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Abstract�The paper examines the H1 norm analysis and
output feedback control synthesis problems for structural
systems with collocated sensors and actuators. Using a partic-
ular solution of the Bounded Real Lemma for an open loop
collocated structural system we obtain an explicit expression
to compute an upper bound on the H1 norm of such systems.
Then, for the corresponding output feedback H1 control
synthesis problem we obtain an explicit parametrization of the
output feedback control gains that achieve the proposed H1

norm bound. These results have obvious computational ad-
vantages for large scale systems where standard H1 analysis
and control design methods are computationally intractable.
Computational examples demonstrate the advantages of the
proposed results.

Keywords: H1 control, Control of structural systems, Linear
Matrix Inequalities.

I. INTRODUCTION

The control of structural systems with collocated sensors
and actuators has been shown to provide great advantages
from a stability, passivity, robustness and an implementation
viewpoint. For example, collocated control can easily be
achieved in a space structure when an attitude rate sensor
is placed at the same point as a torque actuator [3][13].
Collocation of sensors and actuators leads to symmetric
transfer functions. Several other classes of engineering
systems, such as circuit systems, chemical reactors and
power networks, can be modelled as systems with sym-
metric transfer functions. Stabilization, robustness, model
reduction and control of such systems has been examined
recently [2][14][15][20].
State space H1 control based on the standard Riccati

equation approach or the recent linear matrix inequality
(LMI) formulation is now a well developed control syn-
thesis tool. The optimal static state feedback and full-order
dynamic output feedback H1 control synthesis problems
can be solved using iterations on the corresponding Riccati
solutions or via the computational solution of a convex
LMI optimization problem [7][8][12]. On the other hand,
the static output feedback and the �xed-order dynamic
output feedbackH1 control synthesis problems are dif�cult
computational problems since they require the solution of
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(nonconvex) bilinear matrix inequalities (BMIs) or LMIs
with coupling rank constraints [9][11][17].
In this work, we examine theH1 control analysis and the

symmetric output feedback H1 control synthesis problems
for systems with symmetric transfer functions. The objec-
tive of the paper is to show that, by exploiting the particular
structure of these systems, explicit bounds for the H1

control problems can be obtained. To this end, a particular
solution of the Bounded Real Lemma is proposed and an
explicit expression for an upper bound of the H1 norm of
such a symmetric system is obtained that requires only the
computation of the maximum eigenvalue of a symmetric
matrix. Subsequently, we derive an explicit parametrization
for the output feedback H1 control gains that guarantee
this bound. The proofs of the results are purely algebraic
based on simple matrix algebra tools. This work generalizes
the results of [19] that consider systems with state space
symmetry, which is a special case of transfer function
symmetry. However, in [19] the corresponding algebraic
results are exact although in the present paper the results
provide a conservative bound on the H1 norm.
The notation to be used in this paper is as follows: Given

a real matrix N; the orthogonal complement N? is de�ned
as the (possibly non-unique) matrix with maximum row
rank that satis�es N?N = 0 and N?N?T > 0: Hence,
N? can be computed from the singular value decomposition
of N as follows: N? = TUT2 where T is an arbitrary
nonsingular matrix and U2 is de�ned from the singular value
decomposition of N

N =
�
U1 U2

� � �1 0
0 0

� �
V T1
V T2

�
:

The standard notation > (<) is used to denote the positive
(negative) de�nite ordering of symmetric matrices. The ith
eigenvalue of a real symmetric matrix N will be denoted
by �i(N) where the ordering of the eigenvalues is de�ned
as �max(N) = �1(N) ��2(N) � ::: � �n(N): The
maximum singular value of a (not necessarily square)
matrix N will be denoted by �max(N), which is also its
spectral norm jjN jj. N+ will denote the Moore-Penrose
generalized inverse of a matrix N:

II. THE COLLOCATED H1 CONTROL ANALYSIS
PROBLEM

Consider the following vector second-order representa-
tion of a structural system with collocated sensors and



actuators

M �q +D _q +Kq = Fu (1)
y = FT _q

where q(t) 2 Rn is the generalized coordinate vector,
u(t) 2 Rm is the input vector and y(t) 2 Rk is
the measured output vector. The matrices M; D and K
are symmetric positive de�nite matrices that represent the
structural system mass, damping and stiffness distribution,
respectively. The system has a state-space realization as
follows

_x = Ax+Bu
y = Cx

(2)

with

A =

�
0 I

�M�1K �M�1D

�
; (3)

B =

�
0

M�1F

�
; C =

�
0 FT

�
where x = [qT _qT ]T : Notice that the transfer function
G(s) of the system (2)-(3)

G(s) = sFT (Ms2 +Ds+K)�1F

is symmetric, i.e., G(s) = GT (s): The system (2)-(3) is an
externally symmetric state-space realization, that is, there
exists a nonsingular matrix T such that

ATT = TA; CT = TB (4)

This class of systems is more general than the class of
internally or state space symmetric systems that satisfy the
symmetry conditions (4) with a positive de�nite transforma-
tion matrix T [20]. Obviously, state-space symmetry implies
external symmetry, but the converse is not true, that is,
there exist symmetric transfer matrices for which there is no
internally symmetric realization. An analytical solution of
the H1 control problem for internally symmetric systems
has been presented in [19].
Recall that the H1 norm of the system (2) is given by

jjGjj1 = sup
!2R

�maxfG(j!gg

where G(s) = C(sI � A)�1B is the transfer function of
the system and �max denotes the maximum singular value
of a matrix. It is well known that for a stable LTI system,
its H1 norm can be approximated iteratively, for example
using a bisection method [5]. The next result shows that for
a vector second-order realization (2)-(3), an upped bound
of its H1 norm can be computed using a simple explicit
formula.
Theorem 1: Consider the vector second-order system

realization (2)-(3): The system has an H1 norm  that
satis�es

 < � = �max(F
TD�1F ) (5)

To prove this result recall the following Bounded Real
Lemma (BRL) characterization of the H1 norm of a
system.

Lemma 2: [6] A stable system (2) has an H1 norm less
than or equal to  if and only if there exists a matrix P > 0
satisfying 24 ATP + PA PB CT

BTP �I 0
C 0 �I

35 � 0 (6)

Also, we will need the following Schur complement formula
[1].
Lemma 3: The block matrix

S =

�
S11 S12
ST12 S22

�
;

where S11 and S22 are symmetric ,is positive de�nite if and
only if

S11 > 0 and S22 � ST12S�111 S12 > 0

or
S22 > 0 and S11 � S12S�122 ST12 > 0

These conditions can be easily modi�ed to test negative
de�niteness and semide�niteness of a matrix [4]. Now, The-
orem 1 follows from the symmetric system BRL condition
and the following Finsler's Lemma [17].
Lemma 4: (Finsler's Lemma) Consider matrices � and

Q such that � has full column rank and Q=QT :Then the
following statements are equivalent:
(i) There exists a scalar � such that

���T �Q > 0 (7)

(ii) The following condition holds

�?Q�?T < 0 (8)

If the above statements hold, then all scalars � satisfying
(7) are given by

� > �min , �max[�+(Q�Q�?T(�?Q�?T )�1�?Q)�+T ]:
(9)

Proof: For the Theorem 1. The result follows from
the Bounded Real Lemma 2 by utilizing the following
Lyapunov matrix

P =

�
K 0
0 M

�
: (10)

Using (10), the Bounded Real Lemma 2 provides24�2D F F
FT �I 0
FT 0 �I

35 � 0
Application of the Schur complement formula in Lemma 3
results in the following condition

�2D �
�
F F

� ��I 0
0 �I

��1 �
FT

FT

�
= �D + 1


FFT � 0:



Which using Schur complement formula again results in



�
0
I

� �
0 I

�
�
�
�D F
FT 0

�
� 0

Then, application of Finsler's Lemma (4) provides the
bound (5).

III. THE H1 CONTROL SYNTHESIS PROBLEM
Now consider the following controlled vector second-

order system

M �q +D _q +Kq = F (u+ w)

z = FT _q (11)
y = FT _q

where q(t) 2 Rn is the generalized coordinate vector,
u(t) 2 Rm is the control input vector, w(t) 2 Rm is the
external and disturbance input, y(t) 2 Rk is the measured
output vector and z(t) 2 Rk is the performance output
vector. The collocated H1 control synthesis problem is to
design a symmetric static feedback gain G = GT such that
the output feedback control law

u = �Gy (12)

renders the closed-loop system stable with an H1 norm
less than a given scalar  > 0.

The closed-loop system of the plant (11) and the
controller (12) is

M �q + (D + FGFT ) _q +Kq = Fu (13)
z = FT _q (14)

The following result provides an explicit expression for the
output feedback gains that guarantee a closed-loop H1

norm less than a given bound : For simplicity, we assume
that the input matrix F has full column rank.
Theorem 5: Consider the vector second-order system

(11). For any  > 0 there exists a symmetric output
feedback control law (12) to provide a closed-loop H1

norm less than :
1) If F is square and invertible then G can be selected
as

G � 1


I � F�1DF�1T (15)

2) If FFT is singular then G can be selected as

G � F+[DF?T (F?DF?T )�1 (16)

F?D �D + 1


FFT ]F+T

This result follows from the BRL condition (2) and the
following Generalized Finsler's Lemma [17].
Lemma 6: (Generalized Finsler's Lemma) Consider ma-

trices M and Q such that M has full column rank and
Q = QT : Then the following statements are equivalent:
(i) There exists a symmetric matrix X such that

MXMT �Q > 0 (17)

(ii) The following condition holds

M?QM?T < 0 (18)

If the above statements hold, then all matrices X satisfying
(17) are given by

X > M+
�
Q�QM?T(M?QM?T )�1M?Q

�
M+T :

(19)
Proof: For the Theorem 5. Applying the Bounded

Real Lemma 2 to the closed loop system (13)-(14) using
the Lyapunov matrix (10) results in24�2(D + FGFT ) F F

FT �I 0
FT 0 �I

35 � 0:
Then using Schur complement formula (Lemma 3) we
obtain the following condition for the control gain G

FGFT +D � 1


FFT � 0

Applying the Generalized Finsler's Lemma 6 and simpli-
fying the corresponding expressions provides the required
control gains in Theorem 5 that guarantee the desired
closed-loop H1 gain.

IV. NUMERICAL EXAMPLES
Consider the following structural system that consists of

three masses interconnected with springs and dampers with
the following structural parameters: mi = 1; di = � and
ki = 1 for i = 1; 2; 3:

Fig. 1: Spring-mass-damper system

The corresponding structural matrices of the system are
as follows:

M = I3�3; K =

24 2 �1 0
�1 2 �1
0 �1 1

35 ;
D =

24 2� �� 0
�� 2� ��
0 �� �

35
We seek to examine the values of the H1 norm bound (5)
compared to the exact H1 norm value when the damping
parameter � of the system varies. The following �gure (Fig.
2) shows the relative error between the H1 norm bound
(5) and the exact H1 norm .



Fig. 2 Relative error of the proposed H1 norm bound

Now consider a control design problem for the same
structural system as above with di = 1. We assume an
input matrix

F =

24 1 0
0 1
0 0

35
The open loop system has an H1 norm equal to 2.3681.
We seek to �nd a symmetric output feedback gain matrix
G such that the H1 norm of the closed-loop system is less
than  = 0:5: Theorem 5 provides a parametrization of such
gains as follows

G > �G =

�
0 1
1 1

�
Notice that �G results in a closed-loop H1 norm equal to
0:4918 < 0:5: For a desired  = 0:2 Theorem 5 results in

G > �G =

�
3 1
1 4

�
and �G results in a closed-loop H1 norm equal to 0:1988 <
0:2:
The real bene�t of the proposed bounds is evident in the

analysis and control of very large scale symmetric systems,
such as large scale structures and power networks, where
standard H1 analysis and design tools are computationally
prohibitive. To demonstrate this point consider the �nite
element structural model for the assembly phase 8A-OBS
of the International Space Station with collocated control
and Rayleigh damping [18]. This model is in the form (1)
with 360 degrees of freedom, that is, the corresponding
state space model (2)-(3) has 720 states. Computation of
an H1 control design via standard Riccati equation or
LMI methods is computationally intractable. In fact it takes
3282.8 sec to calculate the exact H1 norm of the system
which equals to 82.747. However, the proposed bound (5)
provides an open-loop H1 norm bound of the system equal
to � = 83:102 which takes only 0.501 sec to calculate. In

addition, a symmetric static output feedback gain to reduce
this bound to, say, � = 5 is easily computed using the
results of Theorem 5. It takes only 0.671 sec to compute
this control gain. The exact H1 norm of the closed-loop
system is 4.9988 and it takes 1762.22 sec to compute it
using standard methods. The result in Theorem 1 provides a
closed-loop H1 norm bound � = 5 in 0.17 sec. The above
computaions have been performed in a 1.33GHz Athlon PC
and the corresponding results and computational times for
different values of the desired closed-loop H1 norm bound
� = 5; 1, 0.5 and 0.1 of the system are shown in Table
1. Fig. 3 shows the open-loop maximum singular value
(sigma) plot of the above system and Fig. 4 - 7 show the
corresponding closed-loop singular value plots for � = 5;
1; 0:5; and 0.1 using the feedback gain formula in Theorem
5. It can be easily observed from these Fig.s that the closed-
loop system satis�es the desired bounds.

Fig. 3: Maximum singular value plot of the open-loop
system

Fig. 4: Maximum singular value of the closed-loop system
for �=5



Desired close-loop
H1 norm bound �

ExactH1 norm of the
closed-loop system

Time to calculate the
feedback gain using
Theorem 5(sec)

Time to calculate the
exact H1 norm (sec)

Time to calculate the
H1 bound (5) (sec)

5 4.9988 0.671 1762.220 0.1700
1 0.99997 0.681 1963.553 0.2099
0.5 0.499999 0.671 1961.891 0.1800
0.1 0.099999999 0.661 1926.120 0.1910

TABLE I
RESULTS FOR DIFFERENT VALUES OF THE DESIRED H1NORM BOUND �

Fig. 5: Maximum singular value plot of the closed-loop
system for �=1

Fig. 6: Maximum singular value plot of the closed-loop
system for �=0.5

Fig. 7: Maximum singular value plot of the closed-loop
system for �=0.1

V. CONCLUSIONS

We have obtained a simple explicit expression for anH1

norm bound of structural systems with collocated sensors
and actuators. In addition, an explicit parametrization of
symmetric output feedback gains that lead to a desired
closed-loop H1 norm bound has been derived. The results
provides easily computable guidelines for H1 analysis and
control of collocated structural systems and are particularly
useful for very large scale systems where standard H1

analysis and design methods are compuationally intractable.
The results are applicable to any system with a symmetric
transfer function.
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