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Abstract— This paper addresses the problem of parameter
dependent state feedback control (i.e. gain scheduling) for
linear systems with parameters that are assumed to be
measurable in real time and are allowed to vary in a compact
polytopic set with bounded variation rates. A new sufficient
condition given in terms of linear matrix inequalities permits
to determine the controller gain as a function of the time-
varying parameters and of a set of constant matrices. The
closed-loop stability is assured by means of a parameter depen-
dent Lyapunov function. The condition proposed encompasses
the well known quadratic stabilizability condition and allows
to impose structural constraints such as decentralization to the
feedback gains. Numerical examples illustrate the efficiency of
the technique.

I. INTRODUCTION

Gain scheduling control has motivated several studies
in the recent years, as can be inferred from the survey
papers [1] and [2]. This technique is appealing to deal
with systems subject to parametric variations, which include
linear systems with time-varying parameters and nonlinear
systems modeled as linear parameter-varying systems. The
classical approach is to design several controllers for chosen
linear models of a parameterized family of models and then,
based on the measurement of the time-varying parameters,
to schedule the controller gain using some interpolation
method [3]. Although the results can be improved by the
refinement of the grid on the parametric space, at the price
of increasing the computational effort, this procedure can-
not guarantee stability and performance for the controlled
system except in some special cases as for slow varying
parameters [4], [5].

Regarding to linear systems affected by arbitrarily time-
varying parameters in polytopic domains, it is well known
that the quadratic stabilizability condition [6] is an impor-
tant tool to cope with the design of a robust state feedback
gain for the system. This condition is appealing by its
numerical simplicity, since it uses a common Lyapunov
matrix to determine a fixed gain that stabilizes the closed-
loop system, and can be formulated in terms of linear matrix
inequalities (LMIs) [7]. Other classes of Lyapunov functions
have been investigated as, for instance, piecewise quadratic
Lyapunov functions, yielding less conservative results than
quadratic stability for both analysis and control design at the
price of a considerably higher numerical complexity [8].
However, quadratic or piecewise quadratic functions can
lead to conservative results for systems with bounded time
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derivatives on the parameter variations. As an alternative,
parameter dependent Lyapunov functions seem to be a
useful tool since they can incorporate the rates of parameter
variation into the analysis and synthesis problems.

Actually, parameter dependent Lyapunov functions have
been recently used to derive important conditions for the ro-
bust stability of linear time-invariant systems with polytopic
uncertainty. In [9], a simple LMI feasibility test defined
at the vertices of the uncertainty domain provides a set
of Lyapunov matrices whose convex combination yields a
parameter dependent Lyapunov function used to assess the
robust stability of the uncertain linear time-invariant system,
encompassing the analysis results provided by quadratic
stability. Improved LMI conditions appeared in [10] and,
more recently, in [11], encompassing the previous results.
In the context of linear time-varying systems, the robust
stability of uncertain linear systems has been investigated by
means of parameter dependent Lyapunov functions in many
papers [12], [13], [14], [15], some of them also discussing
possible extensions to cope with control design for certain
classes of uncertain systems. In most of cases, restrictive
assumptions on the structure of the uncertainty are made.
In [14], LMI sufficient conditions for the robust stability and
performance of continuous time-varying systems with affine
parameter dependence are presented. The results are still
conservative, since the multiconvexity of the time derivative
of the parameter dependent Lyapunov function is imposed,
implying that the analysis at the vertices of the uncertainty
polytope (usually only necessary) provides a conclusive
evaluation about the overall stability. The multiconvexity
has also been used in [16] as a tool to compute robust
stability and performance of uncertain systems and to
simplify, in some cases, the gridding procedure to compute
a linear parameter varying feedback control.

The extension of analysis conditions based on parameter
dependent Lyapunov functions to cope with control design
problems often results in gain scheduling strategies. In
[17], an approach which combines methods of analysis
of polytopic systems with conventional constant scaling
techniques to solve the robustness analysis problem for un-
certain systems admitting a linear fractional transformation
representation is extended to deal with gain scheduling con-
trollers. The design of gain scheduling for polytopic systems
with bounded time derivatives on the parameters has been
addressed by means of LMIs in [18], [19], [20]. The con-
ditions must be solved upon a grid on the parameter space,
which results in testing a finite number of LMIs. In a sense,
the results using finite gridding points are unreliable and the



numerical complexity of the tests grows rapidly. In [19],
LMI conditions use a combination of parameter dependent
Lyapunov functions and the so called S-procedure to reduce
the conservatism in the design problem, but the problem
still has to be addressed by means of a grid in the parameter
space. Although parameter gridding can be avoided in some
cases, the use of conservative assumptions for the set of
uncertainties is required. For instance, when the plant and
the controller admit a linear fractional transformation, the
existence of a stabilizing control can be determined through
the feasibility of a finite set of LMIs [21], [22], [23].

This paper is concerned with the use of a parameter
dependent Lyapunov function to derive a state feedback
gain scheduling control for linear continuous time-varying
system with uncertain parameters belonging to a polytope
and satisfying known bounds on their time derivatives.
There are no restrictive assumptions on the structure of
the uncertainties. It is assumed that the vector of uncertain
parameters can be measured on-line. A finite set of LMIs
is defined at the vertices of the uncertainty domain in
such a way that, if a feasible solution exists, a parameter
dependent Lyapunov function constructed as the convex
combination of a set of Lyapunov matrices assures the
robust stability of the uncertain time-varying system by
means of a parameter dependent stabilizing gain. The results
encompass the quadratic stabilizability condition in the
sense that feasible solutions always exist for quadratically
stabilizable uncertain systems. For uncertain domains and
time derivatives bounds known a priori, the conditions
provide a simple convex LMI stabilizability test that can
be performed in polynomial time by specialized algorithms
[24], yielding a parameter dependent gain. There is no need
of gridding on the parameter space. Using line searches
and LMI feasibility tests, the maximum bounds on the
uncertain parameter time derivatives for which there exists
a stabilizing parameter dependent feedback gain can be
estimated. Moreover, structural constraints to the feedback
gains such as decentralization or output feedback can be
easily imposed. Examples illustrate the method proposed.

II. STATE FEEDBACK GAIN SCHEDULING
DESIGN

Consider the linear continuous time-varying system

ẋ(t) = A(α(t))x(t)+B(α(t))u(t) (1)

with x(t) ∈ R
n, u(t) ∈ R

m, A(α(t)) ∈ R
n×n, and B(α(t)) ∈

R
n×m. Suppose that matrices A(α(t)) and B(α(t)) belong

to the polytope D given by

D =
{

(A,B)(α(t)) : (A,B)(α(t)) =
N

∑
j=1

α j(t)(A,B) j,

N

∑
j=1

α j(t) = 1, α j(t) ≥ 0, j = 1, . . . ,N
}

(2)

with bounds on the time derivatives of the uncertain param-
eters given by

| α̇ j(t) |≤ ρ j , j = 1, . . . ,N −1 (3)

Notice that the constraint ∑N
j=1 α j(t) = 1 implies, without

loss of generality, α̇N(t) = ∑N−1
j=1 α̇ j(t) and the bound on

this parameter can be expressed by | α̇N(t) |≤ ∑N−1
j=1 ρ j.

The well known quadratic stabilizability condition [6]
assures that, if there exist a symmetric positive definite
matrix W ∈ R

n×n and a matrix Z ∈ R
m×n such that

A jW +WA′
j +B jZ +Z′B′

j < 0 , j = 1, . . . ,N (4)

then the stability of the system (1)-(2) is guaranteed (inde-
pendently of the bounds (3)) by the state feedback control

u(t) = Kx(t) , K = ZW−1 (5)

This result has been largely used as a starting point to
compute guaranteed costs, robust controllers and filters (see
[7] and references therein). It is important to stress that the
feasibility of condition (4) guarantees that system (1)-(2)
is stabilizable by means of a fixed gain K given by (5),
for any arbitrary α̇(t). However, many times this condition
leads to conservative results, since the stabilizability of the
entire polytope is based on a fixed Lyapunov matrix.

Less conservative evaluations are provided by Theorem 1,
which presents a sufficient condition with finite number
of LMIs to design a parameter dependent state feedback
controller (i.e. a gain scheduling controller) for the system
(1)-(2), taking into account the bounds on the parameter
time derivatives, given by (3). Neither a gridding on the
parameter space nor assumptions on the structure of the
uncertainties are needed.
Theorem 1 If there exist symmetric positive definite matri-
ces W j ∈ R

n×n and matrices Z j ∈ R
m×n, with j = 1, . . . ,N,

for given bounds ρi ≥ 0, i = 1, . . . ,N −1, such that1

A jW j +W jA
′
j +B jZ j +Z′

jB
′
j +

N−1

∑
i=1

±ρi(Wi −WN) < 0

j = 1, . . . ,N (6)

A jWk +WkA′
j +AkW j +W jA

′
k +B jZk +Z′

kB′
j +BkZ j +Z′

jB
′
k

+2
N−1

∑
i=1

±ρi(Wi −WN) < 0
j = 1, . . . ,N −1
k = j +1, . . . ,N

(7)

then the parameter dependent state feedback control law
u(t) = K(α(t))x(t) with

K(α(t)) = Z(α(t))W (α(t))−1 (8)

and

Z(α(t)) =
N

∑
j=1

α j(t)Z j; W (α(t)) =
N

∑
j=1

α j(t)W j;

N

∑
j=1

α j(t) = 1; α j(t) ≥ 0, j = 1, . . . ,N (9)

1The LMIs must be implemented with all the combinations ±.



assures the closed-loop stability of the uncertain system
(1)-(2) under the bounds (3) by means of the positive
definite parameter dependent Lyapunov matrix P(α(t)) =
W (α(t))−1, with W (α(t)) given by (9).
Proof Consider the parameter dependent Lyapunov function
v(x(t)) = x(t)′P(α(t))x(t) with P(α(t)) = W (α(t))−1 given
by (9). Clearly, W (α(t)) > 0, implying that v(x(t)) is
positive for all x(t) 6= 0. Its time derivative is given by
v̇(x(t)) , x(t)′Q(α(t))x(t) with

Q(α(t)) =
(

A(α(t))+B(α(t))K(α(t))
)′

P(α(t))

+P(α(t))
(

A(α(t))+B(α(t))K(α(t))
)

+ Ṗ(α(t)) (10)

Multiplying Q(α(t)) at right and at left by P(α(t))−1 and
making the change of variables

W (α(t)) = P(α(t))−1 ; Z(α(t)) = K(α(t))W (α(t)) (11)

one has R(α(t)) , W (α(t))Q(α(t))W (α(t)) with

R(α(t)) = A(α(t))W (α(t))+W (α(t))A(α(t))′

+B(α(t))Z(α(t))+Z(α(t))′B(α(t))′

+W (α(t))Ṗ(α(t))W (α(t)) (12)

From (11), P(α(t))W (α(t)) = I, implying that Ṗ(α(t)) =
−W (α(t))−1Ẇ (α(t))W (α(t))−1 which leads to

R(α(t)) = A(α(t))W (α(t))+W (α(t))A(α(t))′

+B(α(t))Z(α(t))+Z(α(t))′B(α(t))′−Ẇ (α(t)) (13)

Using (2) and (9), one has

R(α(t)) =
N

∑
j=1

α2
j(t)

(

A jW j +W jA
′
j +B jZ j +Z′

jB
′
j

)

+
N−1

∑
j=1

N

∑
k= j+1

α j(t)αk(t)
(

A jWk +WkA′
j +AkW j +W jA

′
k

+B jZk +Z′
kB′

j +BkZ j +Z′
jB

′
k

)

−
N

∑
j=1

α̇ j(t)W j (14)

Since

( N

∑
j=1

α j(t)
)2

=
N

∑
j=1

α2
j(t)+2

N−1

∑
j=1

N

∑
k= j+1

α j(t)αk(t) = 1 (15)

it is possible to rewrite (14) as

R(α(t))=
N

∑
j=1

α2
j(t)

(

A jW j +W jA
′
j +B jZ j +Z′

jB
′
j−

N

∑
j=1

α̇ j(t)W j
)

+
N−1

∑
j=1

N

∑
k= j+1

α j(t)αk(t)
(

A jWk +WkA′
j +AkW j +W jA

′
k

+B jZk +Z′
kB′

j +BkZ j +Z′
jB

′
k −2

N

∑
j=1

α̇ j(t)W j
)

(16)

Recalling that α̇N(t) = −∑N−1
i=1 α̇i(t) and ∑N

j=1 α̇ j(t)W j =

∑N−1
i=1 α̇i(t)(Wi −WN) which, replaced in (16), results in

R(α(t)) =
N

∑
j=1

α2
j(t)

(

A jW j +W jA
′
j +B jZ j +Z′

jB
′
j

−
N−1

∑
i=1

α̇i(t)(Wi −WN)
)

+
N−1

∑
j=1

N

∑
k= j+1

α j(t)αk(t)
(

A jWk +WkA′
j +AkW j +W jA

′
k

+B jZk +Z′
kB′

j +BkZ j +Z′
jB

′
k −2

N−1

∑
i=1

α̇i(t)(Wi −WN)
)

(17)

Taking into account (3), conditions (6)-(7) are sufficient
to guarantee that R(α(t)) is negative definite for all
α j(t) ≥ 0, ∑N

j=1 α j(t) = 1. As a consequence, Q(α(t)) =

W (α(t))−1R(α(t))W (α(t))−1 < 0 and thus v̇(x(t)) < 0. 2

Theorem 1 deserves some remarks. First of all, it provides
an easy way to determine a gain scheduling for the system
(1)-(2) when the bounds on the time derivatives of the
parameters ρi, i = 1, . . . ,N − 1 are known a priori. Of
course, the number of LMIs of Theorem 1, given by
N +N2N−1 +N(N−1)2N−2 (including Pj > 0 , j = 1 . . .N),
increases rapidly with N (the number of vertices of the
system), but efficient polynomial time algorithms [24] can
be used to solve the problem. When the bounds on the time
derivatives are not known a priori, Theorem 1 allows to
determine a parameter dependent stabilizing gain K(α(t))
and the bounds ρi, i = 1, . . . ,N − 1 for which this gain
is valid. This can be done by means of solving a convex
problem with a line search procedure.

A second remark is that Theorem 1 encompasses the
quadratic stabilizability condition in the sense that if the
system (1)-(2) is quadratically stabilizable with fixed W
and Z, satisfying (4), then Theorem 1 will be feasible for
W1 = W2 = . . . = WN = W and Z1 = Z2 = . . . = ZN = Z
for some ρi, i = 1, . . . ,N − 1. Moreover, when the system
is quadratically stabilizable, the matrices W j and Z j of
Theorem 1 tend to fixed matrices W and Z as ρi → ∞,
i = 1, . . . ,N −1.

Theorem 1 can be seen as an extension for synthesis
of the recently published conditions for robust stability of
linear time-varying systems in polytopic domains [25]. A
numerical comparison illustrated that, in the case of the
analysis, the conditions from [25] leaded to less conserva-
tive results than the multiconvexity from [14].

Finally, note that although α(t) may not exactly represent
the actual time-varying vector of parameters p(t) of a
physical system, a linear relationship between α(t) and p(t)
(as well as between α̇(t) and ṗ(t)) can be readily established
whenever there is an affine dependence on the uncertainty.

III. STRUCTURALLY CONSTRAINED CONTROL

Sometimes the control design problem need to take
into account structural constraints, such as decentralization



(when interconnected systems must be controlled by means
of local information only) or output feedback (which occurs
very frequently, since in general only a linear combination
of the states is available for feedback).

Following ideas similar to the ones used in the context
of quadratically stabilizing robust control [26], structural
constraints can be easily imposed to the matrix variables,
yielding sufficient conditions for the existence of structured
constrained robust as well as parameter dependent feedback
gains. A special structure on matrices W j, Z j of Theorem 1
can provide decentralized or output feedback gain schedul-
ing, as shown in corollaries 2 and 3.
Corollary 2 A decentralized parameter dependent state
feedback control law can be obtained from the previous
results by imposing to matrices W j and Z j in Theorem 1 a
block diagonal (bl. d.) structure

W jD = bl. d.{W 1
j , . . . ,W M

j }; Z jD = bl. d.{Z1
j , . . . ,Z

M
j } (18)

with M being the number of subsystems. If a feasible
solution exists, the gain scheduled control (8) is such that

KD(α(t)) = bl. d.{K(α(t))1
, . . . ,K(α(t))M} (19)

Suppose now that only a subset of the states of the system
(1) is available for feedback; in other words, y(t) ∈ R

p

is an output given by2 y(t) =
[

Ip 0
]

x(t). In this case,
the output feedback gain scheduled control problem can be
formulated as the search of a parameter dependent state
feedback gain K(α(t)) ∈ R

m×n with the following structure

K(α(t)) =
[

KO(α(t)) 0
]

(20)

with KO(α(t)) ∈ R
m×p. Following the ideas presented in

[27], [26], a sufficient condition for the existence of such
gain is easily obtained as follows.
Corollary 3 A parameter dependent output feedback control
gain can be obtained from the previous results by imposing
to matrices W j and Z j in Theorem 1 the structure constraints

Z jO =
[

Z1
jO 0

]

; W jO =

[

W 11
jO 0
0 W 22

jO

]

with Z1
jO ∈ R

m×p, W 11
jO ∈ R

p×p and W 22
jO ∈ R

(n−p)×(n−p). If
a feasible solution exists, the control gain given by (8) is
such that (20) holds.

IV. EXAMPLES

Some examples are presented in this section to illustrate
the usefulness of the proposed conditions to address the
problems of analysis and synthesis for the class of time-
varying systems under investigation.

2There always exists a similarity transformation that allows the output
of a linear system to be written in this way.
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Fig. 1. Nonlinear behavior of the entries of the gain scheduled state
feedback control (24) as a function of α1(t) for system (21) with ρ1 = 1.

As a first example, consider the system (1)-(2) with N = 2
vertices given by

A1 =

[

0.2 −0.8
0.3 −1.3

]

, B1 =

[

0.4
0.8

]

;

A2 =

[

0.0 −0.3
0.5 0.0

]

, B2 =

[

0.3
0.1

]

(21)

The uncertain parameters α1(t), α2(t) are such that α2(t) =
1−α1(t) and | α̇1(t) |=| α̇2(t) |≤ ρ1. Despite the simplicity,
this system is not quadratically stabilizable, that is, (4) fails
to provide a fixed gain K to stabilize the entire polytope. On
the other hand, Theorem 1 allows to determine a parameter
dependent state feedback stabilizing gain K(α1(t)) that
guarantees the closed-loop system stability for bounds on
the time derivative of its parameters.

Conditions (6)-(7) of Theorem 1 provide feasible solu-
tions until ρ1 = 10000, that is, stabilizing the uncertain time-
varying system for −10000 ≤ α̇1(t) ≤ 10000.

To illustrate the efficiency of the analytical gain calcu-
lated by Theorem 1 when compared to a standard gain
scheduling controller obtained from a linear interpolation,
consider α1(t) = 0.5+0.5sin(2t), such that | α̇1(t) |≤ 1. For
this bound (i.e. ρ1 = 1), Theorem 1 yields the solution

W1 =

[

52.3249 21.6632
21.6632 10.2517

]

;Z′
1 =

[

−11.7960
−47.6387

]

(22)

W2 =

[

44.3201 12.2531
12.2531 4.8696

]

;Z′
2 =

[

−47.2555
−96.3004

]

(23)

K(α1(t)) =
(

α1(t)Z1 +(1−α1(t))Z2

)

(

α1(t)W1 +(1−α1(t))W2

)−1
(24)

This gain K(α1(t)) has entries that are nonlinear functions
of α1(t), as shown in Figure 1.

If a pole location strategy is used to compute one
stabilizing state feedback control gain for each vertex, for
instance placing the closed-loop poles at (−10,−20) for
vertex #1 and at (−30,−40) for vertex #2, one has

K1 =
[

2014.65 −1043.45
]

, K2 =
[

2280.94 −7542.81
]
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Fig. 2. Trajectories and phase portraits of the closed-loop system for the
standard gain scheduling with linear interpolation, given by (25) (top),
and for the nonlinear analytical gain scheduling strategy proposed in
Theorem 1, given by (24) (bottom), for system (21) with ρ1 = 1.

resulting in the linear interpolated gain

KI(α1(t)) = α1(t)K1 +(1−α1(t))K2 (25)

A time simulation has been performed for both gain
scheduling strategies, i.e., the one proposed by Theorem 1,
which provides the nonlinear analytical gain given by (24),
and the standard linear interpolation resulting in KI given
by (25). The results are shown in Figure 2, for the initial
condition x(0) = [1 1]′, marked with ∗ in the phase portraits.
Although the system with the gain KI does not become
unstable, its performance is clearly worst than the one of
the closed-loop system with the parameter dependent gain
from Theorem 1.

It is interesting to note that, if higher rates of parameter
variation are allowed, the LMI conditions of Theorem 1
tend to force the solution W1 = W2 = . . . = WN = W ,
indicating that the closed-loop stability for fast parameter
variation requires constant Lyapunov matrices. In this case,
the scheduled state feedback control will have an almost
linear behavior with respect to α1(t), as shown in Figure 3
for the same example, with ρ1 = 100. This means Theo-
rem 1 provides a useful characterization for systems non
quadratically stabilizable through constant feedback gains,
but that admit a parameter dependent state feedback control,
such that the closed-loop system tends to be quadratically
stable. As the closed-loop quadratic stability is attained, the
scheduled gain tends to a linear parameter varying state
feedback control.

The second example (randomly generated) illustrates how
additional information about stabilizability domains can be
obtained from Theorem 1. Consider the system (1)-(2) with
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Fig. 3. Parameter dependent gain entries obtained from Theorem 1 for
system (21) with ρ1 = 100.
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Fig. 4. Stabilizability domains for the uncertain system given by (26)-
(28): bounds on the parameter time derivatives.

N = 3 vertices given by

A1 =





0.4615 0.0041 0.0952
0.7684 −0.0633 0.9556
0.1943 0.6249 0.2818



 ,B1 =





0.7652
0.7489
0.9525



 (26)

A2 =





−0.0207 0.3513 0.4003
0.8288 0.2590 0.9077
0.6369 0.1098 −0.0047



 ,B2 =





0.9274
0.4693
0.3157



 (27)

A3 =





0.4992 0.3527 0.1125
0.3698 0.7311 0.3518
0.2291 0.7293 0.3262



 ,B3 =





0.3907
0.1346
0.1496



 (28)

This system is not quadratically stabilizable. However,
Theorem 1 can provide stabilizing gains for the system with
bounds on its parameters time derivatives. Figure 4 shows
the feasibility region of conditions (6)-(7) as a function
of ρ1 and ρ2 (remembering that | α̇3(t) |≤ ρ1 + ρ2). For
instance, if the parameter α1(t) is time-invariant, that is,
ρ1 = 0, then the system (1)-(2) with vertices (26)-(28) is
stabilized by means of a parameter dependent gain obtained
through the conditions of Theorem 1 for arbitrarily high
values of ρ2. Actually, this behavior occurs until ρ1 = 11.8.
The same considerations are valid for 0 ≤ ρ2 ≤ 13.4. In
other words, this non-quadratically stabilizable system can
be stabilized by a parameter dependent state feedback gain
K(α(t)) and the closed-loop system will admit arbitrarily
high rates of change in some of its parameters.

The third example addresses the problem of structural



constrained control. Consider the system (1)-(2) with ver-
tices given by

A1 =

[

0.4886 0.1740
0.8502 −0.0006

]

, B1 =

[

0.5841
0.0812

]

;

A2 =

[

0.7794 0.8577
0.5147 −0.0392

]

, B2 =

[

0.2725
0.7584

]

(29)

and y(t) =
[

1 0
]

x(t). The aim here is to obtain an output
feedback control gain using the results of Corollary 3.
For this system, the quadratic stabilizability condition fails
to provide a fixed gain with the structure K = [k11 0]
when a block diagonal constraint as in (18) is imposed
to Z and W in the LMIs (4), but Corollary 3 yields a
parameter dependent stabilizing gain in the form K(α1(t))=
[k11(α1(t)) 0]. For instance, choosing ρ1 = 10000 one has
Z1 =

[

−69.5612 0
]

, Z2 =
[

−45.4018 0
]

and

W1 'W2 =

[

0.6066 0
0 40.4422

]

implying that, in this case, the gain (8) is affine in α1(t):
K(α1(t)) =

[

(−39.8250α1(t)−74.8416) 0
]

. Note that
this linear parameter varying output feedback gain assures
to the closed-loop system robust stability for very high
parameter variation rates, thanks to the almost constant
closed-loop Lyapunov matrix.

V. CONCLUSION

A new sufficient condition for the synthesis of gain
scheduling controllers applied to linear systems with time-
varying polytopic uncertainty is provided in terms of LMIs.
A parameter dependent Lyapunov function, which allows
to determine a parameter dependent stabilizing gain, is
obtained from the feasibility of a set of LMIs defined at
the vertices of the polytope, assuring robust stabilizability
for all uncertain parameters whose time derivatives satisfy
some given bounds. The maximum rate of variation of
the uncertain parameters can be estimated by means of
line search procedures and LMI feasibility tests. Additional
constraints can be easily incorporated, permitting to address
the problems of decentralized control or output feedback
gains. The time-varying gain scheduling is given as a
function of the time-varying uncertain parameters, supposed
to be measurable, and of a set of fixed matrices that can be
calculated and stored a priori, allowing the implementation
of real time control.
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