| ≤ λn − λ1, k = 1, · · · , n

(e)
√∑

i�=j
a2

ij ≤ λn−λ1
2

(f) |aii − ajj | ≤ λn − λ1, i, j = 1, · · · , n

(g)

√∑
i<j

(Ci−Cj)2

n
≤ λn−λ1

2
, where Ci denotes the sum

of the elements of the ith column of A.

(h) |aij | = eT
j Aei ≤ λn−λ1

2
, i �= j, and hence

λn − λ1 ≥ 2maxi�=j{|aij |}.

(i) If the vectors
αei+ej√

1+α2
and

ei−αej√
1+α2

are considered, then

maxα,i�=j{α(aii − ajj) + (1 − α2)aij

1 + α2
} ≤ λn − λ1

2
.

(j) Assume that n is even and let Ck =
∑n

i=1
aik, then∑n

i=1
(−1)k+1Ck

n
≤ λn − λ1

2

(k) 1
n2 [n trace(A2) − (trace(A))2] ≤ (λ1−λn

2
)2

(l) xT A3x − 2xT Ax(xT A2x) + (xT Ax)3 ≤
(

λn+λn−1
2

)2
√

xT A2x−(xT Ax)2

xT Ax



(m)
trace(A3)− 1

n
trace(A2)trace(A)√

n trace(A4)−(trace(A2))2
≤ λn−λ1

2
, and thus

trace(A3) − 1

n
trace(A2)trace(A) ≤

n(
λ2

n − λ2
1

2
)
(λn − λ1)

2
≤ n

4
(λ2

n − λ2
1)(λn − λ1)

=
n

4
(λ1 + λn)(λn − λ1)

2.

Proof: The proof of (a) from Proposition 2 and the obser-

vation that the vectors x and z = y−xT y)x√
1−(xT y)2

are orthogonal

for any unit vector x and that ||z|| = 1. Specifically,

xT Az = xT A
y

||y|| = xT A
y − xT y)x√
1 − (xT y)2

≤ λn − λ1

2
.

Parts (b), (d), and (f) follows from Proposition 2 by

setting (x, y) = (qk, ei), (ei, ej), (

∑
n

i=1
qi√

n
, qk), respectively.

Part (c) is a direct result of Theorem 5 where x = ei, y = ej .
Proof of (j): Assume that n is even and set x =
1√
n

∑n

k=1
ek and y = 1√

n

∑n

k=1
(−1)kek, then xT y = 0 and

thus ∑n

i=1
(−1)k+1Ck

n
≤ λn − λ1

2

Proof of (k): Let x =

∑
n

i=1
qi√

n
, then xT Akx = trace(Ak)

n

for each integer k. The conclusion is a direct result of Corol-
lay 4, Part (a).

Remark 4: In Part (i), let

g(α) =
α

1 + α2
(aii − ajj) +

(1 − α2)

1 + α2
aij ,

then

g′(α) =
−(aii − ajj)α

2 − 4aijα + (aii − ajj)

(1 + α2)2
.

If aii �= ajj , then g′(α) = 0 if and only if

α =
−4aij ±

√
(aii − ajj)2 + 16a2

ij

2(aii − ajj)
.

One of these values can be shown to be a local and global
maxima of the function g(α). Thus an improvement on the
estimates of (f) and (h) can be obtained.

Remark 5: Assume that x =
∑n

i=1
αiqi, then

∑n

i=1
α2

i =
1, where the qis are the set of eigenvectors of A. Then

(xT A2x)(xT x) =
∑

λ2
i α

2
i = (

n∑
i=1

λ2
i α

2
i )(

n∑
i=1

α2
i ),

and

(xT Ax)2 = (

n∑
i=1

λiα
2
i )(

n∑
j=1

λjα
2
j ).

Therefore,

(xT A2x)(xT x) − (xT Ax)2 =

n∑
i=1

n∑
j=1

λ2
i α

2
i α

2
j

−
n∑

i=1

n∑
j=1

(λiα
2
i )(λjα

2
j ) =

n∑
i=1

n∑
j=1

(λ2
i − λiλj)α

2
i α

2
j

=

n∑
i=1

n∑
j<i

(λj − λi)
2α2

i α
2
j .

(9)

This identity can be utilized to prove that the max-

imum of xT A2x − (xT Ax)2 is (λn−λ1)2

4
and α =[± 1√

2
0 · · · ± 1√

2

]
. Note that the expression in (9) can

be rewritten as

(xT A2x)(xT x) − (xT Ax)2 = cT Bc

where B = [bij ], bij = (λj − λi)
2, and c =

[ α2
1 α2

2 · · · α2
n ]. An interesting property of the matrix

B is that it is of rank 3 at most regardless of its size.

6. Conclusion

Wielandt-type inequalities are derived using equality con-
straints optimization techniques. These inequalities are
then utilized to develop bounds for functions of eigenval-
ues of positive semidefinite matrices. Some of these bounds
are related to functions of extreme eigenvalues and oth-
ers to the largest two or smallest two eigenvalues. In this
work, although all matrices involved are real most of the
results can be extended to positive definite hermitian ma-
trices with minor modifications. The proposed methods are
also applicable for deriving bounds for the singular values
of matrices, however, these bounds are not reported here
due to space limitation.
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