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Abstract— The tuning of PID controllers can essentially be
posed as the problem of selecting open-loop zeros such as to
obtain a desired system response. In this paper, the general
case wherein stable open-loop system zeros can be cancelled is
considered, allowing more freedom in placing open-loop zeros,
as opposed to just two zeros in the case of a PID controller.
Subsequently, optimal open-loop zeros are computed such as
to minimize the deviation from a desired reference impulse
response, while maintaining the relative degree and the type
of the reference system, thus giving the controlled system
desired input tracking and disturbance rejection properties.
Further, due to the inverse compensation of the plant zeros,
the controller is in general causal when the relative degree of
the plant and the reference system are similar.

I. INTRODUCTION

It is well known, that continuous–time as well as
discrete–time transfer function responses are strongly af-
fected, not only by the eigenvalues or poles, but the nu-
merator coefficients, or equivalently, the system’s zeros, as
well. In general, the zeros of a continuous–time system are
determined by properties of the plant as well as the location
of sensors and actuators. The zeros of discrete–time sys-
tems naturally arise as determined by system identification
procedures, see, e.g., [1],[2] or as a result of transforming a
continuous–time transfer function to a discrete–time one, by
different transformations, see, e.g., [3]-[9]. Thus, to some
extent, discrete–time zeros and continuous–time zeros have
different origins, but strongly affect the systems response,
in both cases.

Pole placement has been much discussed in the literature
and methods for optimal pole placement using standard
state feedback, e.g., the linear quadratic regulator, are well
known. Zero placement is also a very relevant design issue,
as evident for example in publications on zero placement
of linear multivariable systems [10]–[13]. Controllers that
affect zeros can be designed, although zeros are not affected
by state feedback in SISO (Single Input Single Output)
systems. One example of such a controller is the well
known PID controller. In a similar manner, stable zeros can
be affected by simple inverse compensation. Further, such
a controller using dynamic output feedback and dynamic
feedforward, can be designed to place the poles as well
as to move the (stable) zeros of a system effectively by
cancellation, see, e.g., [14].

Much interest has been shown in the general shaping
of system responses, as evident, e.g., in the extrema–free
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problem and closely related problems, such as the non–
overshooting problem. In fact, the extrema–free and related
problems are extremely important, and there are many prac-
tical applications where this is the relevant design criteria,
e.g., some chemical processes, machine tool axis control
and trajectory–following in robotics[15]. The undershoot
problem was studied for scalar systems in [16]. The lack of
closed–form expressions of discrete–time transfer function
responses led to linear programming approaches in the past,
in the solution of overshoot-related design criteria. The
problem of designing non-overshooting feedback control
systems for step inputs, has been discussed in [17]. There,
controllers are designed to track a step optimally, with some
predetermined amount of allowable overshoot, leading to
an infinite linear programming problem. A technique for
choosing zero locations for minimal overshoot is discussed
in [18], where an approach to the specification of optimal
overshoot controllers for a fixed controller order, is pre-
sented for given closed-loop system poles. The solution
is obtained by solving an affine minimax optimization
problem. Finally, in [19], the problem of minimizing the
amplitude of a regulated output due to a specific bounded
input, is solved via linear programming.

Transfer function responses for continuous-time as well
as discrete–time systems are of considerable interest in the
area of control systems and in filter design. Closed–form
continuous–time transfer function responses were derived
in [20] and extended to the case of complex eigenvalues in
[21]. Naturally, the closed form lends itself well to analysis
as in [22] and opens up many new interesting applications,
e.g., solving for optimal zero locations by minimizing tran-
sient responses[20]; tracking a given reference step response
in [23]-[26]; and solving the model reduction problem in
[27]. The closed–form expressions are further used in the
direct computation of coefficients for PID controllers in
[28].

Similar to the continuous–time case, closed–form
discrete–time transfer function responses derived in [29],
and extended to the case of complex eigenvalues in [21],
were used to solve for optimal zero locations by minimizing
transient responses in [29] and applied to the discrete–time
model reduction problem in [30]. The problem of optimal
zero locations of discrete–time systems with distinct poles
tracking reference step responses is considered in [31]. The
discrete–time closed–form expressions are used in the direct
computation of coefficients for PID controllers in [32],
wherein a hardware-in-the-loop application is also reported.

The direct computation of coefficients for PID controllers



in [28], essentially involves computation of optimal open-
loop zeros tracking a desired reference impulse response. In
this paper, the approach is extended to a more general case
wherein stable open-loop zeros are cancelled, allowing more
freedom in placing open-loop zeros, as opposed to just two
zeros in the case of a PID controller. Subsequently, optimal
open-loop zeros are computed such that a desired reference
impulse response is tracked, while maintaining the relative
degree of the reference system and the type, thus giving the
controlled system desired input tracking and disturbance re-
jection properties. The problem is formulated in Section II,
including input tracking and disturbance rejection properties
as well as specification of the reference system. The optimal
open-loop zeros are computed in Section III, by minimizing
the impulse response deviation between the reference and
the actual system, including an example. Conclusions and
future work are discussed in Section IV.

II. PROBLEM FORMULATION

Consider the closed-loop control system setup shown in
Fig. 1. The plant zeros are assumed stable and are given by
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Fig. 1. Closed-loop control system setup.

Np = NpbNpa, (1)

whereNp is type zero and the Laplace variables has been
dropped to simplify notation. AllN polynomials are of the
generic form

N = b0s
m + b1s

m−1 + ... + bm. (2)

Likewise, the plant poles are assumed stable1 and are given
by

Dp = DpbDpa. (3)

Dp is also type zero, i.e., the term1
sN grouped by the

controller includes all open–loop pure integrators. AllD
polynomials are of the generic form

D = sn +a1s
n−1 + ...+an = (s+λ1)(s+λ2) · · · (s+λn)

(4)
The plant is affected by the disturbance inputD and its
output isY . The closed-loop control system is driven by
the inputR and the controller, driven by the errorE, is of
the form

Nc

sNNp
(5)

1For the case of unstable plant poles, an inner–loop state–feedback type
controller can be designed, stabilizing the plant.

The controller cancels the plant zeros by inverse com-
pensation2, the term 1

sN includes all controller and plant
integrators. The controller zeros will be selected such as to
optimally track a reference impulse response, maintaining
the relative degree and the type of the reference system.

A. Input Tracking

The input tracking for a setup such as in Fig. 1 is easily
obtained in a standard manner. The transfer function from
the inputR to the errorE is given by

E

R
=

1

1 + Nc

sN Np

Np

Dp

=
sNDp

sNDp + Nc
. (6)

For a unit step inputR whenN ≥ 1, the steady state error
is given by

ess = lim
s→0

s
sNDp

sNDp + Nc

1
s

= 0. (7)

Similarly, the steady state error for a unit ramp inputR
whenN ≥ 2 is given by

ess = lim
s→0

s
sNDp

sNDp + Nc

1
s2

= lim
s→0

sN−1Dp

sNDp + Nc
= 0. (8)

B. Disturbance Rejection

Likewise, the disturbance rejection for the closed loop is
easily obtained in a standard manner. The transfer function
from the disturbance inputD to the errorE is given by

E

D
=

−Npa

Dpa

1 + Nc

sN Np

Np

Dp

=
−sNNpaDpb

sNDp + Nc
. (9)

Then, the steady state error for a unit step disturbance input
D whenN ≥ 1 is given by

ess = lim
s→0

s
−sNNpaDpb

sNDp + Nc

1
s

= 0. (10)

The steady state error for a unit ramp disturbance inputD
whenN ≥ 2 is given by

ess = lim
s→0

s
−sNNpaDpb

sNDp + Nc

1
s2

= lim
s→0

−sN−1NpaDpb

sNDp + Nc
= 0.

(11)

C. Reference System Specification
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Fig. 2. Closed-loop reference system.

The design criteria is specified as a desired reference
closed-loop transfer function and the reference open-loop

2For the case of unstable plant zeros, see [28].



transfer function is subsequently solved for, see Fig. 2. The
transfer function from the inputRr to Yr is given by

Yr

Rr
=

Nr

Dr
=

Nri

sN Dri

1 + Nri

sN Dri

=
Nri

sNDri + Nri

, (12)

whereNri andDri are type zero. Solving forNri andDri

gives

Nri
= Nr (13)

and

Dri
= s−N (Dr −Nr). (14)

In order to ensure thatDri
is a regular polynomial ins, Dr

andNr must satisfy the following nonrestrictive criteria:

• If N = 0, brmr
6= arnr

• If N = 1, brmr
= arnr

andbrmr−1 6= arnr−1

• If N = 2, brmr
= arnr

, brmr−1 = arnr−1 and
brmr−2 6= arnr−2

• etc.

III. OPTIMAL IMPULSE RESPONSE TRACKING

We now wish to match the open-loop impulse responses
of the controlled system, see Fig. 3 for a simplified block
diagram, and the reference system, see Fig. 2, as closely as
possible. The open–loop impulse response of the controlled
system characterized by the causal transfer functionNc/Dp
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Fig. 3. A simplified block diagram of the controlled system.

with distinct poles, has the impulse response

ycpi(t) = BcΛpEp(t), (15)

whereas the open–loop impulse response characterized by
the causal transfer functionNri

/Dri
with distinct poles, has

the impulse response

yrii(t) = BriΛriEri(t). (16)

The impulse responses are of the generic form [20] (for the
case of repeated poles see [21]),

yi(t) = BΛE(t), t > 0 (17)

where

B = [bm − bm−1 bm−2 · · · (−1)mb0] ,

Λ =


1 1 · · · 1
λ1 λ2 · · · λn

λ2
1 λ2

2 · · · λ2
n

...
...

...
λm

1 λm
2 · · · λm

n

 and

E(t) =



e−λ1t∏n

i=2
(−λ1+λi)

e−λ2t∏n

i=1,i6=2
(−λ2+λi)

...
e−λkt∏n

i=1,i6=k
(−λk+λi)

...
e−λnt∏n−1

i=1
(−λn+λi)


.

We then define a cost function measuring the controlled
impulse response deviation from the reference impulse
response as

J =
∫ ∞

0

(yrii(t)− ycpi(t))
2
dt

=
∫ ∞

0

(BriΛriEri(t)− BcΛpEp(t))
2
dt. (18)

Assumingbcm is fixed, e.g., such as to obtain a specific DC
gain and defining

B
′

c =
[
−bc(mc−1) bc(mc−2) · · · (−1)mcbc0

]
, (19)

differentiating the cost function with respect toB′c and
setting the result equal to zero gives,

∂J
∂B′c

= ∂
∂B′c

∫∞
0

(BriΛriEri(t)− BcΛpEp(t))
2
dt

=
∫∞
0

∂
∂B′c

(Bri
Λri

Eri
(t)− BcΛpEp(t))

2
dt

=
∫∞
0

∂
∂B′c

(
(BriΛriEri(t))

2

−2BriΛriEri(t)BcΛpEp(t) + (BcΛpEp(t))
2
)

dt

=
∫∞
0

(
−2BriΛriEri(t)

(
Λp

2·
(mc + 1)· Ep(t)

)T

+ 2 (BcΛpEp(t))
(

Λ
p

2·
(mc + 1)·

Ep(t)
)T

)
dt

= 2D + 2BcA = 0.
(20)

HereΛ
p

2·
(mc + 1)·

denotes all but the first row inΛp,

D = −BriΛri

∫ ∞

0

Eri(t)Ep(t)T dt

(
Λ

p
2·
(mc + 1)·

)T

(21)

is an1×mc dimensional vector and

A = Λp

∫ ∞

0

Ep(t)Ep(t)T dt

(
Λ

p
2·
(mc + 1)·

)T

(22)

is an (mc + 1) × mc matrix. Assuming stable eigen-
values, and calculating thekj-th element in the matrix



∫∞
0
Eri

(t)Ep(t)T dt, k = 1, 2, . . . , nri
, j = 1, 2, . . . , np

results in∫∞
0
Erik(t)Epj(t)T dt
= 1

(λrik+λpj)
∏nri

i=1,i6=k
(−λrik+λrii)

∏np

i=1,i6=j
(−λpj+λpi)

.

(23)
Similarly, calculating thekj-th element in the matrix∫∞
0
Ep(t)Ep(t)T dt, k, j = 1, 2, . . . , np, results in∫∞

0
Epk(t)Epj(t)T dt
= 1

(λpk+λpj)
∏np

i=1,i6=k
(−λpk+λpi)

∏np

i=1,i6=j
(−λpj+λpi)

.

(24)
Now,

D + BcA
= D + bcmc

A1· − bc(mc−1)A2·
+bc(mc−2)A3· · · · (−1)mcbc0A(mc+1)·

= 0

(25)

or
D + bcmcA1· = −B

′

cA 2·
(mc + 1)·

. (26)

Here,Ak· denotes thek-th row in theA matrix, whereas
A 2·

(mc + 1)·
denotes all but the first row in theA matrix.

The coefficientbcmc is normally chosen, e.g., to give the
inner loop the same static gain as the inner loop of the
reference system’s, i.e.,

bcmc = apnpbrimri
/arinri

. (27)

Then, a system ofmc equations in themc unknowns,
bc(mc−1), bc(mc−2), · · · , bc0, results, giving the explicit eas-
ily computable result

B
′
= − (D + bcmcA1·)

(
A 2·

(mc + 1)·

)−1

. (28)

Note that in general for distinct poles, themc×mc matrix

A 2·
(mc + 1)·

= Λ
p

2·
(mc + 1)·

∫ ∞

0

Ep(t)Ep(t)T
dt

(
Λ

p
2·
(mc + 1)·

)T

(29)

will be of rank mc. Here,

Λ
p

2·
(mc + 1)·

=


1 1 · · · 1

λp1 λp2 · · · λpnp

λ2
p1 λ2

p2 · · · λ2
pnp

...
...

...
λmc−1

p1 λmc−1
p2 · · · λmc−1

pnp

 (30)

has rankmc for distinct poles and the symmetricnp ×
np matrix

∫∞
0
Ep(t)Ep(t)T dt is also of full rank for distinct

poles. Further, if numerical difficulties arise in the inversion,
the number of zeros,mp, can be adjusted, to avoid such
difficulties.

In general, the relative degree of the inner loop of the
controlled system should preferably be selected the same
as the relative degree of the inner loop of the reference
system, to ease the matching of the two systems. Also note,
that the above method may still be used even though more
numerator coefficients are fixed (see [28]), e.g., in the case
of unstable plant zeros.

Example:

Consider a third–order highly underdamped plant with an
input disturbance, where the plant transfer function is given
by

Np

Dp
=

Npa

Dpa
=

s + 3
s3 + 7s2 + 36s + 130

=
s + 3

(s + 1± 5i)(s + 5)
.

(31)
It is desired to track a well damped type-one closed-loop
transfer function given by the transfer function

Yr

Rr
=

18
s2 + 6s + 18

=
18

(s + 3± 3i)
, (32)

thus having the inner loop

Nri

sNDri

=
18

s(s + 6)
, (33)

where N = 1. Then, computing the optimalNc based
on Eq. (28) maintaining the same relative degree as the
reference system’s inner loop, results in

Nc = 16.1s2 + 35.5s + 390 = 16.1(s + 1.1± 4.8i). (34)

The zero-pole locations of the open–loop original plant, the
compensated inner loopNc

Np
and the open–loop reference

transfer function
Nri

Dri
are shown in Fig. 4.
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Fig. 4. Pole/zero locations.

The step responses of the open–loop original plant, the
open–loop reference transfer function

Nri

Dri
and the com-

pensated inner loopNc

Np
, are shown in Fig. 5, where the

compensated inner loop is following the reference step
response quite closely. Finally, subjecting the closed-loop
as in Fig. 1, to a step input attime = 1 and to a unit
disturbance attime = 10, results in the response shown in
Fig. 6. As may be noted, the controlled system follows the
reference system very closely during the step input and the
disturbance rejection is excellent.
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Fig. 6. Closed-loop step responses with the onset of a unit step at time=1
and an onset of a unit disturbance at time=10.

IV. CONCLUSIONS AND FUTURE WORK

A. Conclusions

The tuning of PID controllers can essentially be posed
as the problem of selecting open-loop zeros such as to
obtain a desired system response. In this paper, the idealogy
behind the PID controller was extended to the general case
wherein stable open-loop system zeros can be cancelled,
thus allowing more freedom in placing open-loop zeros, as
opposed to just two zeros in the case of a PID controller.
Subsequently, optimal open-loop zeros were computed such
as to minimize the deviation from a desired reference
impulse response, while maintaining the relative degree and
the type of the reference system, thus giving the controlled
system desired input tracking and disturbance rejection
properties. Due to the inverse compensation of the plant
zeros, the controller is in general causal when the relative
degree of the plant and the reference system are similar. In
cases when the controller is noncausal, which happens if the

plant has a high relative degree and the reference system has
a low relative degree, the controller can be realized using
poles to limit the high frequency response, as is frequently
done in a practical setup of a PID controller.

Excellent results were obtained, wherein a highly under-
damped system tracked a well behaved reference system
response. The controlled system was shown to have excel-
lent input tracking and disturbance rejection properties.

B. Future Work

It is of interest to show that the minimal deviation
between the reference and the controlled system does occur
when the relative degrees of the two systems are the same.
It is further of interest to explore the stability properties of
the closed–loop controlled system, in particular to obtain
an estimate of the maximum possible deviation between the
controlled system and a well-behaved and stable reference
closed–loop system, such that stability of the controlled
system is guaranteed.
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