
Using MIMO Linear Control for Load Balancing
in Computing Systems

Yixin Diao, Joseph L. Hellerstein, Adam J. Storm, Maheswaran Surendra,
Sam Lightstone, Sujay Parekh, and Christian Garcia-Arellano

Abstract— Load balancing is widely used in computing
systems as a way to optimize performance by equalizing
loads to reduce delays, such as adjusting the size of memory
pools to balance resource demands in a database management
system. Load balancing is generally approached as a nonlinear
constrained optimization in which dynamics are ignored. We
approach load balancing differently - as a feedback controller
design problem using a multiple input multiple output linear
quadratic regulator (LQR) that achieves the constrained
optimization objective. Such an approach allows us to exploit
well established techniques for handling disturbances (e.g., due
to changes in workloads) and to incorporate the cost of control
(e.g., throughput reductions due to resizing buffer pools) by
properly selecting the LQR Q and R matrices. From studies
of DB2 Universal Database Server using industry standard
benchmarks, we show that the controller obtains a factor of
three increase in throughput for an OLTP workload and a
59% reduction in response times for a DSS workload.

I. I NTRODUCTION

A central concern of businesses with mission critical
computing is quality of service, the ability to manage uti-
lization of computing resources so as to maintain response
times and throughputs at acceptable levels. One widely
used technique for achieving better resource utilization is
load balancing whereby incoming requests and/or system
resources are balanced so as to minimize the utilization of
the bottleneck resource, a technique that generally mini-
mizes response times and maximizes throughputs. Existing
approaches to load balancing do not consider dynamics such
as the effect of disturbances (e.g., changes in workload) and
the cost of control actions (e.g., overheads for changing
the sizes of buffer pools). With the growth of the Internet,
dynamics have become increasingly important, especially
the challenges associated with “flash events” that can cause
very rapid changes in workloads [1]. This paper describes
the use of a multiple input multiple output (MIMO) linear
quadratic regulation (LQR) controller for load balancing
that addresses dynamics.

We begin with an example of load balancing. Figure 1
shows the architecture of a database server that provides
load balancing across multiple memory pools which can be
of different types and characteristics. The system operates
as follows. Database clients interact with the database server
through the database agents which are computing elements
that access copies of disk data in the memory pools. The

Y. Diao, J. L. Hellerstein, M. Surendra, and S. Parekh are with IBM
Thomas J. Watson Research Center, Hawthorne, New York, USA.

A. J. Storm, S. Lightstone, and C. Garcia-Arellano are with IBM Toronto
Lab, Markham, Ontario, Canada.

Agents

Memory
Tuner

Sensor

Disks

Memory Pools

Database
Server

Database Clients

Memory

Allocations

Response Time Benefit

Fig. 1. Architecture of load balancing for a database server. The
server processes query requests by database clients for information
on disk. Memory pools are used to cache the disk information to
reduce the number of disk input/output operations. The memory
tuner automatically adjusts the size of memory pools to optimize
performance.

memory pools are used to cache disk pages to reduce
the number of disk input/output operations for the agents.
Central to the performance of a database management
system is the management of its memory pools. Increasing
the size of a memory pool can dramatically reduce the time
to access disk data since there is a higher probability that
a copy of the data is cached in memory. We refer to this
reduction in disk response time obtained from an increase
in memory allocation as theresponse time benefit(or just
benefit) in the measure of saved disk response time per
unit memory increase. Since the total size of the memory
pools is fixed, increasing the size of one pool necessarily
means decreasing the size of another pool. The memory
tuner adjusts pool allocations with the intent of reducing
overall disk response time for data access. An intuitive
approach is to allocate memory to pools so that each has
the same benefit, which is a kind of load-based balancing.
We also note in passing that no matter what scheme is
used to dynamically allocate memory, care must be taken
to not change memory pools too frequently since excessive
adjustments introduce substantial resizing overheads that
can decrease throughput and increase response time.

Many researchers have addressed online optimization of
computing systems. [2] describes a system that performs
on-line optimization of a web server using hill climbing
techniques. [3] considers how to maximize server farm
profits based on queueing-theoretic formulas. [4] proposes
a fuzzy control approach to minimize web server response
time. More generally, constrained optimization has been

addressed using techniques such as constraint programming,
genetic algorithms, and heuristic search [5], [6], [7]. Unfor-
tunately, none of these approaches consider the dynamics
of computing systems, and the overheads of adjusting
configuration parameters. On the other hand, the control
literature contains extensive studies of dynamic systems
with constraints in which optimization is done. However,
the control objective is typically regulation or tracking (but
not optimizing resource allocations in computing systems),
and the optimization technique is applied to control perfor-
mance indexes (e.g., minimize the tracking error) [8], [9],
[10], [11]. Recently, in computer science literature several
researchers have employed control theory to analyze system
dynamics including flow and congestion control [12], [13],
differentiated caching and web service [14], multimedia
streaming [15], web server performance [16], and email
server control [17], [18]. However, none of these approaches
address load balancing and optimization of computing sys-
tems resources. There is a vast literature on load balancing,
including its use in multiple source routing [19], memory
allocation [20], implementations for L4 switches [21], tech-
niques for balancing loads in data warehouses [22], agent
based algorithms [23], and redirection algorithms for web-
server systems [24]. While the focus of these efforts is more
on load balancing in a specific context, there have also been
studies that analyze general strategies, especially static load
balancing (which makes use of long-term trends) versus
dynamic load balancing (which exploits current changes
in state) [25]. However, none of these studies consider the
impact of transient load imbalances and the overheads of
changing resource allocations.

This paper proposes the use of a MIMO LQR controller
for load balancing in computing systems. Our approach is
structured so that load balancing is equivalent to constrained
performance optimization, and is equivalent to driving the
control error to zero. The controller and its design provide
a way to incorporate system dynamics, to consider the cost
of control actions, and to analyze the effects of disturbances
(e.g., variations in workload). We show that our approach
works well in practice through experimental studies of load
balancing memory allocations in IBM’s DB2 Universal
Database Enterprise Server Edition for Linux, Unix and
Windows Version 8.1.

The remainder of the paper is organized as follows.
Section II describes the load balancing problem and justifies
the use of this heuristic for a database management system.
Section III details the control architecture and algorithms.
Section IV assesses our controller for a DB2 Universal
Database Server. The conclusions are contained in Section
V.

II. PROBLEM FORMULATION

This section formulates the load balancing problem and
shows that load balancing provides a way to optimize
memory allocations in a database management system.

Load
Balancer

Resource

Consumer 1

Resource Pool

Resource

Consumer N

Measured Output

Measured Output

Resource
Allocation

Resource
Allocation

Fig. 2. General architecture for load balancing and resource allo-
cation. The load balancer controls the pool of resources, assigning
instances to consumers in a way so as to equalize the value of a
measured output (e.g., response time, utilization).

Figure 2 depicts a general architecture for load balancing
and resource allocation. The resource pool contains multiple
instances of a resource type (e.g., system resource such
as memory, CPU, disk, or load resource such as customer
requests). The instances need not be identical (e.g., CPUs
with different speeds or memory pages with different size)
and the number of instances can be infinite. There are finite
N consumers of the resource type, each of which receives
allocations of the resource from the load balancer and
provides to the load balancer one or more measured outputs
that quantify the consumers performance (e.g., response
time, utilization). The load balancer allocates instances of
the resource type in a way that equalizes the measured
outputs of the resource consumer. For the example of server
farm, the resource type is web requests, the consumers are
web servers, and the measured output is server utilization.
In the database server example, one possible resource type
is memory (to provide faster access to disk pages) and
the consumers are memory pools such as buffer pools
for caching data and index pages, and sort memory for
performing in-memory sorting of disk pages. The measured
output can be response time, throughput, or utilization.
However, we choose the response time benefit (obtained
as a result of the change memory allocation to reduce the
costly disk I/O time) to be the measured output, so that load
balancing leads to optimal memory performance.

We start from modeling the relationship between resource
allocations and measured outputs. In some cases, this can
be a linear relationship. For example, linearity holds if
the resource pool consists of requests for server and the
measured output is web server throughput and the request
arrival rate is smaller than the service rate. (Of course, if
the request arrival rate is always larger than the service
rate, then the server utilization is1 and the slope of
this linear relationship becomes0.) However, the linearity
assumption does not always hold in general. Consider the
relationship between the memory pool size in a database
server and the response time benefit. Figure 3 depicts this
relationship for experiments done on an IBM DB2 Universal

0 0.5 1 1.5 2 2.5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R
es

po
ns

e
tim

e
be

ne
fit

Pool size 0 1000 2000 3000 4000 5000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
es

po
ns

e
tim

e
be

ne
fit

Pool size

(a) A data buffer pool (b) An index buffer pool

Fig. 3. Example empirical models of the response time benefit of
DB2 buffer pools of caching data pages and index pages for an on-
line transaction processing workload.

Database Server with an industry standard benchmark for
two memory pools. (Details of the experimental setup are
described in Section IV). The horizontal axis is the size
of the memory pool in the unit of 4K page, the vertical
axis is the response time benefit of adding an increment of
memory in the unit of second per 4K page, and the circles
indicate results obtained from testbed experiments. We
assume the relationship between the pool size and the saved
disk response time is approximatelyxi = ai(1−e−biui) so
that the relationship between the pool size and the response
time benefit isyi = dxi

dui
= aibie

−biui where ui denotes
the memory allocated to pooli, xi denotes the saved disk
response time for pooli, yi denotes the response time
benefit for pooli, andai, bi are model parameters that can
be obtained empirically. The modeling results are shown in
Figure 3 by the dashed lines.

We now define what is meant by aload balancing
problem (LBP). Let u1, · · · , uN be resource allocations
for N resource consumers and lety1, · · · , yN be their
measured outputs. The LBP is to choose theui such that
y1 = · · · = yN subject to the constraint that

∑
ui = U

whereU defines the total resource. Note that the sum of
changes in resource allocations is always 0.

The motivation for load balancing is that the performance
of computing systems is largely affected by the most loaded
resource. Thus, by equalizing the (appropriately chosen)
measured outputs, we hope to optimize the performance.
Such an effect is clear in Figure 3. For example, suppose
that the size of the data buffer pool is 15,000 pages,
and the size of the index buffer pool is 500 pages. The
corresponding response time benefits are 0.002 and 0.05
seconds per page, respectively. If we deallocate 100 pages of
memory from the data buffer pool and allocate this memory
to the index buffer pool, the benefits from the two pools
will be more close to each other. From the view of total
response time, doing so slightly increases the response time
for accessing the data buffer pool (a increase of 0.2 seconds
as the integral of benefit from 14,900 to 15,000), but this
is more than offset by the large decrease in response for
accesses to the index buffer pool (a decrease of 5 seconds
as the integral of benefit from 500 to 600). More generally,
such effects are common in queueing systems for actions

that affect resource utilizations (e.g., allocation CPU shares)
and measured outputs such as response time and number in
system.

While load balancing is a widely used heuristic in
computing systems, in some cases it results in the opti-
mal solution, specifically, when the objective function is
composed of a sum of resource consumer metrics and the
measured outputs for the load balancer are the deriva-
tives of such metrics. This turns out to be the case for
the database memory management problem with models
defined above. The optimization problem is to maximize
the total saved response timef , or maxu1,··· ,uN

f where
f =

∑N
i=1 xi =

∑N
i=1 ai(1 − e−biui) subject to the

constraint of the total available memory
∑N

i=1 ui = U . To
see this, note thatf =

∑N−1
i=1 xi + xN =

∑N−1
i=1 ai(1 −

e−biui) + aN (1 − e−bN (U−∑N−1
i=1 ui)) and max f can be

found where the gradient is zero, that is,∂f
∂ui

= aibie
−biui +

∂aN (1−e−bN (U−∑N−1
i=1 ui))

∂ui
= aibie

−biui − aNbNe−bN uN =
yi−yN = 0 for i = 1, 2, . . . , N −1. This gives the optimal
memory setting atyi = yj for i, j = 1, 2, . . . , N . Sincef
is a convex function ofu, the optimal solution is unique,
i.e., the local optimum is also the global optimum.

III. MIMO C ONTROLLER FORLOAD BALANCING

Current approaches to load balancing (e.g., gradient
methods [5] and simplex methods [26]) do not consider
the dynamics of resource allocations, an omission that can
impair performance (e.g., oscillation due to overreaction
and negligence of the control delay). Here, we treat load
balancing as a MIMO control problem, an approach that
does address dynamics. By dynamics of load balancing, we
mean the trajectory of resource allocations. There are two
costs associated with this trajectory. The first is the cost
of a suboptimal resource allocations. A memory allocation
with unbalanced response time benefit would result in
longer system response time and less server throughput. The
second cost is that of the control actions, such as changes
in memory allocations, which consume resource and reduce
throughput as well.

To design a MIMO controller for load balancing, we
model the plant as the set of resource consumers with
control inputs u1(k), · · · , uN (k) and measured outputs
y1(k), · · · , yN (k), where k indicates the unit of discrete
time. System identification is used to approximate a local
linear model in a desired operating region. Two types of
disturbances are considered: the perturbation of the resource
allocations dI

i (k) that occurs on input to the resource
consumer, and the distortion of the measured outputdO

i (k).
The measured output of thei-th resource consumer is
wi(k) = yi(k) + dO

i (k). We define the average measured
outputw̄(k) = 1

N

∑
i wN

i=1(k) as the control reference. The
i-th control error at timek is ei(k) = w̄(k) − wi(k). The
control objective is to makeei(k) = 0, i.e., balancing the
measured outputs so as to maximize the total saved response
time. Note that different to using a static value or external

d1(k)

−
+

+
+

Load

+

−
+

+

Resource

1N,1

N

dN(k)

y1(k)

yN(k)

e1(k)

eN(k)
uN(k)

u1(k)

I

I

w(k)

+
+

+
+

d1(k)
O

dN(k)

O

w1(k)

wN(k)

Balancer

Consumer 1

Resource

Consumer N

Fig. 4. Block diagram of using MIMO control for load balancing
with disturbances.

signal as the reference, we specify the reference as a linear
transformation of measured outputs. Figure 4 displays a
block diagram of this system in which a MIMO controller
acts as a load balancer to control resource allocations for
N resource consumers. Clearly,

∑N
i=1 ei(k) = 0. Also note

that w̄(k) =
[
w1(k) · · · wN (k)

]
1
N 1N,1, where1N,1 is

a vector ofN 1’s.
We formulate the control problem using a state space

model and design a state feedback controller to achieve the
load balancing objective. Consider the following state space
model for the database memory system

y(k + 1) = Ay(k) + B(u(k) + dI(k)) (1)

e(k) = (
1
N

1N,N − I)(y(k) + dO(k)) (2)

wherey(k) and u(k) are N × 1 vectors representing the
measured output (e.g., response time benefit) and resource
allocation (e.g., memory pool size) in Figure 2. (Note that
although database memory allocation is known to be a
nonlinear system, a linear approximation around the oper-
ating region appears to be accurate enough regarding to the
overall control performance as shown in later experimental
studies.) The vectorse(k), dI(k), and dO(k) are N × 1
vectors representing the control error, control disturbance,
and measurement disturbance. TheN ×N matricesA and
B contain model parameters from system identification.

I =




1 · · · 0
...

...
0 · · · 1


 , 1N,N =




1 · · · 1
...

...
1 · · · 1


 areN ×N

matrices used to compute the benefit difference.
Load balancing is achieved by eliminating the difference

between the measured outputs of all resource consumers.
This occurs ife1(k) = · · · = eN (k) = 0. We design a
dynamic state feedback controller to do this. The system
state is augmented by the integral of erroreI(k + 1) =
eI(k)+e(k) and the state feedback controller is defined as
u(k) = KeI(k), so that the closed loop system is

y(k + 1) = Ay(k) + BKeI(k) + BdI(k)

eI(k + 1) = eI(k) + (
1

N
1N,N − I)(y(k) + dO(k))

= (
1

N
1N,N − I)y(k) + eI(k) + (

1

N
1N,N − I)dO(k)

Load balancing can be achieved when the system reaches
the steady state (i.e.,eI(k + 1) = eI(k) and soe(k) =
0). There is, however, a significant shortcoming with the
foregoing controller. There may exist disturbances for which
steady state is not achieved. To see this, note that in the
steady state we have
[

I−A −BK
− 1

N
1N,N + I 0

] [
yss

eI,ss

]
=

[
BdI(k)

(1
N

1N,N − I)dO(k)

]

where

[
I−A −BK

− 1
N 1N,N + I 0

]
is singular since

(1
N 1N,N − I) is singular. Hence,yss and eI,ss may not

exist for somedI(k) anddO(k).
To make the plant controllable we must consider the

constraint
∑N

i=1 ui = U . Thus, we redefine the state space
model to only includeN − 1 states and inputs and theN th

resource consumer is treated as external whose input can
be obtained from the constraint.

y(k + 1) = Ay(k) + B(u(k) + dI(k))

e(k) = (
1
N

1N−1,N−1 − I)(y(k) + dO(k))

+
1
N

1N−1,1(yN (k) + dO
N (k))

yN (k + 1) = aNyN (k) + bN (U − 11,N−1u(k) + dI
N (k))

where y(k) and u(k) are (N − 1) × 1 vectors, andA,
B, andI are (N − 1) × (N − 1) matrices. We design the
feedback controller for theN −1 resource allocationsu(k)
with u(k) = KeI(k) where the integral of control error is
defined on theN −1 resource consumers witheI(k +1) =
eI(k) + e(k) as before. For theN th resource allocation,
uN (k) = U −∑N−1

i=1 ui(k). The closed loop system is

y(k + 1) = Ay(k) + BKeI(k) + BdI(k)

eI(k + 1) = (
1
N

1N−1,N−1 − I)(y(k) + dO(k)) + eI(k)

+
1
N

1N−1,1(yN (k) + dO
N (k))

which gives
[

I−A −BK
− 1

N
1N−1,N−1 + I 0

] [
yss

eI,ss

]

=

[
BdI(k)

(1
N

1N−1,N−1 − I)dO(k) + 1
N

1N−1,1(yN (k) + dO
N (k))

]

Note that

[
I−A −BK

− 1
N 1N−1,N−1 + I 0

]
can be designed

to be non-singular since− 1
N 1N−1,N−1 + I is non-singular.

We handle the trade-off between short settling time and
overreacting to random fluctuations by choosing control
gains based on a cost function, i.e., linear quadratic regula-
tor (LQR) design. LQR finds the control gains that minimize
the quadratic cost function

J =
∞∑

k=1

[
e>(k) e>I (k)

]
Q

[
e(k)
eI(k)

]
+ u(k)>Ru(k) (3)

The cost function includes the control errorse(k), the
integral of errorseI(k), and the control inputsu(k). We

0 50 100 150 200
0

50

100

150

200

250

300

Control interval (in 60 sec.)

T
hr

ou
gh

pu
t (

in
 tr

an
s.

 p
er

 u
ni

t t
im

e)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 03−21

Control interval (in 60 sec.)

P
oo

l s
iz

e
(in

 4
K

 p
ag

es
)

(a) OLTP throughput (b) Memory pool sizes

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
03−21

Control interval (in 60 sec.)

R
es

po
ns

e
tim

e
be

ne
fit

 (
in

 s
ec

. p
er

 4
K

 p
ag

es
)

(c) Response time benefits

Fig. 5. Load balancing performance for MIMO control under an
OLTP workload. The memory pool sizes and response time benefits
for 20 buffer pools are indicated by 20 solid lines, respectively.

choose the matricesQ and R based on empirical studies
of the effect on performance of the control error and the
variability of the control input. In the case where having a
response time benefit distribution with a standard deviation
of 0.01 causes throughput to decrease by 50 transactions
per second and having a memory pool allocations with a
standard deviation of 100 causes throughput to decline by
50 transactions per second, we setQ = 502/0.012I, and
R = 502/1002I.

IV. T ESTBEDEXPERIMENTS

This section describes experiments done to assess the
MIMO control approach to load balancing.

A. Testbed Setup

The main components of the testbed are the database
server and the workload generator. For the database server
we use IBM’s DB2 version 8.1, a system provides program-
matic access to changing the sizes of memory pools such
as the database buffer pools and sort heap.

We use two industry standard benchmarks to provide
workload generation: an OLTP workload for on-line trans-
action processing and a DSS workload for decision support.
The OLTP workload consists of a large number of con-
current requests, each of which has very modest resource
demands. We use 20 buffer pools to contain data and index
for the database tables and 50 database clients to generate
load. A DSS workload has a small number of long-running,
resource intensive requests that are highly variable in their
demands.

B. Controller Assessments

We first study the capabilities of the MIMO load balanc-
ing controller for managing 20 buffer pools under the OLTP

workload. We also study the performance impact of buffer
pool re-sizings by verifying the OLTP throughput (measured
in transactions per unit time). Figure 5 (a) shows the
throughput, and Figure 5 (b) and (c) displays the memory
allocations and response time benefits for the controlled 20
buffer pools (as indicated by 20 solid lines in the plot).
Initially, the database memory is not properly allocated:
most of the memory has been allocated to one buffer pool,
while the other buffer pools are set at the minimum size. The
controller adjusts the size of buffer pools so as to equalize
the response time benefits of the pools. Put differently, the
controller seeks buffer pool sizes that equalize the marginal
value of adding memory to a pool. We see that the controller
converges around 80 intervals. Also, observe that the effect
of the controller’s actions is to increase throughput by a
factor of three.

Next, we consider the DSS workload. Unlike the OLTP
workload, the DSS workload consists of a small number
of queries whose durations and resource consumptions are
highly variable. In addition to buffer pool memory, allocat-
ing sort memory is crucial since a significant amount of sort
operations are involved in the long-running queries. Initially,
we allocated memory in the buffer pools by consulting
with database experts to obtain the typical settings of
DB2 memory pools. It turns out that these settings are
a poor choice for the DSS workload, as is evident by
the measurement results displayed in Figure 6. Observe
in the figure that the benefit values are much larger for
the data buffer pool (with a solid line) than those for
the other pools (e.g., sort memory with a dashed line).
(Several other memory pools such as package cache are also
included, but they are much less important than the buffer
pool and sort memory so that their sizes and benefits are
invisible in this figure.) This imbalance strongly suggests
that a better allocation of memory could result in substantial
performance improvements.

Figure 7 contains the results of using the MIMO con-
troller with the same DSS workload as in Figure 6. Note
that the MIMO controller produces benefit values that are
consistently smaller and closer to each other than those
in Figure 6. This is because the MIMO controller allo-
cates considerably more memory to the data buffer pool
represented by the solid line. This results in a significant
reduction in total query time, which is the sum of the
completion times of all completed queries (the standard
metric used for the DSS workload). The total query time
for the experiment with static settings is 26342 seconds; for
the MIMO controller, the total query time is 10680 seconds.
That is, the MIMO controller reduces total query time by
59%.

V. CONCLUSIONS

Load balancing is widely used to provide scalable growth
of computing systems. To date, this has been done without
consideration of dynamics such as disturbances and the cost
of control actions. Although traditionally an optimization

0 10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

0.02

0.025

Control interval (in 300 sec.)

R
es

po
ns

e
tim

e
be

ne
fit

 (
in

 s
ec

. p
er

 4
K

 p
ag

es
)

hc09−09

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Control interval (in 300 sec.)

P
oo

l s
iz

e
(in

 4
K

 p
ag

es
)

hc09−09

(a) Response time benefit (b) Memory pool sizes

Fig. 6. Load balancing performance for expert-suggested constant
memory pool settings under a DSS workload. Two memory pools
are indicated by the solid line and dashed line, respectively.

0 10 20 30 40
0

0.005

0.01

0.015

0.02

0.025

Control interval (in 300 sec.)

R
es

po
ns

e
tim

e
be

ne
fit

 (
in

 s
ec

. p
er

 4
K

 p
ag

es
)

hc12−10

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Control interval (in 300 sec.)

P
oo

l s
iz

e
(in

 4
K

 p
ag

es
)

hc12−10

(a) Response time benefit (b) Memory pool sizes

Fig. 7. Load balancing performance for MIMO control under a
DSS workload. Two memory pools are indicated by the solid line
and dashed line, respectively.

problem, we approach load balancing using a MIMO linear
quadratic regulator and appropriate control loop design
(e.g., specification of reference inputs). We show how the
LQR parameters can be interpreted as control costs, and the
MIMO LQR controller can yield significant performance
improvement, as evidenced by studies of a DB2 Universal
Database Server using industry standard benchmarks. In
particular, the controller obtains a factor of three increase
in throughput for an OLTP workload and a 59% reduction
in response times for a DSS workload.

ACKNOWLEDGEMENTS

The authors thank Matthew Carroll, Lee Chu, Jerome
Colaco, Frank Eskesen, and Steven Froehlich for their
assistance with DB2 testbeds.

REFERENCES

[1] E. Lassettre, D. W. Coleman, Y. Diao, S. Froehlich, J. Hellerstein,
L. Hsiung, M. R. T. Mummert, G. Parker, L. Russell, M. Surendra,
V. Tseng, N. Wadia, and P. Ye, “Dynamic surge protection: An
approach to handling unexpected workload surges with resource
actions that have lead times,” inProceedings of Distributed Systems
Operations and Management, Oct. 2003.

[2] D. Menasce, D. Barbara, and R. Dodge, “Preserving QoS of e-
commerce sites through self-tuning: A performance model approach,”
in Proceedings of 2001 ACM Conference on E-commerce, 2001.

[3] Z. Liu, M. S. Squillante, and J. L. Wolf, “On maximizing service-
level-agreement profits,” inProceedings of the ACM Conference on
Electronic Commerce, 2001.

[4] Y. Diao, J. L. Hellerstein, and S. Parekh, “Optimizing quality of
service using fuzzy control,” inProceedings of Distributed Systems
Operations and Management, 2002.

[5] D. G. Luenberger,Linear and nonlinear programming. Addison-
Wesley, Reading, MA, 1984.

[6] T. Lau and E. Tsang, “The guided genetic algorithm and its appli-
cation to the generalized assignment problem,” inProceedings of
the Tenth IEEE International Conference on Tools with Artificial
Intelligence, Taipei, Taiwan, pp. 336–343, 1998.

[7] P. Dasgupta, P. Chakrabarti, A. Dey, S. Ghose, and W. Bibel, “Solving
constraint optimization problems from clp-style specifications using
heuristic search techniques,”IEEE Transactions on Knowledge and
Data Engineering, vol. 14, no. 2, pp. 353–368, 2002.

[8] M. Athans and P. Falb,Optimal Control: An Introduction to the
Theory and its Applications. McGraw-Hill Book Company, New
York, 1966.

[9] S. Lyashevskiy, “Control of linear dynamic systems with constraints:
optimization issues and applications of nonquadratic functionals,” in
Proceedings of the 35th IEEE Conference on Decision and Control,
Kobe, Japan, pp. 3206–3211, 1996.

[10] A. Matveev, “Application of linear-quadratic control theory to the
solution of special nonconvex problems of global constrained op-
timization,” in Proceedings of the American Control Conference,
Seattle, WA, pp. 3928–3932, 1995.

[11] J. Rossiter, B. Kouvaritakis, and J.R.Gossner, “Feasibility and sta-
bility for constrained stable predictive control,” inProceedings of
the Third IEEE Conference on Control Applications, Glasgow, UK,
pp. 1885–1890, 1994.

[12] S. Mascolo, “Classical control theory for congestion avoidance in
high-speed internet,” inProceedings of the 38th Conference on
Decision & Control, Dec. 1999.

[13] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “On designing
improved controllers for AQM routers supporting TCP flows,” in
INFOCOM, 2001.

[14] Y. Lu, A. Saxena, and T. F. Abdelzaher, “Differentiated caching
services: A control-theoretic approach,” inInternational Conference
on Distributed Computing Systems, Apr. 2001.

[15] B. Li and K. Nahrstedt, “Control-based middleware framework for
quality of service applications,”IEEE Journal on Selected Areas in
Communication, 1999.

[16] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury,
“Using MIMO feedback control to enforce policies for interrelated
metrics with application to the Apache web server,” inProceedings
of Network Operations and Management, 2002.

[17] S. Parekh, N. Gandhi, J. L. Hellerstein, D. M. Tilbury, and J. P.
Bigus, “Using control theory to achieve service level objectives in
performance management,” inProceedings of IEEE/IFIP Symposium
on Integrated Network Management, 2001.

[18] Y. Diao, J. L. Hellerstein, and S. Parekh, “A business-oriented
approach to the design of feedback loops for performance manage-
ment,” in Distributed Systems Operations and Management, 2001.

[19] L. Zhang, Z. Zhao, Y. Shu, L. Wang, and O. Yang, “Load balancing
of multipath source routing in ad hoc networks,” inInternational
Conference on Communications, 2002.

[20] M. Mitzenmacher, B. Prabhakar, and D. Shah, “Load balancing with
memory,” in Proceedings of IEEE Symposium on Foundations of
Computer Science, 2002.

[21] J. Hyun, I. Jung, J. Lee, and S. Maeng, “Content sniffer based
load distribution in a web server cluster,”IEICE Transactions on
Information and Systems, vol. E86-D, no. 7, 2003.

[22] H. Marteins, E. Rahm, and T. Stohr, “Dynamic query scheduling in
parallel data warehouses,”Concurrency Computation Practice and
Experience, vol. 15, no. 11-12, 2003.

[23] S. Desic and D. Huljenic, “Agents based load balancing with compo-
nent distribution capability,” inProceedings of the 2nd IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid, pp. 327
–331, 2002.

[24] V. Cardellini, M. Colajanni, and P. S. Yu, “Request redirection al-
gorithms for distributed web systems,”IEEE Trans. Parallel Distrib.
Syst., vol. 14, no. 4, pp. 355–368, 2003.

[25] H. Kameda, E.-Z. S. Fathy, I. Ryu, and J. Li, “A performance com-
parsion of dynamic vs. static load balancing policies in a mainframe
– peronal computer network model,” inProceedings of the 39th IEEE
Conference on Decision and Control, IEEE, 2000.

[26] F. H. Walters, J. L. R. Parker, S. L. Morgan, and S. N. Deming,
Sequential Simplex Optimization. CRC Press, 1991.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThA03.3
	Page0: 2045
	Page1: 2046
	Page2: 2047
	Page3: 2048
	Page4: 2049
	Page5: 2050

