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Abstract— This paper considers interpolation between non-
linear control laws and their pre-computed invariant sets. It
is shown that the resulting control law ensures the invariance
and feasibility of the convex hull of the individual invariant
sets. The method presented here is the extension of [2] for the
case of input-affine nonlinear systems.

I. I NTRODUCTION

It is now widely accepted in the research literature that
dual mode predictions in model predictive control(MPC)
provide a practicable alternative to the infinite horizon
model predictive control [7]. The scheme consists of two
modes: MODE I (near future) and MODE II (far future).
Infinite horizon costs are split into finite horizon costs
(MODE I costs) and a terminal costs(MODE II costs). The
finite horizon cost is given in terms of free control moves
in MODE I whereas the terminal cost is the true or upper
bound on the infinite horizon cost for the unconstrained
terminal control law (MODE II). Terminal control laws
are associated with terminal invariant sets inside which
a terminal control law is feasible, therefore guaranteeing
feasibility of MODE II. Performance is optimized over the
control moves in MODE I, subject to a stability constraint
that requires the predicted state at the end of MODE I to lie
inside the terminal set (where the existence of the feasible
terminal law ensures feasibility of the complete trajectory).
Implementations of the idea use linear terminal laws and
ellipsoidal sets (e.g.[5]).

The overall performance of dual mode predicton MPC
depends on the choice of the terminal control law and
the associated terminal invariant set. Clearly the size of
stabilizable set of the scheme depends on the size of the
terminal invariant and feasible set and length of MODE
I horizon. Increasing the size of stabilizable set through
larger terminal invariant and feasible set usually requires the
use of “detuned” control laws which would compromise the
optimality of the scheme. Alternatively one can use longer
MODE I horizon but at a heavy computational cost.

The problem of choosing a terminal control law that
gives both good size terminal set whilst not significantly
compromising on optimality has been addressed by Bacic
et al [2] in the context of linear systems. There the idea
was to construct several ellipsoidal invariant and feasible
sets corresponding to different controllers. One of these
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controllers was a chosen to be optimal with respect to
given cost whilst others were chosen sub-optimally. It was
then shown that it is possible to stabilize any state inside
the convex hull of the ellipsoids by means of interpolation
between the control laws associated with the corresponding
ellipsoids sets.

This paper extends the results of [2] to the case of
input-affine non-linear systems. The paper is organized
as follows. We first describe briefly the class of systems
under consideration in this paper. We then review conditions
for the ellipsoidal invariance and feasibility using affine
difference inclusion. It is then shown how to extend the
results in [2] to the non-linear case by making use of affine
difference inclusion. Finally, a case study demonstrates the
efficacy of the approach.

II. SYSTEM DESCRIPTION

Consider, the class of systems described by nonlinear
models of the form

x(k +1) = f (x(k))+g(x(k))u(k)
y(k) = Cx(k)

(1)

with x ∈ R
n and f : Ω → R

n, g : Ω → R
n are smooth

functions on a subsetΩ of R
n. Here, for simplicity we

will consider SISO systems but the results are trivially
extendable to MIMO case. The system is subject to input
constraints

u(k) ∈ U, U = {u : |u| ≤ ū} (2)

and infinite horizon LQ cost

J =
∞

∑
k=0

xT (k)Qx(k)+uT (k)Ru(k) (3)

where, for simplicity, it will be assumed that the origin is
one of the equilibrium states for the system in (1).

III. E LLIPSOIDAL INVARIANCE AND FEASIBILITY FOR

NON-LINEAR SYSTEMS

Computing invariant and feasible ellipsoids was previ-
ously addressed in [4],[6]. Here the theory presented in [4]
is summarized in the context of non-linear systems through
the appropriate use of linear difference inclusion(LDI).
Consider therefore an ellipsoidal setE

E = {x : xT Px ≤ 1}, P � 0 (4)

and the associated general non-linear control law

u(k) = K(x(k)) (5)
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Fig. 1. Inclusion polytopeΠ and relevant ellipsoids

The closed loop dynamics of (1) under (5) are therefore
governed by

x(k +1) = Φ(x(k)), Φ(x(k)) = F(x(k),K(x(k))) (6)

It is well known[4], [3] thatE will be positively invariant
under (6) if and only if

(∀x(k) ∈ E)
(

Φ(x(k))T PΦ(x(k))− xT (k)Px(k) ≤ 0
)

(7)

ComputingP using directly definition above is not practi-
cable and practicable alternatives all use linear difference
inclusion. Consider therefore a low complexity polytopeΠ
with verticeswi

Π = {x : ‖V x‖∞ ≤ 1} (8)

which defines the region in which the linear difference
inclusions(LDIs) for Φ(x),K(x) are valid and for which
Π ⊃ E (see Figure 1(a)). The inclusion polytope is required
out of neccessity, as it is much easier to compute LDIs by
using simple gridding technique over a polytope than over
the ellipsoid. It will be assumed, for simplicity, that the
system in (1) has zero equilibrium state(x,u) = (0,0) which
implies F(0,0) = 0 and K(0) = 0. The linear difference
inclusions forF(x,u) and K(x), centred about the origin
are given by

(∀x ∈ Π)















F(x,u) =
2n2

∑
i=1

ζiA
F
i x+

2n

∑
j=1

ξ jB
F
j u,

2n2

∑
i=1

ζi = 1,
2n

∑
j=1

ξ j = 1 ζi,ξ j ≥ 0















(9a)

(∀x ∈ Π)

(

K(x) =
2n

∑
i=1

γiA
K
i x,

2n

∑
i=1

γi = 1, γi ≥ 0

)

(9b)

whereAF
i ,BF

j ,A
K
i can be computed using a simple griding

strategy (see [1] for example). These can be used together
with the definition of ellipsoidal invariance to establish the
following result.

Theorem III.1 (Invariance and feasibility of E). The
ellipsoid E is positively invariant and feasible under the

closed loop dynamics of (6) if
[

S S(AF
i +BF

j AK
l )

T

(AF
i +BF

j AK
l )S S

]

> 0, i = 1, . . . ,2n2
(10)

[

ū2 AK
l S

SAK
l

T
S

]

≥ 0, j = 1, . . . ,2n, l = 1, . . . ,2n (11)

where S = P−1.

Proof: From (10) it follows that

2n2

∑
i=1

ζi

[

S S(AF
i +BF

j AK
l )

T

(AF
i +BF

j AK
l )S S

]

> 0

⇒













S S(
2n2

∑
i=1

ζiA
F
i +BF

j AK
l )T

(
2n2

∑
i=1

ζiA
F
i +BF

j AK
l )S S













> 0

Similarly summing overj and l independently leads to
[

S SΨT

ΨS S

]

> 0, Ψ =
2n2

∑
i=1

ζiA
F
i +

j=2n

∑
j=1

ξ jB
F
j

l=2n

∑
l=1

γlA
K
l

⇒ΨT PΨ−P < 0

where

2n2

∑
i=1

ζi = 1,
2n

∑
j=1

ξ j = 1,
l=2n

∑
l=1

γl = 1, ζi,ξ j,γl ≥ 0 (12)

Pre- and post-multiplying the above inequality byxT and
x respectively, leads to

(Ψx)T P(Ψx)− xT Px < 0 (13)

The condition (13) implies that for anyx ∈ Π and any
ζi,ξ j,γl satisfying (12), the next state governed by theLDI
dynamics will be insideE. Therefore out of all possible
values ofζi,ξ j,γl there exist a triple for any particularx for
which it follows that

F(x,K(x)) =
2n2

∑
i=1

ζiA
F
i x+

j=2n

∑
j=1

ξ jB
F
j

l=2n

∑
l=1

γlA
K
l x

and therefore

(∀x ∈ Π)
(

F(x,K(x))T PF(x,K(x))− xT Px < 0
)

⇒(∀x ∈ E)
(

Φ(x)T PΦ(x)− xT Px < 0
) (14)

which proves that (10) is a sufficient condition for the
positive invariance ofE under closed loop dynamics of (6).
Similar argument can be applied to the feasibility condition
of (11).�

The conditions of the Theorem III.1 can be utilized to
maximize the area ofE using semi-definite programming.
Arguably the size ofE will be limited partly by the input
constraints but predominantly by the conservativeness of
the affine difference inclusion employed in the conditions
of Theorem III.1. The larger the inclusion polytope the
more conservative the LDI becomes which therefore leads
to smallerE.



IV. ENLARGEMENT OF INVARIANT SETS THROUGH

INTERPOLATION

Previous work [2] considered the use of interpolation
to expand the size of stabilizable set for linear systems.
Here the idea is extended to the case of non-linear systems.
Consider therefore ellipsoidal invariant and feasible sets Ei

which have been constructed using the commonΠ for the
affine difference inclusion (see Figure 1(b)). Mathematical
description of the membership of the convex hull was first
derived in [2] and is given here for completeness.

Lemma IV.1. A vector x(k) lies in the convex hull of
ellipsoids given by

Ei = {x ∈ R
n : xT Pix ≤ 1}, Pi � 0, i = 1, . . . ,ν (15)

if and only if there exist vectors x̂i for i = 1, . . . ,ν such that

[

λi(k) x̂T
i (k)

x̂i(k) λi(k)Si

]

≥ 0 (16a)

x(k) =
ν

∑
i=1

x̂i(k) (16b)

ν

∑
i=1

λi(k) = 1 (16c)

0≤ λi(k) ≤ 1, i = 1, . . . ,ν (16d)

where Si = P−1
i .

Proof: See [2] for the proof.

It is clear that Lemma IV.1 applies in the non-linear
case, as it only relies on the current state. AssumingEi are
invariant and feasible underKi(x) and satisfy conditions
of Theorem III.1, interpolating control law in [2] can be
extended for the non-linear case through the theorem below.

Theorem IV.2 (Interpolation law). Let the invariant and
feasible ellipsoidal sets Ei ⊂ Π,Ki(x) satisfy conditions of
Theorem III.1 using common polytope Π for the linear
difference inclusion of the (1) and respective control laws
u(k) = Ki(x(k)). Then for state vectors xi(k) satisfying (16),
the interpolation law

u(k) =
ν

∑
i=1

λi(k)Ki(xi(k)) (17)

renders the convex hull of the ellipsoids Ei invariant under
dynamics of (1) and feasible under the constraints of (2).

Proof: Under the control law of (17) and the system

dynamics of (1), the statex(k) of the theorem is steered to

x(k +1) = F

(

x(k),
ν

∑
i=1

λi(k)Ki(xi(k))

)

= F

(

ν

∑
i=1

λi(k)xi(k),+
ν

∑
i=1

λi(k)Ki(xi(k))

)

=
2n2

∑
j=1

ζ jA
F
j

ν

∑
i=1

λi(k)xi(k)+
2n

∑
l=1

ξlB
F
l

ν

∑
i=1

λi(k)Ki(xi(k))

x(k +1) =
ν

∑
i=1

λi(k)





2n2

∑
j=1

ζ jA
F
j xi(k)+

2n

∑
l=1

ξlB
F
l Ki(xi(k))





(18)
Expanding above using linear difference inclusion forKi(x)
leads

x(k +1) =
ν

∑
i=1

λi(k)





2n2

∑
j=1

ζ jA
F
j xi(k)+

2n

∑
j=1

ξ jB
F
j

2n

∑
m=1

γmAKi
m xi(k)





=
ν

∑
i=1

λi(k)x
′
i(k)

(19)
wherex′i(k) ∈ Ei due to (13) of the proof of Theorem III.1
and the fact that the affine difference inclusion{A j,B j,A

Ki
l }

is derived using the common inclusion polytopeΠ. Conse-
quently it follows thatx(k +1) ∈Co{E1,E2, . . . ,Eν} which
completes the invariance proof of the theorem. Feasibility
can be proved using triangle inequality in a similar fashion
to the proof of Theorem IV.2.

Remark IV.3. It is important to note the requirement of
Theorem IV.2 that all ellipsoids Ei have been calculated
using the common linear difference inclusion. This is es-
sential in establishing the invariance of the convex hull.
Constructing Ei in any other way would not guarantee
stability.

Although results of Theorem IV.2 imply stability of
the interpolating control law, this was proved through the
explicit use of the linear difference inclusion arguments.It
is not possible to separate control trajectory in terms of the
original system model (1), like it was done for the linear
case (see [2] for details). However the state-trajectory can
be expressed in terms of parameters of the linear difference
inclusion. It is clear from equation (19) of the proof of
Theorem IV.2 that the set of predicted statesxi(k + 1) is
given by

xi(k +1) =
2n2

∑
j=1

ζ jA
F
j xi(k)+

2n

∑
l=1

ξlB
F
l

2n

∑
m=1

γmAKi
m xi(k)

= Ψk
i (ζ j,ξl ,γm)xi(k)

(20)

where Ψk
i (ζ j,ξl ,γm) =

2n2

∑
j=1

ζ jA
F
j +

2n

∑
l=1

ξlB
F
l

2n

∑
m=1

γmAKi
m and

superscriptk indicates that tripleζ j,ξl ,γm corresponds to



parameters of theLDI representation ofF at x(k). Therefore
the state and input trajectories are simply given by

XLDI =



















ν

∑
i=1

x̂i(k),
ν

∑
i=1

Ψk
i (ζ j,ξl ,γm)x̂i(k),

ν

∑
i=1

Ψk+1
i (ζ j,ξl ,γm)Ψk

i (ζ j,ξl ,γm)x̂i(k), . . .



















(21a)

ULDI =



















ν

∑
i=1

λi(k)Ki(xi(k)),

ν

∑
i=1

λi(k)Ki(Ψk
i (ζ j,ξl ,γm)xi(k)), . . .



















(21b)

SinceΨk
i (ζ j,ξl ,γm) is not known a priori, computation of

the exact predicted cost in a manner similar to the linear
case is not practicable. This therefore precludes specifying
closed loop optimization in terms of minimization of the
predicted cost. It was argued in [2] that one of the con-
trollersKi(x) should be chosen to be optimal with respect to
the cost in (3) in order to ensure a degree of optimality for
the interpolating control law. Therefore this suggests that
maximizing the influence of the optimal control law, say
Kopt(x) will maximize the optimality of the over-all scheme.
Based on this premise the algorithm below maximizesλopt

which corresponds to the optimal controllerKopt(x).

Algorithm IV.4 (Quasi-optimal non-linear interpolation) .

1) Given x(k) perform the following optimization

max
λ1,...,λν,x̂1,...,x̂ν

λopt subject to (16) (22)

2) Execute control action using (17).
3) Go to step (i).

Theorem IV.5 (Stability and convergence of Algorithm
IV.4). Provided that optimization (22) is feasible at initial
time, the Algorithm IV.4 is asymptotically stable.

Proof: By assumption optimization in (22) is feasible
at initial time. This therefore implies that there exist at
least one control input trajectory, in the classUADI of (21)
that will be feasible at the next time instant. Therefore by
induction, this guarantees the feasibility of (22) at all times.
To prove stability consider the following cost function:

Θ(λopt(k)) = 1−λopt(k) (23)

where clearlyΘ(λopt(k)) ≥ 0. To prove stability of Al-
gorithm IV.4 it is sufficient to prove thatΘ(λopt(k)) is
Lyapunov function. Hence,

Θ(λopt(k +1))−Θ(λopt(k)) = λopt(k)−λopt(k +1)

Noting that the feasible trajectoriesXLDI ,ULDI of (21) main-
tain constantλopt(k) at all times, it is clear that optimization
in (22) can do no worse than that (asλopt(k +1) = λopt(k)
is feasible). Consequently it is clear thatλopt(k)−λopt(k +
1) ≤ 0 and therefore

Θ(λopt(k +1))−Θ(λopt(k)) ≤ 0

To prove asymptotic stability assume thatλopt(k + 1) =
λopt(k) for all k. In that case the assumed trajectory is
given byXADI which is asymptotically stable due to positive
invariance of the convex hull of the ellipsoidsEi. Conse-
quently Algorithm IV.4 is asymptotically stable.

V. CASE STUDY - CONTINOUS STIRRED TANK REACTOR

We consider here a two-state standard continuous stirred
tank reactor which forms an essential part of any petro-
chemical refinery[8]. The first order irreversible chemical
reaction A → B can be described by the following state
space model:

dCA
dt =

Q f
V (CA f −CA)− k0CA exp

(

− Ea
R1T

)

dT
dt =

Q f
V (Tf −T )− k0CA

Cp
(−∆H)exp

(

− Ea
R1T

)

− UAh
VCp

(T −Tc)

(24)
where CA is the concentration of material A andT is
the reactor temperature. Following the normalization[9] and
discretization of the above model using Euler’s forward
difference approximation with sampling periodTs yields:

f (xk) =

[

xk(1)+Ts (−αxk(1)+Daφ(xk))
xk(2)+Ts (−αxk(2)+BDaφ(xk)−βxk(2))

]

g(xk) =

[

0
β

]

(25)
where φ(xk) = (1 − xk(1))exp

(

xk(2)
1+xk(2)/γ

)

. The process
parameters have been taken from [9] and are given in the
table below together with the system constraints:

α 1.0 β 0.03 γ 20.0
B 1.0 Da 0.072 u ∈ [0,10]

TABLE I

SYSTEM PARAMETERS

Choosing the output variable to be the second
state(temperature) leads toC =

[

0 1
]

. The equilibrium
state was chosen at maximum yield(x2/x1), is given by
xe =

[

0.2229 1.4851
]

and is minimum-phase. In this
example, first controllerK1(x) = Kopt(x) is feedback
linearizing controller which is optimal with respect to the
output cost(Q = CCT ,R = 0) and is stable due to the chosen
minimum-phase equilibrium state. The second controller
K2(x), is simple linear state feedback controller computed
using the linearized model of (25) about requilibrium
state with Q1 = kerCT kerC. Clearly the choice ofK2(x)
is sub-optimal with respect to the output cost. Figure 2(a)
depicts the two maximum volume ellipsoidal invariant and
feasible sets together with few trajectories generated using
Algorithm IV.4. The dashed ellipsoid corresponds to the
sub-optimal controller,K2(x). Figure 2(b) gives an example
of an input/output trajectory typical for the scheme.
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VI. CONCLUSIONS

This paper extends the results of [2] for the case of input
affine non-linear systems. This is made possible through the

judicious use of LDIs. The effectiveness of the approach
is demonstrated on the example of continous stirred tank
reactor.
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