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Abstract— Repetitive processes are a distinct class of 2D their dynamics. For example, in the ILC application, one
systems (i.e. information propagation in two independent gych family of control laws is composed of state feedback
directions) of both systems theoretic and applications interest. control action on the current pass combined with informa-
They cannot be controlled by direct extension of existing .. , . S
techniques from either standard (termed 1D here) or 2D tion feedforwarc_:l from the previous pass (or trial in the
systems theory. Here we give new results on the relatively ILC context) which, of course, has already been generated
open problem of the design of physically based control laws. and is therefore available for use. In the general case of
These results are for the sub-class of so-called discrete linear repetitive processes it is clearly highly desirable to have an
repetitive processes which arise in applications areas such as analysis setting where such control laws can be designed
iterative learning control. . .

for stability and/or performance. Also previous work has

. INTRODUCTION shown that an LMI re-formulation of the stability conditions

Repetitive processes are a distinct class of 2D systemsf discrete linear repetitive processes leads naturally to
both system theoretic and applications interest. The essenfi@sign algorithms to ensure closed loop stability along the
unique characteristic of such a process is a series of sweep@ss under a control law which explicitly makes use of the
termed passes, through a set of dynamics defined overcdrent pass state vector — see, for example, [4], [5].
fixed finite duration known as the pass length. On each T0 implement such a control law will, in general, require
pass an output, termed the pass profile, is produced whiéf observer to provide the current pass state vector com-
acts as a forcing function on, and hence contributes t§onent. As an alternative, this paper shows how to use the
the dynamics next pass profile. This, in turn, leads to theM! setting to design control laws which only require pass
unigue control problem for these processes in that the outp@fofile information (which has already been generated and
sequence of pass profiles generated can contain oscillatidHaCe is available control action) for implementation. Note
that increase in amplitude in the pass-to-pass direction. here that LMI based methods have also been investigated as

To introduce a formal definition, let < +oo denote the @ Means of stability analysis and controller design for 2D
pass length (assumed constant). Then in a repetitive procétgcrete linear systems described by the well known Roes-
the pass profiley,(p), 0 < p < a, generated on pass S€r [6] and Fornasini Marchesini [7] state space models, see,
acts as a forcing function on, and hence contributes to, th@r €xample, [8]. Discrete linear repetitive processes have
dynamics of next pass profilg,,1(p), 0 <p < a, k>0. Strong structural links with such systems class of systems

Physical examples of repetitive processes include |on@.nd some results can be exchanged between these classes
wall coal cutting and metal rolling operations (see, fof linear systems. The key novelty in this paper is the use
example, [1]). Also in recent years applications have arise?f Physically motivated output feedback control laws.
where adopting a repetitive process setting for analysis has Ihroughout this paper, the null matrix and the identity
distinct advantages over alternatives. Examples of these $Batrix with the required dimensions are denotedobgnd
called algorithmic applications include classes of iterativé. respectively. Moreover)/ > 0 (< 0) denotes a real
learning control (ILC) schemes [2] and iterative algorithm$ymmetric positive (negative) definite matrix.

Lor sglvinghnonlinear dynamicI 0{)3t]imal r(1:ontrol prfoblgr?s Il. BACKGROUND
ased on the maximum principle [3]. In the case of ILC for . . .
the linear dynamics case, the stability theory for SO'Ca"ePe:):eotlilt(i)\\/,:np?rcg?:]e;ggehztsatti-spf?)ﬁgwni]nogdefgronfw ao\(,j(;irete !near
differential and discrete linear repetitive processes is tho? b >0 =P =
essential basis for a rigorous stability/convergence theory ~ —
for a powerful class of such algorithms. zr1(p + 1)=Azi41(p) +Bug11(p) +Boyr(p)
One unique feature of repetitive processes is that it is o1 (p) = C2ps1 () +Dttger1 (p) +Doyie(p

1
possible to define physically meaningful control laws for ) )
Here on pas$, zx(p) is then x 1 state vectory(p) is the
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and yo(p) = f(p), where then x 1 vector di+1 has formulate a control design problem beyond that of obtaining
known constant entries anfip) is anm x 1 vector whose conditions for stabilization under the control action.
entries are known functions of over [0, «]. (For ease of The first difficulty above does not arise with discrete
presentation, we will make no further explicit reference tdinear repetitive processes. For example, it is physically
the boundary conditions in this paper.) meaningful to define the current pass error as the difference,
The stability theory [9] for linear repetitive processesat each point along the pass, between a specified reference
consists of two distinct concepts but here it is the strongérajectory for that pass, which in most cases will be the same
of these which is required. This is termed stability along then each pass, and the actual pass profile produced. Then we
pass and several equivalent sets of necessary and sufficiean define a so-called current pass error actuated controller
conditions for processes described by (1) to have thighich uses the generated error vector to construct the cur-
property are known, but here it is the sufficient conditiorrent pass control input vector. In which context, preliminary
of Theorem 1 below which will be used. A central featurevork, see, for example, [1], has shown that, except in a
of the results in this paper is that they will show thaffew very restrictive special cases, the controller used must
this sufficient condition allows us to design control lawsbe actuated by a combination of current trial information
in a straightforward manner whereas the currently availabknd ‘feedforward’ information from the previous trial to
necessary and sufficient conditions only really allow us tguarantee even stability along the pass closed-loop. Note

obtain conditions for stability under control action. also here that in the ILC application area the previous trial
Define the delay operators, z; in the along the pass output vector is an obvious signal to use as feedforward
(p) and pass-to-pas&) directions respectively as action.

. . o 2 In the case of the second difficulty above, previous
or(p) = awn(p+ 1), 2n(p) = 222r01(p) @) oy [4] considered a control law of the following form

and define the following matrices from (1) over0<p<a, k>0
i,- |4 B g B u =Kz +K ::K[”’““(p)] 7
A = [ 0 0 ], B, = { 0 }7 3) k+1(p) 1241 (P) + K29k (p) i (p) (@)
-~ 0 0 ~ 0 where K, and K, are appropriately dimensioned matrices
A = C Dy |’ By = D |- to be designed. In effect, this control law uses feedback

of the current trial state vector, which is assumed to be
dgvailable for use. The following is one of the main results
of this previous work and establishes that (at the very least)
p(z1, 22) := detf(] — 21111 _ ZQEQ) (4) the LMI approach also allows controller design as opposed
to other approaches where it is only possible to get existence
type results for stability along the pass under control action.
p(z1,22) # 0,V (21,22) : [21] <1, [z2] <1 (5) Theorem 2:Suppose that a discrete linear repetitive pro-
cess of the form described by (1) is subject to a control law
Theorem 1:[4] A discrete linear repetitive processesof the form (7). Then the resulting closed loop process is
described by (1) is stable along the pass if there existjaple along the pass if there exists matriges 0, Z > 0,
matricesP > 0 and @ > 0 satisfying the following LMI and N such that the following LMI holds

Then stability along the pass (see [9] for the details) hol
if, and only if, the so-called 2D characteristic polynomial

satisfies

ATPA +Q-P ATPA, <0 Z-Y 0 YAT + NTBT
ATPA, ATPA, - Q 0 _ —Z_ YAT+NTBf | <0
[1l. LMI BASED CONTROLLERDESIGN— PREVIOUS AY + BN AY + BoN -Y 8
WORK 8

i ) , , ) If (8) holds, then a stabilizing< in the control law (7) is
As noted in the introduction of this paper, the design OE;iven by

control laws for 2D discrete linear systems described by K —=Ny-! )

the Roesser [6] and Fornasini Marchesini [7] state space

models has received attention in the literature over thdV.: PASSPROFILE ONLY BASED FEEDBACK CONTROL
years. A valid criticism of such work, however, is that the In many cases the state vectof.;(p) may not be
structure of the control algorithms are not well foundedivailable (or at best only some of its entries are directly
physically due to the fact that, for example, the concepnheasurable). As in 1D systems theory, two options im-
of a state of these systems is not uniquely defined. Fonediately arise. These are the development of an observer
example, it is possible to define a state feedback law bas#tkory to estimate:;;1(p) or to consider the use of output
on the local or global state vectors. Also in the absence a@fformation only, i.e. only activate the control law with the
generalizations of well defined and understood 1D conceptsjrrent and previous pass profile vectors. Of these options,
e. g. the pole assignment problem and error actuated outpué focus on the second here as it is the one which has more
feedback control action, it has not been really possible fohysical relevance in terms of applications.
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The control law considered in this section has the follomatricesY > 0, Z > 0,X > 0 and N such that the
wing form over0 <p < a, k>0 following LMI holds

k41(p) = K1y (p) + Koyi (p) (10) Z-Y 0 YAT +CTNTBT

This law is, in general, weaker than that of (7) which use$ ~ o —Z YA; +CTNTBy | <0

the current pass state vector and examples are easily gi 1Y+BINC AY +BNC —Y

where stability along the pass can be achieved using (7) XC=Cy (16)

but not (10). For example, suppose that the mattihas

at least one eigenvalue with modulus greater than or equéhereAr, A,, By, B, are defined as in Theorem 2, and

to unity. Then such an example of (1) is unstable along the R C 0

pass under a control law of the form (10) since a necessary C= [ 0 I

condition for this property (all eigenvalues of the matrix

A must have modulus strictly less than unity) cannot holda|so if this condition holds, the controller matricég, and

To show this, first note that under the application of (10), are obtained from (15), where

the matrix A maps toA + BK10 and then make use of a

simple property of the trace of a square matrix. [y Ko]=NX"1 (18)
Despite this drawback, it is clear that cases will arise

where (10) (or, more generally, only pass profile data) i@"d{ + DL1 is nonsingular.

all that is available and in the remainder of this section wE"0f: From (18) we have thatv. = LX, L :=

develop an LMI based approach to the design of contral K> | and substitution into the LMI of (16) together

laws of the form of (10) for stability along the pass cIosed&’V'th XC = CY yields

} , N=[N1 Ng] (17)

loop.
Substituting the pass profile updating equation in (1 B o> AT 7T BT
into (10) yields (assuming the required matrix inverse Z-Y 0 Y4}+YQTLT§}
exist) R e YAS+YC L* By | <0
A1 Y+BLCY AY+BoLCY -Y

w1 (p) = = K1 D) Cona0) + Finally, setL.C' — K to obtain the following LMI stabil
R DR . FD 17y Finally, setLC = K to obtain the following stabili
+ 1D)7 s + Ko Dolyk (p) (1) ation condition (i.e the result of Theorem 1 applied to the

and hence (11) can be treated as a particular case of Ctpsed loop process)

with
K, = (I-K.D)'K.C Z-Y 0 V(AT + KTBT)
~ ~ ~ T T pT
Ky = (I—K\D) '(K,+ K,Dy) (12) 0 2 V(A3 + K'By) | <0
(A1 + B1K)Y  (Az + BoK)Y Y

This route may, however, encounter serious numerical dif-
ficulties (arising from the fact that (12) defines two matrix@nd the proof is complete.
nonlinear algebraic equations) and hence we proceed by

first rewriting these last equations to obtain V. EXTENDED PASS PROFILE BASED CONTROL
~ ~ The control law design algorithm given in the previous
(- Ile)Kl :1510 _ (13) section can be applied in the case when< n, i.e. only
— K o =K> 1Do when the information content in x 1 current pass
I - K\D)Ky =K, + KD hen the inf t tent in ther x 1 tp
profile vector is sufficient to stabilize thex 1 current pass

and assume that state vector. This is a somewhat restrictive limitation and

K =LC (14 hence the guestion; what can be done using additional (e.g.

Then from more than just the previous pass) pass profile vector
information?

K, = Liy(I+DLy)™! (15) In the case of repetitive processes, the pass profiles

K, = [[—Ly(I+DLy) DKy~ Ly (I+DLy)" Dy generated on all passes before the current one constitute
causal information and hence are available for control
for any L,; such that/ + DL, is nonsingular, and we have purposes. Clearly, however, if information from more than
the following result. the previous pass profile is to be used then an obvious
Theorem 3:Suppose that a discrete linear repetitive proebjective is to use only the minimum required since this
cess of the form described by (1) is subject to a controkill limit the storage required for implementation.
law of the form (10) and that (14) holds. Then the resulting As a first stage of analysis in this area, we consider the
closed loop process is stable along the pass if there exidtdlowing control law which at any poinp along a given
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pass is (10) augmented by an additive contribution from the At this stage, the closed loop state space model has a
same point on the last but one pass 2D characteristic polynomial which is of the form (4) (and

~ ~ ~ therefore the result of Theorem 1 can be applied) with
ug+1(p) = K1ykt1(p) + Kayk(p) + Kzyr—1(p)  (19)

which can be rewritten as 0 0 0 0 0 I
u =(I, - K;D)" ' (K,Cx Ai=| -F1 A By |, A2= 0 0 0
palr) = o) ( 1 () (20) 0 0 O -F, C Dy

+ [K2 + K1 Dolyw(p) + K3y’“_1(p)) Now we have the following result.

or Theorem 4:Suppose that a discrete linear repetitive pro-
cess of the form described by (1) is subject to a control law
ur1(p) = K (p) + Koy (p) + Kaye—1(p) - (21)  gefined by (21) withi, satisfying (14). Then the resulting
It is also possible to ‘swap’ between these two forms of thelosed loop process is stable along the pass if there exist
control law considered here. In particular, if;, K, and ~matricesY” >0, X >0 andZ > 0 such that

é(rf,dz};e If(rrcl)(:;/vn thenk; and K> can be obtained from (12) -y 0 YA1T+CTNTBlT
3 - - 0 -z YAT+CTNTBY | <0
K= (I - K\D)'K3 (22) |AY+BINC AY+B,NC -Y
Conversely, if Ky, K, and K3 are given then, assuming XC=Cy (27)
(14) holds,K; and K, can again be computed using (15)Where
and K3 from
N R 00 0 R 0 0 —I
Ks=1[I—Li(I+DL) 'D|K; (23) Ai=|0 A By |,A=|0 0 0 |,
0 0 O 0 C Dy
Using controller matrices(;, K, and K3, the closed loop
. . 0 0 I 0 O
process state space model under this form of control lawisg _ | 5 | 5,- | o =10 ¢ o
described by 0| D |’ o0 1]
Bep(p+1) = (A+ BK1)zgsa(p) N=[-N N M|
+ (Bo+ BK2)yx(p) + BK3yk—1(p) and it is assumed thdt+ DL, is nonsingular. Also if (27)
yr+1(p) = (C+ DKy)zps1(p) (24) holds then
+ (Do + DK2)yr(p) + DK3yr—1(p) [~K3 Ly Kol = NX™ (28)
Proof. SubstitutingN = LX, L := [-K3 L; K»] and
This last description is not in the form to which The-x© = Cy into the LMI of (27) yields
orem 1 can be applied but it is possible to obtain an R L
equivalent state space model for which this is the case. Hgre Z —Y 0 YAT +YCTLTBT
the route is by using the delay operators of (2) and the 2 0 -z YAT+YCTLTBT | <0
characteristic polynomial. In particular, apply (2) to (24) A,y + B,LCY A,Y +BoLCY _y
and introduce
pe(z1,22) == Now setLC = K to obtain the following LMI stabilization

~ - condition (i.e. the result of Theorem 1 applied to the closed
I— ZlA 72130 — 2122F1

det 14 (25) loop process)
—ZQC I— ZQDO — Z2F2 N -
Z-Y 0 Y (AT + KTBT)
Application of appropriate elementary operations (which 0 _Z Y(A\g_'_KTB\g) <0
leave the determinant invariant) to the right-hand side f@l " §1K)Y (ﬁg n §2K)Y _y
this last expression now yields that it can be replaced b
I 0 ol and .the proof is complete. . .
det | 2 F, I—2A —2Bo (26) Given the controller matrice&’;, K, and K3 from this
. ~ last result, the correspondinfg; and K> can be computed
2fy —=mC I—2D using (15) andk using (23).

where
VI. ALTERNATIVE PASS PROFILE BASED CONTROL

A=A+ BKy, Bo=Bo+ BK, In the previous section we used a control law which
C=C+ DKy, Dy = Do+ DKs included a contribution from the last but one pass profile.
Fy = BK3, Fs = DKj3 In this section, we investigate the use of delayed current
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pass profile information in the control law. The particulaiwhere

control law investigated is given by A At BL.C B — Bot BE
=A+ 10, b = Do + 2

wer1(p) = K1yra1(p) + Kaye(p) + Ksyrr1(p — 1) (29) C =C+ DL,C, Dy = Dy + DK>
or and
ug+1(p) = K1zk41(p) + Koy (p) + Ksyrt1(p — 1) (30) A 0 BK; 0 0 B
where Aj=1]0 0 DKs |, A= [ 00 0 (38)
- ~ I D
K =(I — K,D)"'K,C ¢ 0 00 Do
Ky =(1 - f(lD)*l(f(g 4 fﬁDo) (31) N0\_/v we can replace the right-hand side of the expression
~ ~ defining p.(z1, z2) by
Ks=(I - KiD) 'K3 N N
By again making the assumption th&t = L;C we have detl — 2141 — 2245)
that where
Ky =L+ DLy)™ " (32) A, = A + B K 39)
Ko=[I—-Ly(I+DLy) 'D|Ky—Ly(I+DLy) ' Dy Ay = Ay + BoK
K3 =[I—Li(I+ DL1) ' D]K; or
The closed loop process now is given by A 0 0 0 0 By
Zpr1(p+1) = (A4 BL1C)xgi1(p) A= g ? 8 = 8 8 lg) ,
0
+ (Bo + BK>2)yk(p) + BK3yk+1(p — 1) B 0 B 0 B 0 (40)
Yk+1(p) = (C+ DL C)xp11(p) Bi=|0 0 D|,By=|0 0 0
+ (Do + DEK2)yk(p) + DK3yp4a1(p — 1) D 0 0 0 D 0
(33)
and
This last description is again not in the form to which Ky 0 0
Theorem 1 can be applied but, by following the method of K=| 0 0 K, (41)
the previous section, it is possible to obtain an equivalent 0 0 K;

state space model for which this is the case. In particular

apply (2) to (24) to obtain Theorem 1 is now applicable and we have the following

result.

zi(p) = 21(A+ BL1C)zi(p) Theorem 5:Suppose that a discrete linear repetitive pro-

+ z122(Bo + BKQ) k(D) + 22 BK3yi(p) cess of the form described by (1) is subject to a control law
ye(p) = (C + DL1C)a(p) (34)  defined by (30) withk; satisfying (14). Then the resulting

9 closed loop process is stable along the pass if there exist
+22(Do + DE2)yi(p) + 21 DEsyi(p) matricesY > 0, X = diag(X1, X2, X3) >0andZ > 0
and introduce such that
pelz1;22) = Y -7 0 CTNTBY +YAT
gt | [ =214 —z212By — 2BK; (35) 0o —Z  CTNTBI+YAY |<0, (42)
-C I — 2Dy — Z%DKg A1Y+BiNC AyY +ByNC -Y
XC=CY

which is obviously equivalent to replacing the right-hand
side by where A,, A, By, B, are given by (40)

o [ [-2A  —%By -« BK,s ] (36) C 00 ] { N, 00
—Zlc I - ZQDO - Z%DKg = 0 I O 5 N = 0 0 N2 (43)
I . . . 0 0 I 0 0 N
Application of appropriate elementary operations (which
leave the determinant invariant) to the right-hand side aind
this last expression now yields that it can be replaced by Ly 0 0
~ N 0 0 Ky | =NX"! (44)
I - ZlA 0 —ZQB() — ZlBKg 0 0 K3
det 0 1 —z1DKj5 (37)  Proof. This is virtually identical to that of Theorem 4 and
—5C =zl I — 2Dy hence the details omitted here.
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VIl. NUMERICAL EXAMPLE

Consider the case of (1) defined by

0.06 —1.62 0.0 ~1.43 —2.13
A=|-098 028 289, B=| 123 148 |,
0.03 266  2.63 291 —2.18 3]
B 00'004 8'8 C_[1.40 —0.03 2.70}
0— . . ) - o ) A
00 104 052 0.0 2.15 [4
~1.64 —0.52 -0.28 —0.31
D‘{o.n 0.11 } DO_[ 1.15 0.31]

[5]
In this case, the design algorithm of Theorem 3 is successful

with X = diag(X1, X5), where (6]

|

439963.13 —2530866.6
—360858.98 2093081.41

606209.8877
—862471.6775

—862471.6775

Xi = { 1346539.1315

|

—178963.77 260104.7
4116.45  —35496.08

(71

5077595.6297
—2067002.4926

—2067002.4926
11684609.2832

- (8]

Xo

and [9]

N

| |

whereY and Z are omitted due to space limitations. Then
the matricesl; and K, of (18) are

L. | —02299  0.0459
1= —0.3462 —0.2481 |’

o, — | —0.0016 —0.2169
2= 0.002 0.1795

which yield the controller (10) matrices

o[ —01523  0.0576
1= —0.2020 —0.2524 |°
7, — | —0.1103 —0.2163

27 0.2363  0.1355

VIIl. CONCLUSIONS

One unique feature of repetitive processes in comparison
to other classes of 2D systems is that it is possible define
physically meaningful control laws for them. It is hence
essential to have an analysis setting where such control laws
can be designed for stability and/or performance.

Previous work has shown that, of the currently available
tools, it is only an LMI based setting can meet this last
specification. In this paper we have continued the develop-
ment of control laws based on this analysis setting which
critically remove the need to use current pass state feedback
information.
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