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General interpolation for input-affine nonlinear
systems

M.Bacic*, M. Cannon, B. Kouvaritakis

Abstract— This paper considers interpolation between non- controllers was a chosen to be optimal with respect to
linear control laws and their pre-computed invariant sets. It given cost whilst others were chosen sub-optimally. It was
is shown that the resulting control law ensures the invariance tyan shown that it is possible to stabilize any state inside

and feasibility of the convex hull of the individual invariant th hull of the eli ids b £ int lati
sets. The method presented here is the extension of [2] for the 1€ CONVEX hull Of the ellipSoids by means of interpolation

case of input-affine nonlinear systems. between the control laws associated with the corresponding
ellipsoids sets.
|. INTRODUCTION This paper extends the results of [2] to the case of

It is now widely accepted in the research literature thanput-affine non-linear systems. The paper is organized
dual mode predictions in model predictive control(MPC)ys follows. We first describe briefly the class of systems
provide a practicable alternative to the infinite horizorunder consideration in this paper. We then review condition
model predictive control [7]. The scheme consists of twdor the ellipsoidal invariance and feasibility using affine
modes: MODE | (near future) and MODE I (far future). difference inclusion. It is then shown how to extend the
Infinite horizon costs are split into finite horizon costsresults in [2] to the non-linear case by making use of affine
(MODE | costs) and a terminal costs(MODE Il costs). Thdlifference inclusion. Finally, a case study demonstrates t
finite horizon cost is given in terms of free control movesfficacy of the approach.
in MODE | whereas the terminal cost is the true or upper
bound on the infinite horizon cost for the unconstrained . ) .
terminal control law (MODE II). Terminal control laws Consider, the class of systems described by nonlinear
are associated with terminal invariant sets inside whicfodels of the form
a terminal control law is feasible, therefore guaranteeing x(k+1) = f(x(k)) +9g(x(k))u(k) 0
feasibility of MODE Il. Performance is optimized over the y(k) = Cx(K)
control moves in MODE I, subject to a stability constrainRNith xR and f: Q - R" g:Q — R" are smooth
that requires the predicted state at the end of MODE | to I'ﬁmctions on a subse® of R". Here, for simplicity we

inside the terminal set (where the existence of the feasib\llﬁII consider SISO systems but the results are trivially

terminal law ensures feasibility of the complete trajegYor oyiandaple to MIMO case. The system is subject to input
Implementations of the idea use linear terminal laws an£nstraints

ellipsoidal sets (e.g.[5]).

The overall performance of dual mode predicton MPC uk)eU, U={u:|u<u} (2)
depends on the choice of the terminal control law an
the associated terminal invariant set. Clearly the size o
stabi_lizab_le se_t of the scheme depends on the size of the J— ixT(k)Qx(k)+uT(k)Ru(k) @)
terminal invariant and feasible set and length of MODE &

Ila:];enrzt(()err]ﬁqiln:glr ?riz?igntth:nj'feeaggljgg“jgf;ﬁyiiﬁgugOvhere, for simplicity, it will be assumed that the origin is
) » . : one of the equilibrium states for the system in (1).

use of “detuned” control laws which would compromise the

optimality of the scheme. Alternatively one can use longerlll. ELLIPSOIDAL INVARIANCE AND FEASIBILITY FOR

MODE | horizon but at a heavy computational cost. NON-LINEAR SYSTEMS

_The problem of choosing a terminal control law that computing invariant and feasible ellipsoids was previ-
gives both .good size termlnal set whilst not S|gn|f|cantl)bus|y addressed in [4],[6]. Here the theory presented in [4]
compromising on optimality has been addressed by Bacig symmarized in the context of non-linear systems through

et al [2] in the context of linear systems. There the ideghe appropriate use of linear difference inclusion(LDI).
was to construct several ellipsoidal invariant and feasiblconsider therefore an ellipsoidal dgt

sets corresponding to different controllers. One of these

Il. SYSTEM DESCRIPTION

d infinite horizon LQ cost

E={x:x"Px<1}, P>0 (4)
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closed loop dynamics of (6) if

S S(AT +BEA)T : 2
0,i=1,...,2" (10
! 12 KS
{ S/:KT A'S } >0,j=1,...,2" 1=1..,2"(10)
| ’ | where S=P~1,
E Proof: From (10) it follows that
”””” LR T2 IRV SR G i 1ol BN
(a) Inclusion polytopd1 for (b) Two invariant/feasible ellipsoids i; (An +Bj A| )S S
Fig. 1. Inclusion polytopdl and relevant ellipsoids on?
S S(3 GA +BTADT
1=
The closed loop dynamics of (1) under (5) are therefore = on? >0
governed by (ZZiAiF +BfAY)S S
i=
X(k+1) = ®(x(k)), ®(x(k)) =F(x(k),K(x(k))) (6)  similarly summing overj and| independently leads to

2 <o

S S‘PT " ]:2 |=2"

ws s } >0, %= leiph > & Zi\MK
i= =1 I=

SYTpPY_p<0

ComputingP using directly definition above is not practi- where

cable and practicable alternatives all use linear diffegen 2 |—on

2n
inclusion. Consider therefore a low complexity polytdpe =1, Z =1, v=1 &&,%>0 (12
with verticesw; i; = ;1 B

It is well known[4], [3] thatE will be positively invariant
under (6) if and only if {

(vx(k) € E) (P(x(k))TPD(x(K)) — X" (k)Px(k) <0) (7)

M= {x:|VX]o <1} (8) Pre- and post-multiplying the above inequality dyand
X respectively, leads to

which defines the region in which the linear difference
inclusions(LDIs) for @(x),K(x) are valid and for which (WX)TP(Wx) —xPx <0 (13)
M D E (see Figure 1(a)). The inclusion polytope is required The condition (13) implies that for any € I and any
out of neccessity, as it is much easier to compute LDIs b§,&;,y satisfying (12), the next state governed by L2
using simple gridding technique over a polytope than ovedynamics will be insideE. Therefore out of all possible
the ellipsoid. It will be assumed, for simplicity, that thevalues ofZ;,§;,y there exist a triple for any particularfor
system in (1) has zero equilibrium stdteu) = (0,0) which  which it follows that

implies F(0,0) = 0 and K(0) = 0. The linear difference on? jon |_on
inclusjons forF(x,u) and K(x), centred about the origin F(x,K(x)) = zlziAiFXJr z EijF Z VAKX
are given by i= =1 =
o2 on and therefore
F(xU) = ZZiAiFX+ PRI (Wx € M) (F(x,K(x))TPF(x,K(x)) —x"Px < 0) )
(em| i:n =1 (93) =(Vx € E) (®(x)TPd(x) — X" Px < 0)
: =1 2 g=1 .5 >0 which proves that (10) is a sufficient condition for the
i; ’J; . = positive invariance oE under closed loop dynamics of (6).

on on Similar argument can be applied to the feasibility conditio
(vxe M) (K(x) S YA Sw=l o vz o) (9b) of (11)0]

i= i= The conditions of the Theorem Ill.1 can be utilized to

WhereA,-F,BJ-F,A,K can be computed using a simple griolingmaXImlze the area o using semi-definite programming.

strategy (see [1] for example). These can be used togetHAérrguably the size ok will be limited partly by the input

with the definition of ellipsoidal invariance to establigiet constrgmts .bUt predqmmaptly by the copservatlvenggs of
following result, the affine difference inclusion employed in the conditions

of Theorem IIl.1. The larger the inclusion polytope the
Theorem IIl.1 (Invariance and feasibility of E). The more conservative the LDI becomes which therefore leads
ellipsoid E is positively invariant and feasible under the to smallerE.
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IV. ENLARGEMENT OF INVARIANT SETS THROUGH
INTERPOLATION

Previous work [2] considered the use of interpolation
to expand the size of stabilizable set for linear systems.
Here the idea is extended to the case of non-linear systems.

Consider therefore ellipsoidal invariant and feasibles &gt
which have been constructed using the comribfor the

affine difference inclusion (see Figure 1(b)). Mathemaética
description of the membership of the convex hull was first

derived in [2] and is given here for completeness.

Lemma IV.1. A vector x(k) lies in the convex hull of
ellipsoids given by

E={xeR":x'Rx<1}, R>0, i=1,...,v (15
if and only if there exist vectors %; for i =1,...,v such that
T e
\Y

x(k) = i;%(k) (16b)

\Y
i;)\i(k) =1 (16¢)
0<Ai(k) <1 i=1...,v (16d)

where § =P L.

Proof: See [2] for the proof.

dynamics of (1), the state(k) of the theorem is steered to

xw+nFGw»im®mmwﬂ>

_ (ZA ZMMMMMO
—ZZAFZ)\ )% (k —I—ZE|B| Z\)\ )Ki (xi (k
2 2
x(k+1) = le (lzlsz,—Fm(k)+|21§|B|FKi(Xa(k)))

(18)
Expanding above using linear difference inclusion Kofx)
leads

X(k+1) =

v o 2n 2n

Zl)\i(k) (Z GAD (K + Y &Bf Y var'?M(k))
i= =1 =1 m=1
imwmm

19)
wherex (k) € E; due to (13) of the proof of Theorem .1
and the fact that the affine difference inclusiphy, Bj, A" }
is derived using the common inclusion polytofde Conse-
quently it follows thatx(k+ 1) € Co{Ey, Ep,...,Ey} which
completes the invariance proof of the theorem. Feasibility
can be proved using triangle inequality in a similar fashion
to the proof of Theorem IV.2.

Remark 1V.3. It is important to note the requirement of
Theorem V.2 that all ellipsoids E; have been calculated
using the common linear difference inclusion. This is es-
sential in establishing the invariance of the convex hull.
Constructing E; in any other way would not guarantee

It is clear that Lemma IV.1 applies in the non-linearggpjlity.

case, as it only relies on the current state. Assuringre
invariant and feasible undéf;(x) and satisfy conditions

Although results of Theorem V.2 imply stability of

of Theorem ll1.1, interpolating control law in [2] can be the interpolating control law, this was proved through the
extended for the non-linear case through the theorem belo@\?(p"c't use of the linear difference inclusion argumetts.

Theorem 1V.2 (Interpolation law). Let the invariant and
feasible ellipsoidal sets E; C N,K;(x) satisfy conditions of
Theorem |11.1 using common polytope I for the linear
difference inclusion of the (1) and respective control laws
u(k) = Ki(x(k)). Then for state vectors x; (k) satisfying (16),
the interpolation law

9= 3 M0k (x(K)

renders the convex hull of the élipsoids E; invariant under
dynamics of (1) and feasible under the constraints of (2).

17)

Proof:

is not possible to separate control trajectory in terms ef th
original system model (1), like it was done for the linear
case (see [2] for details). However the state-trajectory ca
be expressed in terms of parameters of the linear difference
inclusion. It is clear from equation (19) of the proof of
Theorem IV.2 that the set of predicted state&k+ 1) is
given by

Zn Zn
X (k+1) = ZZAF )+|le|BFnZ1ymA:§xi(k)

= l-IJi (ZjaElvym)Xi (k)

(20)

where WK(Z;,&),Ym) = Z AT + ZEl Bf z ymAR and
=

Under the control law of (17) and the systemsuperscriptk indicates that tripled;j, &, ym corresponds to
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parameters of theDI representation df atx(k). Therefore To prove asymptotic stability assume thegy(k+ 1) =

the state and input trajectories are simply given by Aopt(K) for all k. In that case the assumed trajectory is
v v given byXap; which is asymptotically stable due to positive
Z)‘q(k), ZW}‘(ZJ,a,ym))‘q(k), invariance of the convex hull of the ellipsoids. Conse-
Xt =< 5 i= (gla)quently Algorithm V.4 is asymptotically stable.
RO DEAGRBLLICIE
i= V. CASE STUDY - CONTINOUS STIRRED TANK REACTOR
\Y
_Zl)‘i(k) Ki(xi (k)), We consider here a two-state standard continuous stirred
Up =95 ) (21b)tank reactor which forms an essential part of any petro-
Z)\i(k)Ki(q"i (€5, &, Ym)xi(K)), - - chemical refinery[8]. The first order irreversible chemical
i=

reaction A — B can be described by the following state

Since WK(Z;,&1,ym) is not known a priori, computation of space model:
the exact predicted cost in a manner similar to the linear
clase (ijs Inot praqtic_ablt_a. This therefo]rce p_rgclgde; spefgfgi d% = %(CAf —Ca)— kOCAexp(—REl—aT)
closed loop optimization in terms of minimization of the 4t Qi — —+\ kCa, (_£> _ UAy T
predicted cost. It was argued in [2] that one of the con-dt — V (Tr=T) Cp (—AH)exp RiT VCp (T 2-;‘_’)
trollersK;(x) should be chosen to be optimal with respect to . . . ( .)

here Cp is the concentration of material A and is

the cost in (3) in order to ensure a degree of optimality on;: Following th lizati
the interpolating control law. Therefore this suggestg th e reactor temperature. Following the normalization}$] a

maximizing the influence of the optimal control law, Sayg!?fcretlzatmn of Fhe gbovg hmodel lgsmg I.E;Ier.sk;‘o.rward
Kopt (X) Will maximize the optimality of the over-all scheme. S/Terence approximation with sampling peri dyields:
Based on this premise the algorithm below maximixgg

: - 1)+ Ts(—axk(1)+D
which corresponds to the optimal controllégp (X). f(x) = ikkgzg —&—TzE—GXEEZ%—FBS(Z((:(kX)k)) ~Bx(2)) ]
Algorithm V.4 (Quasi-optimal non-linear interpolation) . g0 = 0 }
LB
. . S 25)
1) Given x(k) perform the following optimization (
where @(x) = (1 — x@l))exp(%). The process

max Aopt  Subject to (16)  (22)

)\1 ..... )\V,)’{l,...,X\,

2) Execute control action using (17).
3) Go to step (i).

Theorem IV.5 (Stability and convergence of Algorithm a 10 B 003 'y 20.0
: A . : - B 10 Dy 0072 uec[01Q

IV.4). Provided that optimization (22) is feasible at initial

time, the Algorithm V.4 is asymptotically stable. TABLE |

SYSTEM PARAMETERS

parameters have been taken from [9] and are given in the
table below together with the system constraints:

Proof: By assumption optimization in (22) is feasible
at initial time. This therefore implies that there exist at
least one control input trajectory, in the cldSgp, of (21) ) i
that will be feasible at the next time instant. Therefore b{h0osing the output variable to be the second
induction, this guarantees the feasibility of (22) at afigs. State(temperature) leads @= [ 0 1]. The equilibrium

To prove stability consider the following cost function: ~ State was chosen at maximum yietgl(x1), is given by
Xe = [ 0.2229 14851 ] and is minimum-phase. In this

O(Aopt (k) = 1 —Aopt (k) (23) example, first controllerKy(x) = Kop(x) is feedback
linearizing controller which is optimal with respect to the
output costQ = CCT,R=0) and is stable due to the chosen
minimum-phase equilibrium state. The second controller
K2(x), is simple linear state feedback controller computed
O(Aopt(k+1)) —O(Aopt(K)) = Aopt (K) — Aopt (K+1) using the linearized model of (25) about requilibrium
state withQ; = kerCTkerC. Clearly the choice oKy(x)

is sub-optimal with respect to the output cost. Figure 2(a)
depicts the two maximum volume ellipsoidal invariant and
feasible sets together with few trajectories generatexgusi
Algorithm IV.4. The dashed ellipsoid corresponds to the
sub-optimal controllefK,(x). Figure 2(b) gives an example
OAopt(k+ 1)) — O(Aopt (k) <0 of an input/output trajectory typical for the scheme.

where clearly®(Aopt(K)) > 0. To prove stability of Al-
gorithm V.4 it is sufficient to prove tha®(Aop(k)) is
Lyapunov function. Hence,

Noting that the feasible trajectori&s p, U py of (21) main-
tain constanhop (k) at all times, it is clear that optimization
in (22) can do no worse than that (Agy (K+ 1) = Agpt(K)
is feasible). Consequently it is clear thefy (K) — Aopt (K+
1) <0 and therefore
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(a) Random trajectories

- input
4k . —— output 4
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(b) Typical input/output trajectory

Fig. 2. CSTR example
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VI. CONCLUSIONS

judicious use of LDIs. The effectiveness of the approach
is demonstrated on the example of continous stirred tank
reactor.

On the dynamic behaviour of

This paper extends the results of [2] for the case of input

affine non-linear systems. This is made possible through the
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