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Abstract—Load balancing is widely used in computing
systems as a way to optimize performance by equalizing
loads to reduce delays, such as adjusting the size of memory|
pools to balance resource demands in a database managemen
system. Load balancing is generally approached as a nonlinear
constrained optimization in which dynamics are ignored. We
approach load balancing differently - as a feedback controller
design problem using a multiple input multiple output linear
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guadratic regulator (LQR) that achieves the constrained
optimization objective. Such an approach allows us to exploit
well established techniques for handling disturbances (e.g., due
to changes in workloads) and to incorporate the cost of control
(e.g., throughput reductions due to resizing buffer pools) by
properly selecting the LQR Q and R matrices. From studies
of DB2 Universal Database Server using industry standard
benchmarks, we show that the controller obtains a factor of
three increase in throughput for an OLTP workload and a
59% reduction in response times for a DSS workload.

1

1

1

1

1
! °
' o
Memory I

1

1

1

1

L

i i
Response Time Benefit

Fig. 1. Architecture of load balancing for a database server. The
server processes query requests by database clients for information
on disk. Memory pools are used to cache the disk information to
reduce the number of disk input/output operations. The memory
tuner automatically adjusts the size of memory pools to optimize
performance.

|. INTRODUCTION
A central concern of businesses with mission critical ,
computing is quality of service, the ability to manage utiemory pools are used to cache disk pages to reduce
lization of computing resources so as to maintain responda€ number of disk input/output operations for the agents.

times and throughputs at acceptable levels. One widefyentral to the performance of a database management

used technique for achieving better resource utilization &YSt€m is the management of its memory pools. Increasing

load balancing whereby incoming requests and/or systefi€ Size of @ memory pool can dramatically reduce the time

resources are balanced so as to minimize the utilization i ccess disk data since there is a higher probability that
the bottleneck resource, a technique that generally mirft COPY Of the data is cached in memory. We refer to this

mizes response times and maximizes throughputs. Existilﬁﬁducnon in disk response time obta'lned from'an increase
approaches to load balancing do not consider dynamics sughmemory allocation as theesponse time benefi(or just

as the effect of disturbances (e.g., changes in workload) aR§Nefit) in the measure of saved disk response time per
the cost of control actions (e.g., overheads for changinyit memory increase. Since the total size of the memory
the sizes of buffer pools). With the growth of the InternetP00!S is fixed, increasing the size of one pool necessarily
dynamics have become increasingly important, especialff€ans decreasing the size of another pool. The memory
the challenges associated with “flash events” that can cad&®ier adjusts pool allocations with the intent of reducing

very rapid changes in workloads [1]. This paper descripgdverall dls_k response time for data access. An intuitive

the use of a multiple input multiple output (MIMO) linear approach is to allocate memory to pools so that each has

quadratic regulation (LQR) controller for load balancing(,r\‘le same benefit, which is a kind of load-based balancing.
that addresses dynamics. e also note in passing that no matter what scheme is

We begin with an example of load balancing. Figure {ised to dynamically allocate memory, care must be taken

shows the architecture of a database server that provid@snOt change memory pools too frequently since excessive
load balancing across multiple memory pools which can pRdjustments introduce substantial resizing overheads that
of different types and characteristics. The system operatE&n decrease throughput and increase response time.
as follows. Database clients interact with the database serveMany researchers have addressed online optimization of
through the database agents which are computing elemeagmputing systems. [2] describes a system that performs
that access copies of disk data in the memory pools. Ti-line optimization of a web server using hill climbing
techniques. [3] considers how to maximize server farm
Y. Diao, J. L. Hellerstein, M. Surendra, and S. Parekh are with 'B'Vbrofits based on queueing-theoretic formulas. [4] proposes
Thomas J. Watson Research Center, Hawthorne, New York, USA. L
A fuzzy control approach to minimize web server response
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addressed using techniques such as constraint programming, Measured Output

genetic algorithms, and heuristic search [5], [6], [7]. Unfor- Resource

tunately, none of these approaches consider the dynamics Allocation [ Resource | |:|

of computing systems, and the overheads of adjusting Y ~ | Consumer 1 |7 ©
configuration parameters. On the other hand, the control Load °

literature contains extensive studies of dynamic systems | Balancer . °
with constraints in which optimization is done. However, A Rosource .

the control objective is typically regulation or tracking (but Resource | Consumer N[ ]

not optimizing resource allocations in computing systems), Allocation

and the optimization technique is applied to control perfor- Resource Pool
mance indexes (e.g., minimize the tracking error) [8], [9], Msasured Output

[10], [11]. Recently, in computer science literature Sever%g_ 2. General architecture for load balancing and resource allo-
researchers have employed control theory to analyze syste@ion. The load balancer controls the pool of resources, assigning
dynamics including flow and congestion control [12], [13],instances to consumers in a way so as to equalize the value of a
differentiated caching and web service [14], multimedianeasured output (e.g., response time, utilization).

streaming [15], web server performance [16], and emalil

server control [17], [18]. However, none of these approaches

address load balancing and optimization of computing sys- Figure 2 depicts a general architecture for load balancing
tems resources. There is a vast literature on load balancira)d resource allocation. The resource pool contains multiple
including its use in multiple source routing [19], memoryinstances of a resource type (e.g., system resource such
allocation [20], implementations for L4 switches [21], tech-as memory, CPU, disk, or load resource such as customer
nigques for balancing loads in data warehouses [22], agefstquests). The instances need not be identical (e.g., CPUs
based algorithms [23], and redirection algorithms for webwith different speeds or memory pages with different size)
server systems [24]. While the focus of these efforts is mor@nd the number of instances can be infinite. There are finite
on load balancing in a specific context, there have also beéh consumers of the resource type, each of which receives
studies that analyze general strategies, especially static laaltbcations of the resource from the load balancer and
balancing (which makes use of long-term trends) versuyovides to the load balancer one or more measured outputs
dynamic load balancing (which exploits current changethat quantify the consumers performance (e.g., response
in state) [25]. However, none of these studies consider time, utilization). The load balancer allocates instances of
impact of transient load imbalances and the overheads ife resource type in a way that equalizes the measured
changing resource allocations. outputs of the resource consumer. For the example of server

This paper proposes the use of a MIMO LQR controllefarm, the resource type is web requests, the consumers are
for load balancing in computing systems. Our approach eb servers, and the measured output is server utilization.
structured so that load balancing is equivalent to constraind@ the database server example, one possible resource type
performance optimization, and is equivalent to driving thés memory (to provide faster access to disk pages) and
control error to zero. The controller and its design providéhe consumers are memory pools such as buffer pools
a way to incorporate system dynamics, to consider the co€f caching data and index pages, and sort memory for
of control actions, and to analyze the effects of disturbancé@grforming in-memory sorting of disk pages. The measured
(e.g., variations in workload). We show that our approacRuUtput can be response time, throughput, or utilization.
works well in practice through experimental studies of loadlowever, we choose the response time benefit (obtained
balancing memory allocations in IBM’s DB2 Universalas a result of the change memory allocation to reduce the
Database Enterprise Server Edition for Linux, Unix andostly disk I/O time) to be the measured output, so that load
Windows Version 8.1. balancing leads to optimal memory performance.

The remainder of the paper is organized as follows. We start from modeling the relationship between resource
Section Il describes the load balancing problem and justifig@dlocations and measured outputs. In some cases, this can
the use of this heuristic for a database management systeg. @ linear relationship. For example, linearity holds if
Section Il details the control architecture and algorithmgthe resource pool consists of requests for server and the
Section IV assesses our controller for a DB2 Universaneasured output is web server throughput and the request
Database Server. The conclusions are contained in Secti@fiival rate is smaller than the service rate. (Of course, if
\VA the request arrival rate is always larger than the service

rate, then the server utilization i$ and the slope of
Il. PROBLEM FORMULATION this linear relationship becomds) However, the linearity
assumption does not always hold in general. Consider the

This section formulates the load balancing problem ancklationship between the memory pool size in a database
shows that load balancing provides a way to optimizeerver and the response time benefit. Figure 3 depicts this
memory allocations in a database management system. relationship for experiments done on an IBM DB2 Universal
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that affect resource utilizations (e.g., allocation CPU shares)
and measured outputs such as response time and number in
fof) system.

While load balancing is a widely used heuristic in
computing systems, in some cases it results in the opti-
<, T . mal solution, specifically, when the objective function is

=m0 COmMposed of a sum of resource consumer metrics and the
i measured outputs for the load balancer are the deriva-
tives of such metrics. This turns out to be the case for
Fig. 3. Example empirical models of the response time benefit Jh€ database memory management problem with models
DB2 buffer pools of caching data pages and index pages for an odefined above. The optimization problem is to maximize
line transaction processing workload. the total saved response tinfe or max,, ... ., f Where
f=SN 2 = XN a;(1 — e ¥) subject to the

_ _ constraint of the total available memopy . , u; = U. To
Database Server with an_lndustry standz_ird benchmark fgge this note thaf = Zf\;l Ty + TN = Zf\;l ai(1 —
two memory poolg. (Details of the.expenme.nta_l setup _argfbiui) +an(l - e,bN(U,ngzfllul_)) and max f can be
described in Sectlon_IV). The_horlzontal axis is the SiZ&,und where the gradient is zero,that% — a;bebivi+
of the memory pool in the unit of 4K page, the vertical s N e
axis is the response time benefit of adding an increment 81— Tu =L ) = agbe — anbye tNUN =
memory in the unit of second per 4K page, and the circlegs —ynx = 0 fori =1,2,..., N — 1. This gives the optimal
indicate results obtained from testbed experiments. Waemory setting ay; = y; for 4,5 = 1,2,..., N. Since f
assume the relationship between the pool size and the saved convex function ofu, the optimal solution is unique,
disk response time is approximately = a;(1 —e~%%) so i.e., the local optimum is also the global optimum.

that the relationship between the pool size and the response
time benefit isy; = % = a;be—b whereu; denotes [1l. MIMO C ONTROLLER FORLOAD BALANCING

du; X . .
the memory allocated to pod| x; denotes the saved disk Current approaches to load balancing (e.g., gradient
response time for pool, y; denotes the response timemethods [5] and simplex methods [26]) do not consider
benefit for pooli, anda;, b; are model parameters that canthe dynamics of resource allocations, an omission that can

be obtained empirically. The modeling results are shown iimpair performance (e.g., oscillation due to overreaction

0 1000 2000
Po

Pool size ol si

x10°

(a) A data buffer pool (b) An index buffer pool

—biu;

Figure 3 by the dashed lines. and negligence of the control delay). Here, we treat load
We now define what is meant by l@ad balancing balancing as a MIMO control problem, an approach that
problem (LBP). Let w,---,uy be resource allocations does address dynamics. By dynamics of load balancing, we
for N resource consumers and let,---,yny be their mean the trajectory of resource allocations. There are two
measured outputs. The LBP is to choose thesuch that costs associated with this trajectory. The first is the cost
y1 = --- = yn subject to the constraint thdt, u; = U  of a suboptimal resource allocations. A memory allocation
where U defines the total resource. Note that the sum okith unbalanced response time benefit would result in
changes in resource allocations is always 0. longer system response time and less server throughput. The

The motivation for load balancing is that the performanceecond cost is that of the control actions, such as changes
of computing systems is largely affected by the most loaded memory allocations, which consume resource and reduce
resource. Thus, by equalizing the (appropriately chosethroughput as well.
measured outputs, we hope to optimize the performance.To design a MIMO controller for load balancing, we
Such an effect is clear in Figure 3. For example, supposaodel the plant as the set of resource consumers with
that the size of the data buffer pool is 15,000 pagesontrol inputs u;(k),--- ,uy(k) and measured outputs
and the size of the index buffer pool is 500 pages. The, (k), - ,yn(k), where k indicates the unit of discrete
corresponding response time benefits are 0.002 and 0.0%e. System identification is used to approximate a local
seconds per page, respectively. If we deallocate 100 pagediokar model in a desired operating region. Two types of
memory from the data buffer pool and allocate this memorgisturbances are considered: the perturbation of the resource
to the index buffer pool, the benefits from the two poolsllocations d! (k) that occurs on input to the resource
will be more close to each other. From the view of totatonsumer, and the distortion of the measured ouffit).
response time, doing so slightly increases the response tiibe measured output of théth resource consumer is
for accessing the data buffer pool (a increase of 0.2 seconds(k) = y;(k) + d¥ (k). We define the average measured
as the integral of benefit from 14,900 to 15,000), but thisutputw(k) = + >, wiY, (k) as the control reference. The
is more than offset by the large decrease in response fth control error at timek is e;(k) = w(k) — w;(k). The
accesses to the index buffer pool (a decrease of 5 secorasitrol objective is to make;(k) = 0, i.e., balancing the
as the integral of benefit from 500 to 600). More generallyneasured outputs so as to maximize the total saved response
such effects are common in queueing systems for actiotimme. Note that different to using a static value or external
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di(k) ot Load balancing can be achieved when the system reaches
the steady state (i.ee;(k + 1) = e;(k) and soe(k) =
0). There is, however, a significant shortcoming with the
o foregoing controller. There may exist disturbances for which
% o) usth) Resource |/"n | Witk steady state is not achieved. To see this, note that in the
. ; Load _>®_> &K i Steady state we have
e "l Balancer | * : ., X
% entk) un(k) Vs Wy(K] ] |: I-A —BK } |: Yss ] = |: Bdl(k)

yn(k) 7%1]\111\7 +1 0 €] ss (%]-N.N — I)do (k)

Y

-
=

where 1-A ~BK
dhk) a5k —~lyn+I 0

(%1n,n — I) is singular. Henceygs and erss may not

Fig. 4. Block diagram of using MIMO control for load balancing exist for somed? (k) andd® (k)

with disturbances.

} is singular since

To make the plant controllable we must consider the
constrainty"" | u; = U. Thus, we redefine the state space
signal as the reference, we specify the reference as a linégpdel to only includeV — 1 states and inputs and the'"
transformation of measured outputs. Figure 4 displays rgsource consumer is treated as external whose input can
block diagram of this system in which a MIMO controller be obtained from the constraint.

acts as a load balancer to control resource allocations fo I
k+1) = Ay(k)+B(u(k)+d"(k
N resource consumers. Clearly)" , e;(k) = 0. Also note ( ) 1}’( ) (u(k) )
thatw(k) = [wi(k) - wn(k)] ¥1n1, Wherely; is e(k) = (Nlel»Nfl —I)(y(k) + d°(k))
a vector of N 1's. 1
We formulate the control problem using a state space +N1N7171(yN(k> +dS (k)

model and design a state feedback controller to achieve the I

. L . . 1) = — 1, N
load balancing objective. Consider the following state spacl/év(k +1) anyn (k) + b (U 1-ru(k) + dy (k))

model for the database memory system where y(k) and u(k) are (N — 1) x 1 vectors, andA,
B, andI are (N — 1) x (N — 1) matrices. We design the
I
y(k+1) Aiy(k) +B(u(k) +d'(k)) (@) feedback controller for thé&/ —1 resource allocationa(k)
e(k) = (=1yn—-D(y(k)+d°%k)) (2 with u(k) = Ke;(k) where the integral of control error is
N ) defined on theV — 1 resource consumers withy (k+1) =
wherey(k) andu(k) are N x 1 vectors representing the er(k) + e(k) as before. For theVt" resource allocation,

measured output (e.g., response time benefit) and reSOUILe(k) — 7 — SN~ " (k). The closed loop system is
allocation (e.g., memory pool size) in Figure 2. (Note that =

although database memory allocation is known to be &(k+1) = Ay(k)+BKe;(k)+Bd'(k)
nonlinear system, a linear approximation around the OpeL- (1. _ 1 o)

. . . +1) = (=1ny_1nv_1—-D(yk)+d"(k)) +er(k
ating region appears to be accurate enough regarding to thle( ) <N1 N-1n-1 = Dy (k) (k) 1(k)
overall control performance as shown in later experimental 41 k o

. N-1,1(yn(k) +dy(k
studies.) The vectore(k), d(k), andd® (k) are N x 1 N vy (k) +dy ()
vectors representing the control error, control disturbancehich gives
and measurement disturbance. THex N matricesA and I-A _BK y
B contain model parameters from system identification. { —Liy N 4T 0 } { el.ss ]
1 -+ 0 1 - 1 B Bd (k)
I=1|: sl Ivn =) .| areN x N ~ | (3ln-inv-1 =DA% (k) + g lv-ra(yn (k) + dR (k)
0o --- 1 1 - 1 I— A _BK
matrices used to compute the benefit difference. Note that[ 14 I 0 } can be designed
Load balancing is achieved by eliminating the difference “wiIN-1N-1

between the measured outputs of all resource consumei@be non-singular since +-1x_1,x-1 41 is non-singular.
This occurs ife;(k) = --- = en(k) = 0. We design a  We handle the trade-off between short settling time and
dynamic state feedback controller to do this. The systemyerreacting to random fluctuations by choosing control

state is augmented by the integral of ermafk + 1) = ; o , . )
e1(k)+e(k) and the state feedback controller is defined a%ams based on a cost function, i.e., linear quadratic regula

u(k) = Ke;(k), so that the closed loop system is or (LQR) design. LQR finds the control gains that minimize
the quadratic cost function

y(k+1) = Ay(k)+ BKe;(k)+Bd’ (k) -
er(k+1) = er(k)+ (%M,N —D)(y(k) +d°(k)) J=Y [eT(k) e/ (k)]Q {;((k]g)} +u(k) 'Ru(k) (3)
1 1 k=1
- (ﬁlN‘N_I)Y(k)+el(k)+(NIN’N_I)dO(k)Fhe cost function includes the control erroegk), the

integral of errorse;(k), and the control inputai(k). We
2048



18
1.6

T 14f

512

508

g

g
0.4
02

50 100 150
Control interval (in 60 sec.)

(a) OLTP throughput

200

5

0 100
Control interval (in 60 sec.)

150

200

(b) Memory pool sizes

0 15
Control interval (in 60 sec.)

0

(c) Response time benefits

Fig. 5.

Load balancing performance for MIMO control under an

workload. We also study the performance impact of buffer
pool re-sizings by verifying the OLTP throughput (measured
in transactions per unit time). Figure 5 (a) shows the
throughput, and Figure 5 (b) and (c) displays the memory
allocations and response time benefits for the controlled 20
buffer pools (as indicated by 20 solid lines in the plot).
Initially, the database memory is not properly allocated:
most of the memory has been allocated to one buffer pool,
while the other buffer pools are set at the minimum size. The
controller adjusts the size of buffer pools so as to equalize
the response time benefits of the pools. Put differently, the
controller seeks buffer pool sizes that equalize the marginal
value of adding memory to a pool. We see that the controller
converges around 80 intervals. Also, observe that the effect
of the controller's actions is to increase throughput by a
factor of three.

Next, we consider the DSS workload. Unlike the OLTP
workload, the DSS workload consists of a small number
of queries whose durations and resource consumptions are

OLTP workload. The memory pool sizes and response time benefféghly variable. In addition to buffer pool memory, allocat-

for 20 buffer pools are indicated by 20 solid lines, respectively.

ing sort memory is crucial since a significant amount of sort
operations are involved in the long-running queries. Initially,
we allocated memory in the buffer pools by consulting

choose the matrice® and R based on empirical studies yith database experts to obtain the typical settings of
of the effect on performance of the control error and thgygo memory pools. It turns out that these settings are
variability of the control input. In the case where having g poor choice for the DSS workload, as is evident by
response time benefit distribution with a standard deviatiopje measurement results displayed in Figure 6. Observe
of 0.01 causes throughput to decrease by 50 transactiof$ the figure that the benefit values are much larger for
per second and having a memory pool allocations with e data buffer pool (with a solid line) than those for
50 tran:j,act|02ns per second, we €t= 50%/0.01°L, and (Several other memory pools such as package cache are also
R = 50°/100°I. included, but they are much less important than the buffer
IV. TESTBEDEXPERIMENTS pool and sort memory so that their sizes and benefits are
This section describes experiments done to assess ﬁﬁ\éls"ble in this flggre.) This imbalance strongly sugges'ts
. at a better allocation of memory could result in substantial
MIMO control approach to load balancing. performance improvements
A. Testbed Setup Figure 7 contains the results of using the MIMO con-

The main components of the testbed are the databagller with the same DSS workload as in Figure 6. Note
server and the workload generator. For the database serf&t the MIMO controller produces benefit values that are
we use IBM’s DB2 version 8.1, a system provides Iorogramconsi:stently smaller and closer to each other than those
matic access to changing the sizes of memory pools subh Figure 6. This is because the MIMO controller allo-
as the database buffer pools and sort heap. cates considerably more memory to the data buffer pool

We use two industry standard benchmarks to provideepresented by the solid line. This results in a significant
workload generation: an OLTP workload for on-line transfeduction in total query time, which is the sum of the
action processing and a DSS workload for decision suppoffompletion times of all completed queries (the standard
The OLTP workload consists of a large number of conMetric used for the DSS workload). The total query time
current requests, each of which has very modest resour the experiment with static settings is 26342 seconds; for
demands. We use 20 buffer pools to contain data and indé}e MIMO controller, the total query time is 10680 seconds.
for the database tables and 50 database clients to generb@t is, the MIMO controller reduces total query time by
load. A DSS workload has a small number of long-running29%-
resource intensive requests that are highly variable in their

V. CONCLUSIONS
demands.

Load balancing is widely used to provide scalable growth
B. Controller Assessments of computing systems. To date, this has been done without
We first study the capabilities of the MIMO load balanc-consideration of dynamics such as disturbances and the cost
ing controller for managing 20 buffer pools under the OLTRof control actions. Although traditionally an optimization
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DSS workload. Two memory pools are indicated by the solid line
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problem, we approach load balancing using a MIMO lineali5]
guadratic regulator and appropriate control loop design
(e.g., specification of reference inputs). We show how the
LQR parameters can be interpreted as control costs, and thé
MIMO LQR controller can yield significant performance
improvement, as evidenced by studies of a DB2 Universal
Database Server using industry standard benchmarks. [18]
particular, the controller obtains a factor of three increase
in throughput for an OLTP workload and a 59% reduction;g;
in response times for a DSS workload.
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