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Abstract— In this paper, a design of model matching systems
for a plant having more inputs than the outputs (e.g., fat plant)
will be presented. For this aim, an inverted interactorizing
system by state feedback will be investigated. It will be shown
that the highest frequency gain matrix of given fat plant cannot
be assigned arbitrarily. This means that the unstable pole-zero
cancellation may occur by applying the control law for the
previous reported method, even if the plant has no unstable
zeros. A special selection of generalized inverse of the highest
frequency gain matrix will be proposed to achieve stable model
matching systems.
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I. INTRODUCTION

The aim of model matching control is to combine the
transfer function matrix of the plant and controllers to match
the reference model, and one of the ideal design of control
systems. The basic design of model matching was presented
in [1] and [2], and developed in [3] relating with the
parameter adaptive control. In the parameterization by [3],
the denominator polynomial matrix of the plant is assigned
to its numerator polynomial matrix and interactor matrix
[4]. Therefore, the stability of the numerator polynomial
matrix is necessary and sufficient condition for an internally
stable model matching systems. Unfortunately, the methods
mentioned above is only used for the plant having same
number of inputs and outputs.

In the case of the plant having more inputs than the
outputs, which have “fat” transfer function matrix, it is
considered that the problem can be reduced to the square
case by eliminating some inputs. But it is not clear how
to select the eliminating inputs. That is, by eliminating
some columns in the transfer function matrix, some unstable
zeros may be appeared even if the original plant has no
unstable invariant zeros. Thus, the elimination method is
not adequate.

In this paper, it will be proposed a design of model
matching system for fat plants. For this development, it will
be investigated that the derivation method of an interactor
and inverted interactorizing using the state feedback [5].
The inverted interactorizing gives the basic structure of
model matching control systems and, of course, an inter-
actor plays an important role there. The authors proposed
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a simple derivation of the interactor for square transfer
matrices [7]. In this paper, it will be extended to the fat
case. Then, it will be presented an effective proof of the
inverted interactorizing to make clear its structure. By these
developments, the pole-zero cancellation mechanism will be
clear in the inverted interactorizing systems. A necessary
and sufficient condition for an internally stable inverted
interactorizing systems will be presented.

The paper organized as follows. In the next section, the
definition of the interactor and a simple derivation of it for
fat plants will be given. In section 3, a simple proof of the
inverted interactorizing will be presented and a necessary
and sufficient condition for the internally stability will be
given. The extension for model matching system will be
discussed in section 4. The proposed method is easy to
apply for a plant with measurement noise and numerical
example will be shown in section 5. Concluding remarks
will be given in section 6.

II. INTERACTOR

For a given m×p (m ≤ p) strictly proper, full rank trans-
fer function matrix G(z), there exists m × m polynomial
matrix L(z) such that

lim
z→∞L(z)G(z) = K (full rank). (1)

The above L(z) is called an interactor matrix for G(z) [4],
and if p = m and K = Im (m-th dimensional identity
matrix), then L(z) is called an identity interactor. At first,
the derivation of the identity interactor ξ(z) := K−1L(z)
will be discussed.

Set ξ(z) as follows:

ξ(z) = ξ0 + zξ1 + z2ξ2 + · · · + zwξw (2)

where ξi (i = 0, 1, . . . , w) is an m × m matrix to be
determined, and w will be defined later. Let (A,B,C)
denote a realization of G(z). Then, the following relation
holds [6]:

ξT w−1 = Jw−1 (3)

where

ξ =
[
ξ1 · · · ξw

]
, Jw−1 =

[
Im 0m×m(w−1)

]
,

T w−1 =




CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CAw−1B CAw−2B · · · CB


 ,

Sw
Im

(z) =
[
Im zIm · · · zwIm

]T
.



Now, w is defined by the least integer which satisfies the
following equation:

rank

[
T w−1

Jw−1

]
= rankT w−1. (4)

From the above, eqn.(3) is solvable, and using the pseu-
doinverse T †

w−1 of T w−1, the solution is given by

ξ = Jw−1T
†
w−1. (5)

The above solution has the following properties.

Theorem 1 If the solution of eqn.(3) is given by eqn.(5),
then the following properties hold:

P1 ξ(z)ξ∼(z) = ξξT , (6)

P2 Ow−1(C,AF )B = ξ†, (7)

P3 CAw
F = 0 (8)

where ξ† is the pseudoinverse of ξ, and

ξ∼(z) = ξT (z−1) = ξT
0 + z−1ξT

1 + · · · + z−wξT
w ,

F = ξOw−1(C,A)A, Ow−1(C,A) =




C
CA

...
CAw−1


 ,

AF = A−BF.

See [7] for the proof.

P1 means that ξ(z) has all-pass property in discrete-time
[8], [9]. P2 and P3 show that non-zero Markov parameters
of the inverted interactorizing system are given by the
pseudoinverse of ξ, since F is a feedback gain of inverted
interactorizing [5].

Next, the derivation for fat plants will be discussed. In
this case, the relation corresponding to eqn.(3) is given by

LT w−1 = J̄w−1 (9)

where
L(z) = L0 + zL1 + · · · + zwLw,
L =

[
L1 · · · Lw

]
,

J̄w−1 =
[
K 0m×p(w−1)

]
.

Since any special form of K cannot be assumed, find it by
the following iteration.

Set w = 1. From eqn.(9), L can be represented by

L = J̄w−1T w−1 = KW w−1 (10)

where W w−1 represents the matrix which consists of first
p-th rows in T †

w−1. Substituting the above equation to
eqn.(9),

K
{
W w−1T w−1 −

[
Ip 0p×p(w−1)

]}
= 0. (11)

Thus, K can be obtained by calculating left null space of{
W w−1T w−1 −

[
Ip 0p×p(w−1)

]}
. If rankK < m, repeat

the above procedure setting w = w+ 1. If not, using K , L
is given by eqn.(10).

Note that the above method is essentially same as in
square case and all zeros of the interactor lie at origin. The
following Lemma is trivial but important.

Lemma 1 For a given fat transfer function matrix
G(z), let L1(z) and L2(z) denote interactor matrices, and
K1 and K2 denote the highest frequency gains satisfying
eqn.(1), respectively. Then, there exists nonsingular matrix
M such that

K2 = MK1. (12)

(Proof). As shown in eqn.(9), K1 and K2 are given
by linearly combinations of rows in Ow−1(C,A)B. Thus,
eqn.(12) holds.

Example 1 Consider the following transfer function
matrix G(z).

G(z) =




1
z + 0.1

1
z + 0.2

1
z + 0.3

1
z + 1

1
z + 1.1

1
z + 1.2


.

A state space realization (A,B,C) of G(z) is given by

A =




0 1 0 0 0 0
−0.1 −1.1 0 0 0 0

0 0 0 1 0 0
0 0 −0.22 −1.3 0 0
0 0 0 0 0 1
0 0 0 0 −0.36 −1.5



,

B =




0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1



, C =

[
1 1 1.1 1 1.2 1

0.1 1 0.2 1 0.3 1

]
.

In this case, w = 3 and W 3T 3 −
[
I3 03×6

]
is given by

W 3T 3 −
[
I3 03×6

]
=


−0.1667 0.3333 −0.1667

0.3333 −0.1667 0.3333
−0.1667 0.3333 −0.1667

0.0001 0 −0.0001 0.0011 0.0011 0.0011
−0.0002 0 0.0002 −0.0022 −0.0022 −0.0022

0.0001 0 −0.0001 0.0011 0.0011 0.0011


 .

Thus, K is given by

K =
[

1 1 1
1 0 −1

]

and the interactor is given by

L =
[

0.4158 0.4158 0.1871 −0.1871 0 0
2.7027 2.7027 −3.7838 −6.2162 11.1111 −11.1111

]
,

L(z) = z3

[
0 0

11.1111 −11.1111

]

+z2

[
0.1871 −0.1871

−3.7838 −6.2162

]
+ z

[
0.4158 0.4158
2.7207 2.7207

]
.



On the other hand, by the method in [4], K2 and L2(z)
are given by

K2 =
[

1 1 1
12 15 18

]
, L2(z) =

[
z 0

−z3 + 3z2 z3

]
.

It is clear that K and K2 are linearly dependent as shown
in Lemma 1.

III. INVERTED INTERACTORIZING BY STATE FEEDBACK

Although the inverted interactorizing was proposed and
proved in [5], the proof was complex. A simple method will
be proposed for the following discussions.

Lemma 2 For a given m×p fat transfer function matrix
G(z), let (A,B,C) denote a realization of G(z). Define the
feedback gain by

F̄ =
[
L0 L

]Ow−1(C,A)

=
[
L0 L1 · · · Lw

]



C
CA

...
CAw


 . (13)

Then, by the control law

u(t) = −K−(F̄ x(t) − r(t)), (14)

the inverted interactorizing is achieved, where K− is a
generalized inverse of K , and r(t) ∈ Rm is a command
input.

(Proof). In the state space equation

zx(t) = Ax(t) + Bu(t) (15)

y(t) = Cx(t), (16)

Multiplying eqn.(16) by z, and substituting it to eqn.(15)
recursively, it follows [10]

Sw
Im

(z)y(t) = Ow(C,A)x(t) +
[

0m×pw

T w−1

]
Sw−1

Ip
(z)u(t).

(17)
Leftmultiplying the above equation by

[
L0 L

]
, and using

eqns.(9) and (13),

L(z)y(t) = F̄ x(t) + J̄w−1S
w−1
Ip

(z)u(t)

= F̄ x(t) + Ku(t). (18)

A solution of the above equation for u(t) is given by

u(t) = −K−(F̄ x(t) − L(z)y(t)), (19)

and substituting the above to the state equation (15) and
(16),

y(t) = C(zI −A + BK−F̄ )−1BK−L(z)y(t).

Therefore,

L−1(z) = C(zI −A + BK−F̄ )−1BK−

is obtained.

✲ ❢
r(t) +

−
u(t) y(t)

Augmented Plant

✲ K− ✲ G(z) ✲

✛
x(t)

F̄

✻

Fig. 1. Inverted Interactorizing Systems by State Feedback

In the control law (14), the generalized inverse K−

can be interpreted as the squalizing pre-compensator (see
Fig.1). Then, F̄ is the conventional inverted interactorizing
feedback gain for the square plant G(z)K−. Therefore, the
following Theorem about the stability of the closed-loop
system holds.

Theorem 2 Internally stable inverted interactorizing is
achieved if and only if G(z)K− is stably invertible.

Note that it is not adequate to adopt the pseudoinverse
K† = KT (KKT )−1 of K as a generalized inverse. Since
there is no degree of freedom in K from Lemma 1, so as in
KT and K†. Thus, from Theorem 2, the zeros of G(z)KT

are fixed and the inverted interactorizing system may not be
stable even if there are no unstable invariant zeros in G(z).

Example 2 Consider the same plant as in Example
1. Note that G(z) has no invariant zeros outside the unit
circle. Since a left coprime factorization of G(z) is given
by

G(z) = D̃−1(z)Ñ(z),

D̃(z) =
[
d̃11(z) 0

0 D̃22(z)

]
,

Ñ(z) =
[
ñ11(z) ñ12(z) ñ13(z)
ñ21(z) ñ22(z) ñ23(z)

]
,

d̃11(z) = (z + 0.1)(z + 0.2)(z + 0.3)
d̃22(z) = (z + 1)(z + 1.1)(z + 1.2)
ñ11(z) = (z + 0.2)(z + 0.3) ñ21(z) = (z + 1.1)(z + 1.2)
ñ12(z) = (z + 0.1)(z + 0.3) ñ22(z) = (z + 1)(z + 1.2)
ñ13(z) = (z + 0.1)(z + 0.2) ñ23(z) = (z + 1)(z + 1.1)

the zeros of G(z)KT are given by that of

det Ñ(z)KT = −0.54z2 − 0.702z − 0.1206

that is,
z = −1.0963, −0.2037

which is unstable and an internally stable inverted interac-
torizing will not be achieved if K† is used as a generalized
inverse. In fact, feedback gain F̄ is given by

F̄ = LO2(C,A)A

=
[−0.1 −0.6426 −0.22 −0.7595 −0.36 −0.8763
−0.1 1.8730 0 3.5135 0.36 5.5541

]

and the eigenvalues of A−BK†F̄ are given by

0, 0, 0, 0, −0.2037, −1.0963.



Therefore, an internally stable inverted interactorizing sys-
tem is not obtained.

On the other hand, define the generalized inverse K− of
K by

K− = K#(KK#)−1

where

K# =


 1 0

0 1
α β


 , detKK# = α− 2β − 1 �= 0

and the constant α and β are to be determined so that the
zeros of Ñ(z)K# lie inside the unit circle. Since

Ñ(z)K# = 0.09{(1 − α + 2β)z2 + (2.9 − 2.5α + 5.4β)z
+(2.08 − 1.54α + 3.6β)},

and α− 2β− 1 �= 0, set the 0-th and first order coefficients
of the above equation to be zero. Then,

α = −1.2321, β = −1.0982.

Although the feedback gain F̄ is same as in the pseudoin-
verse case, all eigenvalues of A − BK−F̄ are zeros, and
an internally stable inverted interactorizing is achieved.

From the above Example, a necessary condition for a
design of K− is obtained.

Theorem 3 Assume that any m columns in G(z) are
linearly independent normally. Then, there exists K− such
that the zeros of detG(z)K− can be assigned arbitrarily if
the following inequality holds

m(p−m) ≥ dimA− detL(z). (20)

However, it is hard to find a sufficient condition. Since
L(z) is stably invertible, the problem is reduced to find
K− such that L(z)G(z)K−. Let (A, B, C̃, K) denote
a realization of L(z)G(z). Then, A-matrix of the inverse
system {L(z)G(z)K−}−1 is A−BK−C. This means that
the problem is same as the stabilizability problem by static
output feedback. Even though some important facts are
reported [11], [12], the problem is still open.

IV. MODEL MATCHING FOR FAT PLANTS

Consider a right coprime factorization of G(z) as follows:

G(z) = N(z)D−1(z),
D(z) ∈ Rp×p[z], N(z) ∈ Rm×p[z]. (21)

Let L(z) and K denote an interactor and corresponding
highest frequency gain satisfying eqn.(1), respectively. De-
fine the control law by

u(t) = K−H−1(z){X(z)u(t)+Y (z)y(t)}+K−L(z)ym(t)
(22)

where ym(t) ∈ Rm is the reference output, H(z) ∈
Rm×m[z] is a Hurwitz polynomial matrix, and X(z) ∈

Rm×p[z] and Y (z) ∈ Rm×m[z] are polynomial matrices
which satisfy the following Diophantine equation

X(z)D(z) + Y (z)N(z) = H(z){KD(z)− L(z)N(z)}.
(23)

Theorem 4 Let ν denote the maximum value of
observability indices. For an integer d ≥ ν, if H(z) is
a Hurwitz polynomial matrix with row degree d − 1 and
G(z)K− is stably invertible, then by the control law (22),
y(t) → ym(t).

(Proof). Substituting eqn.(23) to eqn.(21) yields

y(t) = N(z)D−1(z)[Ip −K−{K − L(z)N(z)D−1(z)}]−1

·K−L(z)ym(t). (24)

Since KK− = Im in this case, the above equation yields

y(t) = N(z)D−1(z)K−

·[Im − {K − L(z)N(z)D−1(z)}K−]−1L(z)ym(t)
= N(z)D−1(z)K−{L(z)N(z)D−1(z)K−}−1

·L(z)ym(t)
= ym(t)

and the Theorem is proved.

V. NUMERICAL EXAMPLE

The proposed method is easy to apply for a plant with
measurement noise [13]. Consider the plant in Examples 1
and 2. For the plant, it is supposed that the measured output
signal ȳ(t) is the sum of the real output signal y(t) and the
measurement noise,

ȳ(t) = y(t) + w(t). (25)

The purpose of the design is to construct a model matching
system which also minimizes the effect by noise on y(t).

The measurement noise is assumed to be the white noise

with covariance

[
0.010 0.0083
0.0083 0.0070

]
. A pulse train function

is used as a reference input. Fig.2 shows the plant output
responses when d = 3 and the measurement noises are
added. Fig.3 shows the output responses when d = 7. As
is expected [13], the performance is better when increasing
the value of d.

VI. CONCLUSIONS

In this paper, it was discussed the model matching prob-
lem for fat transfer function matrices. In the development,
the structure of the inverted interactorizing system, which
gives the basic structure of model matching systems, made
clear. A necessary and sufficient condition for an internally
stable inverted interactorizing systems was given. If the
problem of selecting the inputs is solved completely, a
procedure is available which completely avoids the intro-
duction of unstable zeros not originally present in the plant.



The effectiveness of the proposed design was confirmed
through the numerical example with measurement noise.
The extension to the adaptive control is under studying.
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Fig. 2. Simulation result of proposed method (d = 3).
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Fig. 3. Simulation result of proposed method (d = 7).
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