
 
 

 

  
Abstract—Recently, several methods have been proposed to 

digitally compensate for the shortcomings of the analog 
reconstruction filters in IQ modulators using CPFSK input 
signals. While these methods have shown to be effective, they 
result in filters with long coefficients that are computationally 
demanding to implement on the DSP. In this paper, we 
present two new techniques for designing the digital 
compensation filters by means of H∞∞ optimization, for which 
there is ready-made functions in MATLAB.  The simulation 
results show that these techniques are effective and lead to 
substantial improvement of the output envelope ripples. 

I. INTRODUCTION 

onsider the DSP (Digital Signal Processor) based 
Inphase/Quadrature (IQ) modulator in Fig. 1. Here, 

the I and Q channel base-band signals are generated 
digitally using a DSP and converted into analog signals 
using digital-to-analog (D/A) converters and analog 
reconstruction filters before modulation and transmission. 
However, the performance of such configuration can be 
limited by the two analog reconstruction filters that are 
necessary to attenuate digital image components in the 
base-band signal spectrum before transmission. The 
transfer characteristics of practical reconstruction filters 
and errors in their implementation result in the pass-band 
characteristics departing from constant magnitude and 
linear phase. Furthermore, implementation errors also 
result in a mismatch between the I and Q channel 
reconstruction filter frequency responses.  

 
 
 
 
 
 
 

 
Fig. 1. Radio transmitter architecture incorporating digital IQ modulation. 
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In the case of CPFSK (Continuous-Phase-Frequency 
Shift Keying) signals, these shortcomings cause distortion 
of the I and Q channel signals resulting in the loss of the 
constant envelope property of the output CPFSK signal. 
Ripples in the envelope function cause undesirable 
spreading of the signal spectrum into adjacent channels 
when the signal passes through a nonlinear radio-frequency 
(RF) power amplifier (PA) in the transmitter [1],[2].  

Digital compensation for the shortcomings in the analog 
subsystems of quadrature modulators has received 
considerable attention in the literature [3]-[7] lately. In [4], 
a method was proposed to remove the unwanted ripples at 
the vector modulator’s output signal envelope using digital 
signal pre-shaping filters in the I and Q channels. This is to 
pre-compensate for both imbalances in the analogue 
reconstruction filters’ frequency responses as well as 
departures from constant magnitude, linear phase in the 
pass-band of each reconstruction filter. This method 
employs a least-squares optimization approach where the 
pre-compensation Finite Impulse Response (FIR) filters are 
computed by minimizing the H2 norm of the error transfer 
function. An alternative solution was given in [5] using 
state-space approach. However, these methods result in 
FIR filters that have a large number of coefficients and are 
computationally demanding to implement on the DSP. 
Furthermore, the method in [4] requires special attention to 
numerical issues in order to achieve good results in 
practical application. Specifically, the solution matrix to a 
least squares optimization problem must first be 
regularized by discarding eigenvalues that are smaller than 
some threshold value before the solution vector is 
computed. In [6] a technique is presented to reduce the 
computational load by increasing tap spacing of the FIR 
filters and some encouraging results were obtained.  

Recently [7] proposed a digital compensation scheme 
using Infinite Impulse Response (IIR) filters since IIR 
filters are known to be able to produce long impulse 
responses using only a small number of filter coefficients 
and are thus will be useful in such application. These IIR 
filters are designed using an indirect method, where the 
filters are obtained from FIR filters using model reduction 
technique. The method involves two steps: First a FIR filter 
is designed using the optimization technique proposed in 
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[4],[5]; next a low-order IIR filter is obtained using model 
reduction technique of [8]. This approach again requires 
the special attention to numerical issues. Otherwise, 
conversion from a FIR to an IIR filter will produce 
inconsistent results.         

In this paper, we present two state-space approaches of 
obtaining the digital compensation filters; one results in IIR 
filters while the other FIR filters. Both approaches 
minimize the H∞ norm instead of the H2 of the error 
transfer function. Design of control system by H∞ 

minimization is now a standard technique [12].  The IIR 
filters are obtained directly from the solution rather than an 
intermediate FIR solution using a ready-made function 
(hinfsys) in MATLAB. The FIR filters, however, are 
obtained using the LMI Toolbox in MATLAB.  

II. DIGITAL PRECOMPENSATION 

Fig. 2 shows a typical digital pre-compensation structure 
[4],[5]. The additional components of the digital 
compensation structure are the two digital filters, i.e. F1 
and F2. These filters are designed to pre-compensate for 
departures from a constant magnitude and phase response 
(in the pass-bands) of each of the signal reconstruction 
filters, LPF1 and LPF2, and to achieve gain and phase 
balance between these two filters. The A/D converters are 
used to digitize the output signal from the reconstruction 
filters, so that measurements can be made on the DSP 
system.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. IQ modulator and digital pre-compensation structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. I and Q channel optimization structure.   

The aim is to find F1 and F2 such that for each of the I 
and Q channel, the overall discrete-time channel (from the 
input of the digital filter to the output of the A/D converter) 
has transfer function that closely approximates some 
desired function [4],[5].This optimization structure is 
shown in Fig. 3. 

In this discrete system, D(z) is the nominal desired 
response, H(z) is the discrete-time equivalent transfer 
function of the D/A, analog reconstruction filter and A/D 
converter while R(z) is the transfer function of the 
compensation filter.  In this paper, the parameters of the 
analog reconstruction filter are assumed to be known a 
priori.  Our objective is to find a stable transfer function 
R(z) such that the cascaded system of R(z)H(z) closely 
approximates the desired response, D(z). This is equivalent 
to minimizing ( ) ( ) ( )D z R z H z

∞
− , the H∞ norm of the 

transfer matrix D(z)-R(z)H(z), or in some parts of this 
paper, we have referred to this as the error transfer 
function. Thus, we define the cost function as 
                      

( )
: inf ( ) ( ) ( )

R z
J D z R z H z ∞

= −                       (1) 

Our precise design problem statement is as follows: 
Given stable FIR filters D(z) and H(z), find causal stable 

digital filter, IIR or FIR, R(z) to minimize J. 
This quantity, J is taken to be the performance measure 

of the digital compensation. A small value of J means that 
the error z(k) is small uniformly over all inputs w(k). 
Ideally, we require J = 0, so that the I and Q channels are 
perfectly matched. This optimization is over all matrices 
R(z) that are analytic and bounded outside the unit disc.   

III. IIR FORMULATION 

The MATLAB programs for H∞ optimization use state-
space representations of transfer functions. In this section, 
we present the state-space formulas relevant for the design 
program. Let D(z) and H(z) be stable systems with the 
following minimal realizations: 
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The model-matching problem in Fig. 3 can be recast as a 
standard H∞ control problem [9] in Fig. 4 by defining (see 
Appendix for details of derivation) 

  

                          
 
 
 
 
 
 
 
Fig. 4. The standard block diagram.  
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Then Fig. 3 and Fig. 4 are equivalent. 
 

 Lemma 1: The transfer matrix, G(z) has the realization,  
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Proof: Expanding (2) gives 
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Therefore, we have 
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The MATLAB function hinfsyn takes in a realization for 
G(z) as input and outputs a realization of R(z). The 
resulting filter R(z) is an IIR filter with the same order as 
G(z), that minimizes the H∞ norm from w to z in Fig. 4. 
Since hinfsyn works in continuous-time domain, one must 
perform a bilinear transformation of G(z) to Gc(s), then run 
hinfsyn to obtain Rc(s), and then perform a bilinear 
transformation back to the discrete-time domain to get R(z).  

However, the function hinfsyn results in IIR filters of 
quite high order and are not desirable for practical 
implementation. It may be possible to get lower order 
compensation filters if one reduces to minimal realizations 

at each appropriate stage, that is, if one discards 
uncontrollable and unobservable states. Another alternative 
to reduce the order of the resulting IIR filter is through 
model reduction techniques. There are a number of 
techniques available for model reduction. Some of the well-
known techniques are balanced truncation [8] and optimal 
Hankel norm approximation [10]. In this paper, we 
consider only the technique of balanced truncation to 
obtain a low order IIR filter. The preceding results can now 
be summarized in the following algorithm. 

 
Algorithm 1: Summary of IIR Algorithm 

1. Compute a state-space realization {AG, BG, CG, DG} of 
the plant G(z) using (3). 

2. Use bilinear transformation to transform G(z) into 
continuous time domain to obtain Gc(s). 

3. Compute Rc(s) using hinfsyn function in MATLAB. 
4. Transform Rc(s) back to discrete time domain using 

bilinear transformation to get R(z).  
5. Use model reduction [8] to eliminate nearly 

uncontrollable or unobservable states. 

IV. FIR FORMULATION 

In this section, we derive the necessary formulas for 
solving the design problem in LMI (Linear Matrix 
Inequalities) Toolbox in MATLAB. We first introduce the 
following lemma. 
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Theorem 1: Let 
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The proof of this theorem requires the following lemma. 
 

Lemma 3: Suppose a Hermitian matrix is partitioned as 
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Proof of Theorem 1: Let  
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Then the overall transfer function 
( ) ( ) ( ) ( )M z D z H z R z= +  

has minimal realization given by 
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Then R(z) has the following realization when expressed 
in controllability canonical form 
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where r1, r2, …, rN  are the impulse response of R(z). 

 
It is clear that in transfer function M(z)={A, B, C, D}, 

only matrices C and D are unknown. Therefore, we can use 
LMIs to minimize ( ) ( ) ( )D z H z R z

∞
+ .  

Note that we minimize ( ) ( ) ( )D z H z R z ∞
+ instead of 

( ) ( ) ( )D z H z R z
∞

−  in order to simplify expression. Once 

we obtain CR and DR that minimize ( ) ( ) ( )D z H z R z ∞
+ , 

then –CR and –DR minimize ( ) ( ) ( )D z H z R z
∞

− .  

 
Algorithm 2: Summary of FIR Algorithm 

1. Compute state-space matrices A and B using (5).  
2. Construct the LMIs using (4) and solve using LMI 

Toolbox in MATLAB.  
3. Negate matrices CR and DR, i.e. CRnew = -CR, DRnew = -

DR. 

4. Compute ( ) 1
( ) Rnew R R RnewR z C zI A B D

−= − +  

V. SIMULATION RESULTS 

In this section, we present some simulation results to 
show the effectiveness of the proposed methods. The 
simulation studies are centered on a single channel ERMES 
(European Radio Message System) modulation format 
transmitter [4],[5]. For the results presented in Section A, 
the two low-pass filters, LPF 1 and LPF 2 have a nominal 
6th order low-pass characteristic while for the results 
presented in Section B the analog filters have nominal 4th 
order low-pass characteristic. In both sections, the analog 
filters have cut-off frequency of 20kHz, but each response 
corresponds to particular realization of the filter circuit 
resulting from the perturbations of the component values 
about its nominal values. These analog filters are 
implemented using cascaded Sallen & Key 2nd order 
sections where the circuit component tolerance are assumed 
to be 5% for resistors and 10% for capacitors. The desired 
response D(z) is chosen to have the same magnitude 
characteristics as the nominal response of the 
reconstruction filters but constrained to have linear phase. 
The digital system sampling frequency is 200kHz. In the 
following two sections, we present and compare some 
results on RMS envelope ripples as a measure of the 
modulator’s performance.   

A. IIR Pre-Compensated System 
The original IIR filter obtained is 100th order, while the 

57th order IIR filter is obtained by discarding the 
uncontrollable and unobservable states. Further reduction 
was carried out using model reduction technique of [8] to 
obtain lower order filters. Table I summarizes the RMS 
envelope ripples obtained using different filter order.  It 
can be seen from Table I that low-order IIR filters are still 
able to provide substantial reduction without significantly 
degrading the performance of the modulator.  

Using the same simulation setup, a set of RMS values is 
recorded in Table II using the IIR pre-compensation filters 
proposed by [7]. From Table I and II, it can be seen that the 
new method outlined in Section III gives better results in 
terms of reducing the output envelope ripples. In addition, 



 
 

 

the technique in [7] requires special attention to numerical 
issues in order to get a good approximation of the original 
FIR filter. Therefore, it is difficult to achieve significant 
order reduction from FIR to IIR.  Fig. 5 shows the output 
envelope signals for the uncompensated and pre-
compensated cases and it is evident that the presence of the 
15th order IIR pre-compensation filters greatly reduces the 
output envelope ripples.  

 
TABLE I  

RMS ENVELOPE RIPPLE FOR DIFFERENT 
IIR FILTER LENGTHS  

  
 

TABLE II 
RMS ENVELOPE RIPPLE FOR DIFFERENT IIR FILTER LENGTHS 

USING METHOD OF [6] 

 

 
Fig. 5. Vector modulator output envelope for the uncompensated and 
precompensated systems. 
upper plot: Uncompensated system 
lower plot: 15th order IIR compensated system  
 

B. FIR Pre-Compensated System 
The proposed method yields 13th order FIR pre-

compensation filters. Fig. 6 shows the output envelope of 

the vector modulator with and without compensation. It is 
clear from the figure that the 13th order FIR filters are still 
able to provide substantial reduction on the magnitude of 
the envelope ripples. The reduction factor using such FIR 
filters is not as good as those in the IIR case. This can be 
attributed to the limitations of system modeling in LMI 
optimization. LMIs are computationally demanding to 
simulate in MATLAB and therefore the impulse responses 
of the desired and analog filters’ respon ses were chosen as 
short as possible. In this simulation example, the impulse 
responses of D(z) and H(z) were truncated to 30 taps.    

 
TABLE III 

RMS ENVELOPE RIPPLE FOR DIFFERENT 
FIR FILTER LENGTHS 

 

FIR filter length RMS envelope 
ripple (mV) 

Ripple 
reduction factor 

Uncompensated  1.77 - 
13th order FIR 0.28 6.4 
10th order FIR 0.45 3.9 
 

 
Fig. 6: Vector modulator output envelope functions of uncompensated 
system and 13th order FIR compensated system. 

VI. CONCLUSIONS  

In Section III and IV, we presented two state-space 
solutions for solving the H∞ optimization problem. The 
simulation results in Section V shows substantial 
improvements in RMS envelope ripples can be achieved 
using the algorithms outlined in Section III and IV. These 
methods are simple and easy to implement using the readily 
available functions in MATLAB and furthermore, the 
stability of the models is guaranteed. 

 However, there is a disadvantage with using LMI 
optimization due to the increasing of LMI computational 
load with increasing filter order and thus, higher order FIR 
filters could not be tested. Nevertheless, research on LMI 
optimization is still very active and substantial speed-ups 
can be expected in the future.  

 

IIR filter length RMS envelope 
ripple (mV) 

Ripple 
reduction factor 

Uncompensated 3.158 - 
100th order IIR 0.057 54 
57th order IIR 0.057 54 
20th order IIR 0.132 24 
15th order IIR 0.137 23 
11th order IIR 0.149 21 
10th order IIR 0.251 13 

IIR filter length RMS envelope 
ripple (mV) 

Ripple 
reduction factor 

Uncompensated 3.158 - 
20th order IIR 0.146 22 
18th order IIR 0.242 13 
15th order IIR 0.246 12 



 
 

 

APPENDIX 

Conversion from a three-block to one-block standard 
problem 

 

Consider the standard block diagram shown in Fig. 4. In 
this figure w, u, z, and y are vector-valued signals: w is the 
exogenous input; u is the control signal; z is the output to 
be controlled; and y is the measured output. The transfer 
matrices G and R are, by assumption, real-rational and 
proper: G represents a generalized plant, and R represents a 
controller.  

In the analysis presented in Section III and IV, D(z), R(z) 
and H(z) are rational functions of z (rather than matrices of 
rational functions of z) since w(k) and z(k) in Fig. 3 are 
one-dimensional signals. Therefore, the order of the 
cascaded system can be interchanged without affecting the 
overall output of the system, i.e. R(z)H(z) = H(z)R(z). 

We then partition G as 
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Then Fig. 4 stands for the algebraic equations 

11 12z G w G u= +            (A1) 

21 22y G w G u= +             (A2) 

                  u Ry=                          (A3) 
 

Substituting (A2) into (A3), we have 
( )21 22u R G w G u= +                (A4)

        ( )22 21I RG u RG w⇒ − =  

                        ( ) 1
22 21u I RG RG w

−= −           (A5) 

Then the transfer matrix from w to z is a linear-fractional 
transformation of R: 

 

( ) 1
11 12 22 21z G G R I G R G w

− = + −        (A6) 

By comparing the closed-loop transfer matrix of the 
optimization problem presented in Section II, D(z) –
R(z)H(z) with (A6), it is easy to see that 

 

G11 = D(z)  ,  G12 = -I 
G21 = H(z)  ,  G22 =  0 

 

Thus,  
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