
LMI based Output Feedback Control of Discrete Linear
Repetitive Processes

Bartlomiej Sulikowski, Krzysztof Galkowski, Eric Rogers, David H. Owens

Abstract— Repetitive processes are a distinct class of 2D
systems (i.e. information propagation in two independent
directions) of both systems theoretic and applications interest.
They cannot be controlled by direct extension of existing
techniques from either standard (termed 1D here) or 2D
systems theory. Here we give new results on the relatively
open problem of the design of physically based control laws.
These results are for the sub-class of so-called discrete linear
repetitive processes which arise in applications areas such as
iterative learning control.

I. I NTRODUCTION

Repetitive processes are a distinct class of 2D systems of
both system theoretic and applications interest. The essential
unique characteristic of such a process is a series of sweeps,
termed passes, through a set of dynamics defined over a
fixed finite duration known as the pass length. On each
pass an output, termed the pass profile, is produced which
acts as a forcing function on, and hence contributes to,
the dynamics next pass profile. This, in turn, leads to the
unique control problem for these processes in that the output
sequence of pass profiles generated can contain oscillations
that increase in amplitude in the pass-to-pass direction.

To introduce a formal definition, letα < +∞ denote the
pass length (assumed constant). Then in a repetitive process
the pass profileyk(p), 0 ≤ p ≤ α, generated on passk
acts as a forcing function on, and hence contributes to, the
dynamics of next pass profileyk+1(p), 0 ≤ p ≤ α, k ≥ 0.

Physical examples of repetitive processes include long-
wall coal cutting and metal rolling operations (see, for
example, [1]). Also in recent years applications have arisen
where adopting a repetitive process setting for analysis has
distinct advantages over alternatives. Examples of these so-
called algorithmic applications include classes of iterative
learning control (ILC) schemes [2] and iterative algorithms
for solving nonlinear dynamic optimal control problems
based on the maximum principle [3]. In the case of ILC for
the linear dynamics case, the stability theory for so-called
differential and discrete linear repetitive processes is the
essential basis for a rigorous stability/convergence theory
for a powerful class of such algorithms.

One unique feature of repetitive processes is that it is
possible to define physically meaningful control laws for
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their dynamics. For example, in the ILC application, one
such family of control laws is composed of state feedback
control action on the current pass combined with informa-
tion ‘feedforward’ from the previous pass (or trial in the
ILC context) which, of course, has already been generated
and is therefore available for use. In the general case of
repetitive processes it is clearly highly desirable to have an
analysis setting where such control laws can be designed
for stability and/or performance. Also previous work has
shown that an LMI re-formulation of the stability conditions
for discrete linear repetitive processes leads naturally to
design algorithms to ensure closed loop stability along the
pass under a control law which explicitly makes use of the
current pass state vector — see, for example, [4], [5].

To implement such a control law will, in general, require
an observer to provide the current pass state vector com-
ponent. As an alternative, this paper shows how to use the
LMI setting to design control laws which only require pass
profile information (which has already been generated and
hence is available control action) for implementation. Note
here that LMI based methods have also been investigated as
a means of stability analysis and controller design for 2D
discrete linear systems described by the well known Roes-
ser [6] and Fornasini Marchesini [7] state space models, see,
for example, [8]. Discrete linear repetitive processes have
strong structural links with such systems class of systems
and some results can be exchanged between these classes
of linear systems. The key novelty in this paper is the use
of physically motivated output feedback control laws.

Throughout this paper, the null matrix and the identity
matrix with the required dimensions are denoted by0 and
I, respectively. Moreover,M > 0 (< 0) denotes a real
symmetric positive (negative) definite matrix.

II. BACKGROUND

Following [9], the state-space model of a discrete linear
repetitive process has the following form over0 ≤ p ≤
α, k ≥ 0

xk+1(p + 1)=Axk+1(p) +Buk+1(p) +B0yk(p)
yk+1(p)=Cxk+1(p)+Duk+1(p) +D0yk(p) (1)

Here on passk, xk(p) is then×1 state vector,yk(p) is the
m× 1 pass profile vector anduk(p) is the l × 1 vector of
control inputs.

To complete the process description, it is necessary to
specify the boundary conditions, i.e. the state initial vector
on each pass and the initial pass profile. Here no loss of
generality arises from assumingxk+1(0) = dk+1, k ≥ 0,



and y0(p) = f(p), where then × 1 vector dk+1 has
known constant entries andf(p) is anm× 1 vector whose
entries are known functions ofp over [0, α]. (For ease of
presentation, we will make no further explicit reference to
the boundary conditions in this paper.)

The stability theory [9] for linear repetitive processes
consists of two distinct concepts but here it is the stronger
of these which is required. This is termed stability along the
pass and several equivalent sets of necessary and sufficient
conditions for processes described by (1) to have this
property are known, but here it is the sufficient condition
of Theorem 1 below which will be used. A central feature
of the results in this paper is that they will show that
this sufficient condition allows us to design control laws
in a straightforward manner whereas the currently available
necessary and sufficient conditions only really allow us to
obtain conditions for stability under control action.

Define the delay operatorsz1, z2 in the along the pass
(p) and pass-to-pass (k) directions respectively as

xk(p) := z1xk(p + 1), xk(p) := z2xk+1(p) (2)

and define the following matrices from (1)

Â1 =
[

A B0

0 0

]
, B̂1 =

[
B
0

]
, (3)

Â2 =
[

0 0
C D0

]
, B̂2 =

[
0
D

]
.

Then stability along the pass (see [9] for the details) holds
if, and only if, the so-called 2D characteristic polynomial

ρ(z1, z2) := det(I − z1Â1 − z2Â2) (4)

satisfies

ρ(z1, z2) 6= 0, ∀ (z1, z2) : |z1| ≤ 1, |z2| ≤ 1 (5)

Theorem 1:[4] A discrete linear repetitive processes
described by (1) is stable along the pass if there exists
matricesP > 0 andQ > 0 satisfying the following LMI[

ÂT
1 PÂ1 + Q− P ÂT

1 PÂ2

ÂT
2 PÂ1 ÂT

2 PÂ2 −Q

]
< 0 (6)

III. LMI BASED CONTROLLER DESIGN — PREVIOUS

WORK

As noted in the introduction of this paper, the design of
control laws for 2D discrete linear systems described by
the Roesser [6] and Fornasini Marchesini [7] state space
models has received attention in the literature over the
years. A valid criticism of such work, however, is that the
structure of the control algorithms are not well founded
physically due to the fact that, for example, the concept
of a state of these systems is not uniquely defined. For
example, it is possible to define a state feedback law based
on the local or global state vectors. Also in the absence of
generalizations of well defined and understood 1D concepts,
e. g. the pole assignment problem and error actuated output
feedback control action, it has not been really possible to

formulate a control design problem beyond that of obtaining
conditions for stabilization under the control action.

The first difficulty above does not arise with discrete
linear repetitive processes. For example, it is physically
meaningful to define the current pass error as the difference,
at each point along the pass, between a specified reference
trajectory for that pass, which in most cases will be the same
on each pass, and the actual pass profile produced. Then we
can define a so-called current pass error actuated controller
which uses the generated error vector to construct the cur-
rent pass control input vector. In which context, preliminary
work, see, for example, [1], has shown that, except in a
few very restrictive special cases, the controller used must
be actuated by a combination of current trial information
and ‘feedforward’ information from the previous trial to
guarantee even stability along the pass closed-loop. Note
also here that in the ILC application area the previous trial
output vector is an obvious signal to use as feedforward
action.

In the case of the second difficulty above, previous
work [4] considered a control law of the following form
over 0 ≤ p ≤ α, k ≥ 0

uk+1(p)=K1xk+1(p)+K2yk(p) :=K

[
xk+1(p)
yk(p)

]
(7)

whereK1 andK2 are appropriately dimensioned matrices
to be designed. In effect, this control law uses feedback
of the current trial state vector, which is assumed to be
available for use. The following is one of the main results
of this previous work and establishes that (at the very least)
the LMI approach also allows controller design as opposed
to other approaches where it is only possible to get existence
type results for stability along the pass under control action.

Theorem 2:Suppose that a discrete linear repetitive pro-
cess of the form described by (1) is subject to a control law
of the form (7). Then the resulting closed loop process is
stable along the pass if there exists matricesY > 0, Z > 0,
andN such that the following LMI holds Z − Y 0 Y ÂT

1 + NT B̂T
1

0 −Z Y ÂT
2 + NT B̂T

2

Â1Y + B̂1N Â2Y + B̂2N −Y

 < 0

(8)
If (8) holds, then a stabilizingK in the control law (7) is
given by

K = NY −1 (9)

IV. PASS PROFILE ONLY BASED FEEDBACK CONTROL

In many cases the state vectorxk+1(p) may not be
available (or at best only some of its entries are directly
measurable). As in 1D systems theory, two options im-
mediately arise. These are the development of an observer
theory to estimatexk+1(p) or to consider the use of output
information only, i.e. only activate the control law with the
current and previous pass profile vectors. Of these options,
we focus on the second here as it is the one which has more
physical relevance in terms of applications.



The control law considered in this section has the follo-
wing form over0 ≤ p ≤ α, k ≥ 0

uk+1(p) = K̃1yk+1(p) + K̃2yk(p) (10)

This law is, in general, weaker than that of (7) which uses
the current pass state vector and examples are easily given
where stability along the pass can be achieved using (7)
but not (10). For example, suppose that the matrixA has
at least one eigenvalue with modulus greater than or equal
to unity. Then such an example of (1) is unstable along the
pass under a control law of the form (10) since a necessary
condition for this property (all eigenvalues of the matrix
A must have modulus strictly less than unity) cannot hold.
To show this, first note that under the application of (10)
the matrixA maps toA + BK̃1C and then make use of a
simple property of the trace of a square matrix.

Despite this drawback, it is clear that cases will arise
where (10) (or, more generally, only pass profile data) is
all that is available and in the remainder of this section we
develop an LMI based approach to the design of control
laws of the form of (10) for stability along the pass closed
loop.

Substituting the pass profile updating equation in (1)
into (10) yields (assuming the required matrix inverses
exist)

uk+1(p) = (I − K̃1D)−1Cxk+1(p) +

+(I − K̃1D)−1[K̃2 + K̃1D0]yk(p) (11)

and hence (11) can be treated as a particular case of (7)
with

K1 = (I − K̃1D)−1K̃1C

K2 = (I − K̃1D)−1(K̃2 + K̃1D0) (12)

This route may, however, encounter serious numerical dif-
ficulties (arising from the fact that (12) defines two matrix
nonlinear algebraic equations) and hence we proceed by
first rewriting these last equations to obtain

(I − K̃1D)K1 =K̃1C

(I − K̃1D)K2 =K̃2 + K̃1D0

(13)

and assume that
K1 = L1C (14)

Then

K̃1 = L1(I + DL1)−1 (15)

K̃2 = [I−L1(I+DL1)−1D]K2−L1(I+DL1)−1D0

for any L1 such thatI + DL1 is nonsingular, and we have
the following result.

Theorem 3:Suppose that a discrete linear repetitive pro-
cess of the form described by (1) is subject to a control
law of the form (10) and that (14) holds. Then the resulting
closed loop process is stable along the pass if there exists

matricesY > 0, Z > 0, X > 0 and N such that the
following LMI holds Z − Y 0 YÂT

1 +ĈTNTB̂T
1

0 −Z YÂT
2 +ĈTNTB̂T

2

Â1Y +B̂1NĈ Â2Y +B̂2NĈ −Y

 < 0

XĈ = ĈY (16)

whereÂ1, Â2, B̂1, B̂2 are defined as in Theorem 2, and

Ĉ =
[

C 0
0 I

]
, N = [N1 N2] (17)

Also if this condition holds, the controller matrices̃K1 and
K̃2 are obtained from (15), where

[L1 K2] = NX−1 (18)

andI + DL1 is nonsingular.
Proof: From (18) we have thatN = LX, L :=[

L1 K2

]
and substitution into the LMI of (16) together

with XĈ = ĈY yields

 Z − Y 0 Y ÂT
1 +Y ĈT LT B̂T

1

0 −Z Y ÂT
2 +Y ĈT LT B̂T

2

Â1Y +B̂1LĈY Â2Y +B̂2LĈY −Y

 < 0

Finally, setLĈ = K to obtain the following LMI stabili-
zation condition (i.e the result of Theorem 1 applied to the
closed loop process)

 Z − Y 0 Y (ÂT
1 + KT B̂T

1 )
0 −Z Y (ÂT

2 + KT B̂T
2 )

(Â1 + B̂1K)Y (Â2 + B̂2K)Y −Y

<0

and the proof is complete.

V. EXTENDED PASS PROFILE BASED CONTROL

The control law design algorithm given in the previous
section can be applied in the case whenm ≤ n, i.e. only
when the information content in them × 1 current pass
profile vector is sufficient to stabilize then×1 current pass
state vector. This is a somewhat restrictive limitation and
hence the question; what can be done using additional (e.g.
from more than just the previous pass) pass profile vector
information?

In the case of repetitive processes, the pass profiles
generated on all passes before the current one constitute
causal information and hence are available for control
purposes. Clearly, however, if information from more than
the previous pass profile is to be used then an obvious
objective is to use only the minimum required since this
will limit the storage required for implementation.

As a first stage of analysis in this area, we consider the
following control law which at any pointp along a given



pass is (10) augmented by an additive contribution from the
same point on the last but one pass

uk+1(p) = K̃1yk+1(p) + K̃2yk(p) + K̃3yk−1(p) (19)

which can be rewritten as

uk+1(p) =(Il − K̃1D)−1
(
K̃1Cxk+1(p)

+ [K̃2 + K̃1D0]yk(p) + K̃3yk−1(p)
) (20)

or

uk+1(p) = K1xk+1(p) + K2yk(p) + K3yk−1(p) (21)

It is also possible to ‘swap’ between these two forms of the
control law considered here. In particular, if̃K1, K̃2 and
K̃3 are known thenK1 andK2 can be obtained from (12)
andK3 from

K3 = (I − K̃1D)−1K̃3 (22)

Conversely, ifK1, K2 and K3 are given then, assuming
(14) holds,K̃1 and K̃2 can again be computed using (15)
andK̃3 from

K̃3 = [I − L1(I + DL1)−1D]K3 (23)

Using controller matricesK1, K2 andK3, the closed loop
process state space model under this form of control law is
described by

xk+1(p + 1) = (A + BK1)xk+1(p)
+ (B0 + BK2)yk(p) + BK3yk−1(p)

yk+1(p) = (C + DK1)xk+1(p) (24)

+ (D0 + DK2)yk(p) + DK3yk−1(p)

This last description is not in the form to which The-
orem 1 can be applied but it is possible to obtain an
equivalent state space model for which this is the case. Here
the route is by using the delay operators of (2) and the 2D
characteristic polynomial. In particular, apply (2) to (24)
and introduce

ρc(z1, z2) :=

det

[
I − z1Ã −z1B̃0 − z1z2F1

−z2C̃ I − z2D̃0 − z2
2F2

]
(25)

Application of appropriate elementary operations (which
leave the determinant invariant) to the right-hand side of
this last expression now yields that it can be replaced by

det

 I 0 z2I

z1F1 I − z1Ã −z1B̃0

z2F2 −z2C̃ I − z2D̃0

 (26)

where

Ã = A + BK1, B̃0 = B0 + BK2

C̃ = C + DK1, D̃0 = D0 + DK2

F1 = BK3, F2 = DK3

At this stage, the closed loop state space model has a
2D characteristic polynomial which is of the form (4) (and
therefore the result of Theorem 1 can be applied) with

Ã1 =

 0 0 0
−F1 Ã B̃0

0 0 0

 , Ã2 =

 0 0 −I
0 0 0
−F2 C̃ D̃0


Now we have the following result.
Theorem 4:Suppose that a discrete linear repetitive pro-

cess of the form described by (1) is subject to a control law
defined by (21) withK1 satisfying (14). Then the resulting
closed loop process is stable along the pass if there exist
matricesY > 0, X > 0 andZ > 0 such that Z − Y 0 YÂT

1 +ĈTNTB̂T
1

0 −Z YÂT
2 +ĈTNTB̂T

2

Â1Y +B̂1NĈ Â2Y +B̂2NĈ −Y

 < 0

XĈ = ĈY (27)

where

Â1 =

 0 0 0
0 A B0

0 0 0

 , Â2 =

 0 0 −I
0 0 0
0 C D0

 ,

B̂1 =

 0
B
0

 , B̂2 =

 0
0
D

 , Ĉ =

 I 0 0
0 C 0
0 0 I

 ,

N =
[
−N3 N1 N2

]
and it is assumed thatI +DL1 is nonsingular. Also if (27)

holds then
[−K3 L1 K2] = NX−1 (28)

Proof. SubstitutingN = LX, L := [−K3 L1 K2] and
XĈ = ĈY into the LMI of (27) yields Z − Y 0 YÂT

1 +Y ĈTLTB̂T
1

0 −Z YÂT
2 +Y ĈTLTB̂T

2

Â1Y +B̂1LĈY Â2Y +B̂2LĈY −Y

<0

Now setLĈ = K to obtain the following LMI stabilization
condition (i.e. the result of Theorem 1 applied to the closed
loop process) Z − Y 0 Y (ÂT

1 + KT B̂T
1 )

0 −Z Y (ÂT
2 + KT B̂T

2 )
(Â1 + B̂1K)Y (Â2 + B̂2K)Y −Y

<0

and the proof is complete.
Given the controller matricesK1,K2 and K3 from this

last result, the corresponding̃K1 andK̃2 can be computed
using (15) andK̃3 using (23).

VI. A LTERNATIVE PASS PROFILE BASEDCONTROL

In the previous section we used a control law which
included a contribution from the last but one pass profile.
In this section, we investigate the use of delayed current



pass profile information in the control law. The particular
control law investigated is given by

uk+1(p) = K̃1yk+1(p) + K̃2yk(p) + K̃3yk+1(p− 1) (29)

or

uk+1(p) = K1xk+1(p) + K2yk(p) + K3yk+1(p− 1) (30)

where

K1 =(I − K̃1D)−1K̃1C

K2 =(I − K̃1D)−1(K̃2 + K̃1D0)

K3 =(I − K̃1D)−1K̃3

(31)

By again making the assumption thatK1 = L1C we have
that

K̃1 = L1(I + DL1)−1 (32)

K̃2 =[I−L1(I+DL1)−1D]K2−L1(I+DL1)−1D0

K̃3 = [I − L1(I + DL1)−1D]K3

The closed loop process now is given by

xk+1(p + 1) = (A + BL1C)xk+1(p)
+ (B0 + BK2)yk(p) + BK3yk+1(p− 1)

yk+1(p) = (C + DL1C)xk+1(p)
+ (D0 + DK2)yk(p) + DK3yk+1(p− 1)

(33)

This last description is again not in the form to which
Theorem 1 can be applied but, by following the method of
the previous section, it is possible to obtain an equivalent
state space model for which this is the case. In particular,
apply (2) to (24) to obtain

xk(p) = z1(A + BL1C)xk(p)

+ z1z2(B0 + BK2)yk(p) + z2
1BK3yk(p)

yk(p) = (C + DL1C)xk(p)

+ z2(D0 + DK2)yk(p) + z2
1DK3yk(p)

(34)

and introduce
ρc(z1, z2) :=

det

[
I − z1Ã −z1z2B̃0 − z2

1BK3

−C̃ I − z2D̃0 − z2
1DK3

]
(35)

which is obviously equivalent to replacing the right-hand
side by

det

[
I − z1Ã −z2B̃0 − z1BK3

−z1C̃ I − z2D̃0 − z2
1DK3

]
(36)

Application of appropriate elementary operations (which
leave the determinant invariant) to the right-hand side of
this last expression now yields that it can be replaced by

det

 I − z1Ã 0 −z2B̃0 − z1BK3

0 I −z1DK3

−z1C̃ −z1I I − z2D̃0

 (37)

where

Ã = A + BL1C, B̃0 = B0 + BK2

C̃ = C + DL1C, D̃0 = D0 + DK2

and

Ã1 =

 Ã 0 BK3

0 0 DK3

C̃ I 0

 , Ã2 =

 0 0 B̃0

0 0 0
0 0 D̃0

 (38)

Now we can replace the right-hand side of the expression
definingρc(z1, z2) by

det(I − z1Ã1 − z2Ã2)

where

Ã1 = A1 + B1K

Ã2 = A2 + B2K
(39)

or

A1 =

 A 0 0
0 0 0
C I 0

 , A2 =

 0 0 B0

0 0 0
0 0 D0

 ,

B1 =

 B 0 B
0 0 D
D 0 0

 , B2 =

 0 B 0
0 0 0
0 D 0

 (40)

and

K =

 K1 0 0
0 0 K2

0 0 K3

 (41)

Theorem 1 is now applicable and we have the following
result.

Theorem 5:Suppose that a discrete linear repetitive pro-
cess of the form described by (1) is subject to a control law
defined by (30) withK1 satisfying (14). Then the resulting
closed loop process is stable along the pass if there exist
matricesY > 0, X = diag(X1, X2, X3) > 0 and Z > 0
such that Y − Z 0 ĈTNTBT

1 +YAT
1

0 −Z ĈTNTBT
2 +YAT

2

A1Y +B1NĈ A2Y +B2NĈ −Y

<0, (42)

XĈ = ĈY

whereA1, A2, B1, B2 are given by (40)

Ĉ =

 C 0 0
0 I 0
0 0 I

 , N =

 N1 0 0
0 0 N2

0 0 N3

 (43)

and  L1 0 0
0 0 K2

0 0 K3

 = NX−1 (44)

Proof. This is virtually identical to that of Theorem 4 and
hence the details omitted here.



VII. N UMERICAL EXAMPLE

Consider the case of (1) defined by

A =

 0.06 −1.62 0.0
−0.98 0.28 −2.89
0.03 2.66 2.63

, B=

 −1.43 −2.13
1.23 1.48
2.91 −2.18

,

B0=

 0.04 0.0
0.0 0.0
0.0 1.04

, C=
[
−1.40 −0.03 −2.70
0.52 0.0 −2.15

]
,

D=
[
−1.64 −0.52
−0.71 0.11

]
, D0=

[
−0.28 −0.31
1.15 −0.31

]
In this case, the design algorithm of Theorem 3 is successful
with X = diag(X1, X2), where

X1 =

[
606209.8877 −862471.6775
−862471.6775 1346539.1315

]

X2 =

[
5077595.6297 −2067002.4926
−2067002.4926 11684609.2832

]
and

N =

[
−178963.77 260104.7 439963.13 −2530866.6

4116.45 −35496.08 −360858.98 2093081.41

]

whereY andZ are omitted due to space limitations. Then
the matricesL1 andK2 of (18) are

L1 =

[
−0.2299 0.0459
−0.3462 −0.2481

]
,

K2 =

[
−0.0016 −0.2169
0.002 0.1795

]

which yield the controller (10) matrices

K̃1 =

[
−0.1523 0.0576
−0.2020 −0.2524

]
,

K̃2 =

[
−0.1103 −0.2163
0.2363 0.1355

]

VIII. C ONCLUSIONS

One unique feature of repetitive processes in comparison
to other classes of 2D systems is that it is possible define
physically meaningful control laws for them. It is hence
essential to have an analysis setting where such control laws
can be designed for stability and/or performance.

Previous work has shown that, of the currently available
tools, it is only an LMI based setting can meet this last
specification. In this paper we have continued the develop-
ment of control laws based on this analysis setting which
critically remove the need to use current pass state feedback
information.
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