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Optimal impulse response tracking and disturbance rejecting
controllers

Anna Soffa Hauksdttir

Abstract—The tuning of PID controllers can essentially be problem and closely related problems, such as the non-
posed as the problem of selecting open-loop zeros such as togvershooting problem. In fact, the extrema—free and related
obtain a desired system response. In this paper, the general roblems are extremely important, and there are many prac-

case wherein stable open-loop system zeros can be cancelled i¥ | licati h his is th | . .
considered, allowing more freedom in placing open-loop zeros, ical applications where this is the relevant design criteria,

as opposed to just two zeros in the case of a PID controller. €.9., some chemical processes, machine tool axis control
Subsequently, optimal open-loop zeros are computed such as and trajectory—following in robotics[15]. The undershoot

to minimize the deviation from a desired reference impulse problem was studied for scalar systems in [16]. The lack of
response, while maintaining the relative degree and the type ¢jn5a4—form expressions of discrete—time transfer function
of the reference system, thus giving the controlled system ) ) .
desired input tracking and disturbance rejection properties. .reSponses le_d to linear programming apprpache§ m_ the past,
Further, due to the inverse compensation of the plant zeros, N the solution of overshoot-related design criteria. The
the controller is in general causal when the relative degree of problem of designing non-overshooting feedback control
the plant and the reference system are similar. systems for step inputs, has been discussed in [17]. There,
| INTRODUCTION controllers_are designed to track a step optimally, with.some
predetermined amount of allowable overshoot, leading to
It is well known, that continuous—time as well asan infinite linear programming problem. A technique for
discrete—time transfer function responses are strongly afhoosing zero locations for minimal overshoot is discussed
fected, not only by the eigenvalues or poles, but the nyn [18], where an approach to the specification of optimal
merator coefficients, or equivalently, the system’s zeros, @yershoot controllers for a fixed controller order, is pre-
well. In general, the zeros of a continuous—time system aggnted for given C|osed_|oop system p0|es_ The solution
determined by properties of the plant as well as the locatiqg obtained by solving an affine minimax optimization
of sensors and actuators. The zeros of discrete—time sygoblem. Finally, in [19], the problem of minimizing the
tems naturally arise as determined by system identificatiggimplitude of a regulated output due to a specific bounded
procedures, see, e.g., [1],[2] or as a result of transformingjaput, is solved via linear programming.
continuous—time transfer function to a discrete—time one, by Transfer function responses for continuous-time as well
different transformations, see, e.g., [3]-[9]. Thus, to somgs discrete—time systems are of considerable interest in the
extent, discrete—time zeros and continuous—time zeros h%@a of control Systems and in filter design_ Closed—form
different origins, but strongly affect the systems responseontinuous—time transfer function responses were derived
in both cases. in [20] and extended to the case of complex eigenvalues in
Pole placement has been much discussed in the literatypa]. Naturally, the closed form lends itself well to analysis
and methods for optimal pole placement using standakk in [22] and opens up many new interesting applications,
state feedback, e.g., the linear quadratic regulator, are welly. solving for optimal zero locations by minimizing tran-
known. Zero placement is also a very relevant design issugient responses[20]; tracking a given reference step response
as evident for example in publications on zero placemeny [23]-[26]; and solving the model reduction problem in
of linear multivariable systems [10]-[13]. Controllers thaf27]. The closed—form expressions are further used in the
affect zeros can be designed, although zeros are not affeciifect computation of coefficients for PID controllers in
by state feedback in SISO (Single Input Single Outputjpg].
SyStemS. One example of such a controller is the well Similar to the continuous—time case, closed—form
known PID controller. In a similar manner, stable zeros cagiscrete-time transfer function responses derived in [29],
be affected by simple inverse compensation. Further, sugihd extended to the case of complex eigenvalues in [21],
a controller using dynamic output feedback and dynamigere used to solve for optimal zero locations by minimizing
feedforward, can be designed to place the poles as welhnsient responses in [29] and applied to the discrete—time
as to move the (stable) zeros of a system effectively byodel reduction problem in [30]. The problem of optimal
cancellation, see, e.g., [14]. zero locations of discrete—time systems with distinct poles
Much interest has been shown in the general shapingacking reference step responses is considered in [31]. The
of system responses, as evident, e.g., in the extrema-figigcrete—time closed—form expressions are used in the direct
L . computation of coefficients for PID controllers in [32],
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in [28], essentially involves computation of optimal open-The controller cancels the plant zeros by inverse com-
loop zeros tracking a desired reference impulse response.gensatiof, the termsiN includes all controller and plant
this paper, the approach is extended to a more general casiegrators. The controller zeros will be selected such as to
wherein stable open-loop zeros are cancelled, allowing mooptimally track a reference impulse response, maintaining
freedom in placing open-loop zeros, as opposed to just twhe relative degree and the type of the reference system.
zeros in the case of a PID controller. Subsequently, optimal ,

open-loop zeros are computed such that a desired referefite MPUt Tracking

impulse response is tracked, while maintaining the relative The input tracking for a setup such as in Fig. 1 is easily
degree of the reference system and the type, thus giving thbtained in a standard manner. The transfer function from
controlled system desired input tracking and disturbance réhe inputR to the errorE is given by

jection properties. The problem is formulated in Section I, E 1 ND

including input tracking and disturbance rejection properties — = N. N, — 3ND pN . (6)

as well as specification of the reference system. The optimal R 1+ S Dt

sNN, D,

open-loop zeros are computed in Section Ill, by minimizing=q 4 unit step inpuR when N > 1, the steady state error
the impulse response deviation between the reference aigdgiven by -

the actual system, including an example. Conclusions and

future work are discussed in Section V. sV"D, 1 @)

O = N D, + Nes

[I. PROBLEM FORMULATION L ) )
) Similarly, the steady state error for a unit ramp ingt
Consider the closed-loop control system setup shown {hen v > 2 is given by

Fig. 1. The plant zeros are assumed stable and are given by

. sND, 1 . sN-1D,
D) €ss = 213% 848ND;0 YN, 1{% SND,+ N, 0. (8)
B. Disturbance Rejection
RS EO[ N Vs © - |
- SNI\‘] ©) Likewise, the disturbance rejection for the closed loop is
2 easily obtained in a standard manner. The transfer function
""""""""""""""""""""""""" from the disturbance inpub to the errorE is given by
E —p NNpuD.
Fig. 1. Closed-loop control system setup. = _ Dpa — = —S pa Pb_ (9)
Do+ dgpe "Dt N
N, = NppNpg, (1) Then, the steady state error for a unit step disturbance input
. . D when N > 1 is given by
whereN,, is type zero and the Laplace variaBidas been
dropped to simplify notation. AlIV polynomials are of the o —5" Npa Dpp 1
) ess = lim s =0. (20)
generic form s—0 sVD,+ N, s
N = bos™ 4+ bys™ L 4 ...+ b,,. (2) The steady state error for a unit ramp disturbance idput
when N > 2 is given by
Likewise, the plant poles are assumed stahbled are given N N_1
by R el Lt 4 NpaDpp 1 _ im o “papb NoaDyp _ 0
¥ s=0 sND,+ N, s2 s=0 sND,+N.
Dy = DppDpq. 3 5 ptNe s 5 p e (11)
D, is also_ type zero, i.e., the termiy grouped by the C. Reference System Specification
controller includes all open—loop pure integrators. All
polynomials are of the generic form
1 RGS) _EG)[ Nes) | Y9
D=s"4+a1s"" " +..4an=(s+A)(s+A2) - (s+\pn) O N
(4) S Dri(S)
The plant is affected by the disturbance inpgtand its
output isY. The closed-loop control system is driven by
the input R and the controller, driven by the erréf, is of ,
the form Fig. 2. Closed-loop reference system.
Ne¢
sV N, ®) The design criteria is specified as a desired reference

closed-loop transfer function and the reference open-loop

1For the case of unstable plant poles, an inner-loop state—feedback type
controller can be designed, stabilizing the plant. 2For the case of unstable plant zeros, see [28].
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transfer function is subsequently solved for, see Fig. 2. Thehere
transfer function from the inpuR, to Y,. is given by

B = [bm —bm-1 bm_ao - (=1)"bg],
N N, N 11 -1
s T D T e
E=D =T R =W . @ TR
R, D, 1+ - m. sND,, + N, A = 203 0 X2 and
whereN,, and D,., are type zero. Solving foN,, and D, )\;ln )\én )\'ZL
gives - oAt -
N, =N, (13) O
I, #2( A2+X;)
and :
Et) = gt
N _ ek
Dry =70 (Dr = ). ) | T
In order to ensure thad,, is a regular polynomial i, D, :
and N, must satisfy the following nonrestrictive criteria: et
LTI, e

« F N =0, by #arm,

« E N =1, b, = arn. andbym. 1 % ayn.—1 We then define a cost function measuring the controlled

impulse response deviation from the reference impulse

o« If N = 2, b’l‘m,,, = Qpn,., brm,.fl = Qpp,—1 and
brm, —2 F Qpn. 2 response as
e efc. o
3= [ i) = a0
0
I1l. OPTIMAL IMPULSE RESPONSE TRACKING - / (Bril\rifr,;(t)—BcApep(t))Q dt. (18)
0

We now wish to match the open-loop impulse responsésssumingb.., is fixed, e.g., such as to obtain a specific DC
of the controlled system, see Fig. 3 for a simplified blockgain and defining
diagram, and the reference system, see Fig. 2, as closely _ [ b b e (21)meh } (19)
possible. The open—loop impulse response of the controlle e(me=1)  Te(me=2) 0 >
system characterized by the causal transfer fundiohD,,  differentiating the cost function with respect 1, and
setting the result equal to zero gives,
RES) EO) | Ns) Y() 2 = f0°° (B A, Er, (1) — BeAyE,(1))? dt

- |sDys) o= 52 (B A &0, (1) — BAE, (1) dt
= 5 o2 (BrALEL 1)

0B, Ay £, (DB (1) + (B, £, (1)) di
00 2. T
= fo (_QBTiATigT'i (t) (Ap (me +1)- 5p(t))

Fig. 3. A simplified block diagram of the controlled system.

T
with distinct poles, has the impulse response
p p p + 2 (B.ALEL(T)) (Ap = é’p(t)> ) dt

Yepi (t) = BApEy(t), (15) = 2D+42B.A=0. 20)
whereas the open—loop impulse response characterized /B§™€ 4, A denotes all but the first row i,
the causal transfer functiaN,., / D,., with distinct poles, has -
the impulse response _B. A / &, ()7 dt <A ) 1)

e P Gme+1).
Yri(t) = Br, Ay, Er, (1) (16) is an1 x m, dimensional vector and
T

The impulse responses are of the generic form [20] (for the 4 = A / & ()T dt (A . ) (22)
case of repeated poles see [21]), Pme + 1)

is an (m. + 1) x m, matrix. Assuming stable eigen-
yi(t) = BAE(t), t>0 (17) values, and calculating théj-th element in the matrix
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e e dt, k = 1,2,...ny, j = 1,2,...,mn, Example:

results |n Consider a third—order highly underdamped plant with an
f0°° k() Ey ()T dt input disturbance, where the plant transfer function is given
1
T Oy k+Am>Hl NSl | KN C SR by
(23) N,  Npa s+3 _ s+3

Similarly, calculating thek:j -th element in the matrix D, D,, s3+7s2+36s+130 (s+1£5i)(s+5)
€ t)Tdt, k,j =1,2,...,n,, results in (1)
oo . It is desired to track a well damped type-one closed-loop
fo 5Pk(t)gpj< ) dt transfer function given by the transfer function

- (Apk+Ap;5) H::17i¢k(*Apk+/\pi) H:Lpl ¢7( ApJJF/\pL) }/7 18 18 (32)
(24) R 24165118 (s+3%3i)
Now, thus having the inner loo
D+ B.A I - P 5
=D+ bcchL - bc(mcfl)AZ Ti , (33)
+bc(mc—2)-’43- T (71)mc bCOA(’H’LC-‘rl)' (25) SND” S(S + 6)
=0 where N = 1. Then, computing the optimaN, based
or on Eg. (28) maintaining the same relative degree as the
D+ ben, A1 = —B;A 5. ) (26) reference system’s inner loop, results in
(me+ 1)
_ 2 _ ;
Here, A,. denotes thei-th row in the A matrix, whereas Ve = 16.157 +35.55 + 390 = 16.1(s + 1.1 +4.8i). (34)
A 2 denotes all but the first row in thel matrix. The zero-pole locations of the open—loop original plant, the

The' coefficientb,,,, is normally chosen, e.g., to give the compensated inner loog= and the open-loop reference
inner loop the same static gain as the inner loop of thgansfer funct,on "i are shown in Fig. 4.
reference system’s, i.e.,

bmnc = apnpbnmr. /aTﬂLT. . (27) " ‘zero-pole‘\ocatwons‘
Then, a system ofn. equations in them. unknowns, 5| orginal system x
be(me—1)s be(m.—2), ** *, beo, TESUlLS, giving the explicit eas- £ of x 0
ily computable result 5 x
/ ! o s s 7 % 5 4 3 2 1 o
B =—(D+bem, A1) | A - . (28) Re
(me +1)- 10 T
Note that in general for distinct poles, the. x m,. matrix 5 contrlled system o
oo T E of X
A, =A / epEp )T dt (A 5. > sk o
(me +1)- P ome+1) Jo P(me+1)
@ o s s 7 % 5 4 3 2 1 o
will be of rank m.. Here, Re
10 T T
1 ]. R ]- 51 reference system
Ap1 Ap2 )‘pnp e o .
A2 A2 coe )2 B
A 2. — pl p2 pnp (30) 5L
P (me+ 1) . . .
N ,10 L L L L L L L L L
ma—1 a1 S -0 -9 -8 -7 -6 —; -4 -3 -2 -1 0
>\p1 )\p2 e /\pnpp ¢
has rankm, for distinct poles and the symmetric, x Fig. 4. Pole/zero locations.

n, matrix(;~ £,(t)&,(t)7dt is also of full rank for distinct L
poles. Further, if numerical difficulties arise in the inversion, 1h€ St€p responses of the open-— Ioop original plant, the

the number of zerosy,, can be adjusted, to avoid suchOPen-loop reference transfer funcU%k and the com-
difficulties. pensated inner Iooé\’v are shown in F|g 5, where the

In general, the relative degree of the inner loop of theompensated inner fbop is following the reference step
controlled system should preferably be selected the samesponse quite closely. Finally, subjecting the closed-loop
as the relative degree of the inner loop of the referenaas in Fig. 1, to a step input d@me = 1 and to a unit
system, to ease the matching of the two systems. Also notdisturbance atime = 10, results in the response shown in
that the above method may still be used even though mokég. 6. As may be noted, the controlled system follows the
numerator coefficients are fixed (see [28]), e.g., in the caseference system very closely during the step input and the
of unstable plant zeros. disturbance rejection is excellent.
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plant has a high relative degree and the reference system has
a low relative degree, the controller can be realized using
poles to limit the high frequency response, as is frequently
done in a practical setup of a PID controller.

Excellent results were obtained, wherein a highly under-
damped system tracked a well behaved reference system
response. The controlled system was shown to have excel-
lent input tracking and disturbance rejection properties.

B. Future Work

It is of interest to show that the minimal deviation
between the reference and the controlled system does occur
when the relative degrees of the two systems are the same.
It is further of interest to explore the stability properties of
the closed-loop controlled system, in particular to obtain
an estimate of the maximum possible deviation between the
controlled system and a well-behaved and stable reference
closed-loop system, such that stability of the controlled
system is guaranteed.

V. ACKNOWLEDGMENTS

This work was supported by the University of Iceland
Research Fund and the Icelandic Center for Research.

output

06

(1]
(2]
(3]
(4]

04r

0.2r-

I
0 2 4 6 8 10 12 14 16 18 20
time

[6]
Fig. 6. Closed-loop step responses with the onset of a unit step at time=1
and an onset of a unit disturbance at time=10.

[6]
IV. CONCLUSIONS AND FUTURE WORK [7]

A. Conclusions
[8]

The tuning of PID controllers can essentially be posed
as the problem of selecting open-loop zeros such as tfé]
obtain a desired system response. In this paper, the idealogy
behind the PID controller was extended to the general cag®]
wherein stable open-loop system zeros can be cancelled,
thus allowing more freedom in placing open-loop zeros, agy)
opposed to just two zeros in the case of a PID controller.
Subsequently, optimal open-loop zeros were computed sugla]
as to minimize the deviation from a desired referenc
impulse response, while maintaining the relative degree aiis]
the type of the reference system, thus giving the controll 94]
system desired input tracking and disturbance rejectij@a
properties. Due to the inverse compensation of the plant
zeros, the controller is in general causal when the relative
degree of the plant and the reference system are similar. [flr?]
cases when the controller is noncausal, which happens if the
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