Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004

ThAO01.4

Practical Application of Control Theory to Web Services *

Tarek Abdelzaher, Ying Lu, Ronghua Zhang

Department of Computer Science
University of Virginia
Charlottesville, VA 22904
{zaheryl8c,rz5b} @cs.virginia.edu

Abstract

This tutorial describes experiences with applying a
control theoretical approach to achieving performance
guarantees in Web servers, with emphasis on delay con-
trol. A model for the server is formulated and trans-
lated into a control problem formulation. Limitations of
the control theoretic approach are identified that arise
due to system non-linearities and modeling inaccura-
cies. Solutions are proposed that augment the feed-
back control framework with elements of scheduling and
queueing theory. The theoretical results and QoS con-
trol loops presented by the authors are implemented in
a middleware package, called ControlWare, which pro-
vides the software mechanisms and interfaces that allow
control of real server performance. Implementation and
performance of ControlWare is described.

1 Introduction

Feedback control theory has recently been applied for
performance control in several Web-based applications
to achieve quality of service (QoS) guarantees. The fun-
damental reason feedback control theory is applicable
in the computing domain is the fact that performance of
computing services is tightly related to the status of var-
ious systems queues, such as the CPU scheduling queue
and socket queues. At high load, these queues act as in-
tegrators of (request) flows, and hence can be described
by difference equation models amenable to a control-
theoretical analysis. Response time and throughput are
two of the most important performance metrics in In-
ternet services. Acceptable performance can be dis-
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rupted by several factors the most common of which is
system overload. To reduce response time or increase
throughput, the fundamental manipulated variable in the
computing system is the allocation of resources, such
as CPU and network bandwidth, to computing tasks.
Resource allocation determines how fast requests are
served at different parts of the system, which is equiv-
alent to manipulating (request) flows.

This paper presents a brief tutorial on the perfor-
mance control problem in contemporary Internet ser-
vices. Generally, server performance control problems
can be divided into rate control problems, delay control
problems, and ratio control problems. The former cate-
gory is the easiest, as it typically results in linear control
loops. In contrast, delay control loops offer nonlinear
behavior. The non-linearity is due to the inverse rela-
tion between flow and delay, which invariably arises in
any control loop of a time-related metric. Nonlinearities
also arise when the required performance is expressed in
relative form. For example, it may be required that the
service rate of premium clients be double that of basic
clients in some server installation. In this case, a ratio
appears in the control loop, which causes non-linear be-
havior.

In order to accommodate software non-linearities,
feedforward control has been used to keep the system in
the neighborhood of an operating point around which it
can be linearized. Feedforward control requires a model
that predicts the effect of system inputs on its perfor-
mance. Several theoretic foundations can be brought to
bear for such prediction, including real-time scheduling
theory and queueing theory. Since the feedforward con-
troller keeps the system around the operating point, a
linearized small-deviation model becomes sufficient for
purposes of feedback control. Moreover, the feedback
contoller eliminates the need for accuracy in feedfor-
ward models. This tutorial describes several examples of
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the aforementioned synergistic use of feedforward pre-
diction in combination with feedback control in Internet
servers.

In addition to modeling and control aspects, some
practical implementation aspects must be considered in
the design of performance control loops. An important
practical consideration in server performance control is
that application source code is not always available,
which makes it difficult to instrument the application
with performance control loops. This tutorial describes a
non-intrusive approach that allows retrofitting feedback
control into the software system without changing ap-
plication code. Another practical deployment issue is
that successful application of feedback control to soft-
ware systems requires expertise in both control theory
and software design. Hence, control engineers and sys-
tem programmers must communicate to design and im-
plement the control loop. This requirement for interdis-
ciplinary teaming is a challenge to deployment. To solve
this challenge, we describe a middleware service, called
ControlWare, that allows modular composition of soft-
ware performance control loops in a way that isolates
the control engineer from the systems programmer. In
this framework, the software programmer provides sen-
sors and actuators that interface to the target application,
while providing a standard API to the controller. The
control engineer then designs a controller without con-
sideration to the implementation and semantics of sen-
sors and actuators. ControlWare provides the means for
integrating plug-and-play sensors, actuators, and con-
trollers into performance control loops for different soft-
ware performance control problems.

The rest of this paper is organized as follows. Sec-
tion 2 describes the basic server model. Section 3
quickly describes the simplest (linear) performance con-
trol loop. Section 4 describes performance control
and the use of prediction to alleviate non-linearities.
Practical considerations in implementing the feedback
schemes are introduced in Section 5. Related work for
further reading is summarised in Section 6. The paper
concluses with Section 7.

2 Basic Server Model

We begin the tutorial by elaborating on the basic server
model. Consider a high-performance server, such as
one used for hosting popular commercial web sites.
Such a server can typically be approximated by a lig-
uid task model in which the progress of requests through
server queues is represented by a fluid flow. A detailed
description of Web server internals and their control-

theoretic model is found in [6]. Briefly, the server is
composed of several stages of processing. The service
rate, dNy(t)/dt, of stage k, defines the amount of flow
through that stage, where N () is the total number of
requests served by this stage by time ¢. The server
queues up requests in several queues, shown in Fig-
ure 1(a). These queues include the CPU ready queue,
the socket accept queue, the disk I/O queue and network
output queue. They can be modeled as capacities that
accumulate the corresponding flows. The number of re-
quests queued at stage k, denoted Vj, is a quantity akin
to volume, given by Vj, = fioo(Fm — Fy)dt, where
F}, is the service rate of stage k (i.e., F, = dNi(t)/dt)
and Fj, is the request arrival rate to that stage. Queues
also offer points at which flows, F};, can be manipulated.
Figure 1(b) depicts the server from a control perspec-
tive where capacities are represented by water tanks.
Observe that “valves” in Figure 1(b) represent points
of control (i.e., actuators, which manipulate the service
rates F},). We assume in this analogy that flow through
the valve depends only on valve opening and not on the
liquid level. Thus, the arrangement is perhaps more akin
to a pump.

A performance feedback control loop typically ma-
nipulates one or more of the valves in Figure 1(b). In
many cases, only one of the aforementioned queues is
the bottleneck. Hence, the system is most effectively
controlled by manipulating the valve associated with
that bottleneck. Manipulating the valve can typically
be done in one of two ways. The first is to change the
amount of resources allocated to the request flow. For
example, a larger fraction of the CPU can be allocated
to a particular client class using appropriate operating
systems mechanisms. Consequently, these requests are
served faster (i.e., F} is increased). Alternatively, the
server can change the amount of work needed per re-
quest. For example, it might substitute high-resolution
images with low-resolution ones, that take less resources
to serve. From a modeling perspective, this actuator has
a gain that describes the relation between actuator input
and the corresponding flow F.

To close the loop, performance sensors must be em-
ployed. These sensors measure the actual value of the
performance metric controlled. For example, in a loop
controlling response-time, the server might time-stamp
requests when they arrive and when they have been
served completely, then average the differences over a
window of choice. This average will constitute a de-
lay sensor. The most important performance metrics in
Internet servers can be categorized based on how they
relate to time. We call them time-based, rate-based, or
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ratio based, depending on whether they are measured in
units of time (e.g., seconds), inverse units of time (e.g.,
requests per second), or are unitless (ratio metrics). In
the next section, we shall focus on rate and delay con-
trol as examples, offering various options for handling
the non-linear behavior of the delay control loop.

3 Rate Control

Consider a server that supports some actuation mecha-
nism that can influence the processing rate (referred to
as server speed in the sequel) of the incoming web re-
quests. Let us denote by C, the average number of re-
source cycles required to process a typical request. The
actual execution time of the request is then given by %,
where ( is the current server speed. Server speed can be
changed by techniques such as dynamic voltage scaling
(DVS), or scheduling algorithms where only a fraction
of CPU capacity is allocated to the server.

An example of a rate control loop is one that con-

trols server utilization. Consider a server in which a con-
trolled fraction of capacity must be allocated to a given
class of clients. The objective is to control the rate at
which clients are admitted such that the desired utiliza-
tion is achieved for the class under consideration. This
loop is generally linear in that the utilization is propor-
tional to the number of admitted clients. The only dy-
namics in this loop come from the sampling delay and
from the accumulative effect that relates flow to utiliza-
tion. Utilization, measured as an average load over a
given time interval, is proportional to the integral of the
difference between the input and output flows. A stan-
dard P or PI controller is typically sufficient to maintain
utilization at a desired value. This linearity and simplic-
ity is characteristic of rate control loops in computing
systems. These loops will thus not be covered any fur-
ther in this tutorial.

4 Delay Control

Delay is inversely proportional to flow, which intro-
duces non-linear behavior in control loops. One way
to deal with the nonlinearity is to use feedforward con-
trol in combination with feedback control as mentioned
in the introduction. The purpose of feedforward control
is to reduce system excursions away from the operat-
ing point, hence making it possible to apply a linearized
model in the neighborhood of the operating point.

In addition to the standard feedback loop, a feedfor-
ward control action, firy, is computed from the refer-
ence delay and information regarding the past arrival
pattern. This feedforward signal is then adjusted by a
feedback term, Apu. In essence, the feedforward sig-
nal uses a predictive model to decide how flow should
be manipulated such that the desired delay is achieved,
given the nonlinear delay-flow relationship in the server.
The derivation of the feedforward predictor and the de-
sign of the feedback controller will be described below.

4.1 A Queueing Predictor

Queueing theory offers expressions that relate service
rate and server response time. These expressions can
be used to determine the service rate, (s, needed for
a particular response time to be met. For simplicity of
explanation, assume the request stream is Poisson dis-
tributed, with an arrival rate of A\. From queueing theory,
we know that for an M/M/1 queue with arrival rate A and
service rate u, the long-term average queueing time (i.e.
connection delay) for the clients is

D= where A < p @))

_A
(= X)’
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The above equation can be solved for p that achieves
the desired delay D, given the current arrival rate .
This value of p is given for enforcement by the actu-
ator. Should the resulting delay be different from D,
an error is generated which drives a controller (e.g., a
PI controller) to correct actuator input until the error is
eliminated. This loop is eventually successful in bring-
ing average server delay of each class to the desired set
point.

One problem with the above approach is that queue-
ing theory describes relations between long-term aver-
ages only. In the short term, delay may deviate from the
set point. Also, it is hard to measure the long term aver-
age arrival rate, A\, quickly enough. Hence, if the request
rate changes suddenly, some time may elapse before the
queueing predictor is able to account for this change. To
address these limitations, a different type of predictor
can be employed that uses instantenous queue measure-
ments instead of queueing theory equations.

4.2 An Enhanced Feedforward Predictor

The enhanced feedforward predictor computes the
needed service rate from actual measurements of recent
delay and queue length. Consider the situation at some
arbitrary time, ¢,,,,,. At this time, there are a number
of requests queued up waiting to be processed. Let us
consider N of these requests and compute their average
delay as a function of the processing speed, . The situ-
ation is depicted in Figure 2.
Packet Number Queueing Time
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.

A ‘ B
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t

now Time

Figure 2. Visualization of queuing and pro-
cessing

Assuming that requests have an average nominal pro-
cessing time, C, their individual processing time in next
sample will be, C /. Let D denote the average delay
experienced by the N requests. We will now provide a
geometric derivation of the equation relating the average
delay, D, and the server speed, u.

The total delay experienced by the N requests, N D,
can be computed geometrically from Figure 2 as the
area BECF. This is given as the area of the rectan-
gle ABCD, plus the area of the triangle BEC, minus
the lightgray shaded area (ADF'B). Noting that the area
ADF B is the sum of the arrival times of the requests,
we arrive at the equation

N-(NC/p) K7

ND =N -t,p0 + 5 ; Ar ()

Dividing by N, we get:

. . NC

D= thow — A+ — (3)
2p

. i i+N—1
Now introduce A; = % ;:;Z Ay, as the average

arrival time, D; as the average delay, C; as the aver-
age computation time, and p; as the server speed for
requests being dequeued in the ith sample. We also see
that ¢,,00 — Ai = (@, is the average queuing time for the
requests being dequeued in the ith sample. Solving for
15 then gives:

Wi = _ NG “)
2(D;i — Qi)

which is a predictor equation telling us how to choose
the server speed in order to obtain an average delay, D,,
of the next N requests. The feed-forward controller is
invoked after each departure and computes the new pro-
cessing speed according to Equation (4). D; is chosen
as the current delay set-point, D,.. the average queuing
time, (Q;, is measured exactly. The average nominal pro-
cessing time, C}, is estimated from past measurements.
N will be chosen as the current queue length at each
sampling instant.

Figure 3 compares the aforementioned mechanisms
in terms of ability to maintain delay guarantees in an
Apache web server. It is seen that the delay set point is
most closely tracked when the control loop is augmented
with the enhanced predictor.

5 Practical Considerations

One challenge in implementing feedback control in web
servers is that fact that server code does not support QoS
guarantees. In particular, there is no mechanism to al-
locate separate resources for different classes of clients
sharing the same server.
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Figure 3. Control of average delay

Consider a common best effort server in which one or
more identical worker threads or processes serve incom-
ing client requests. Connection requests to the server
arrive on a common port (e.g., port 80 for web servers).
These connection requests are dequeued from the server
port, either directly by the worker threads themselves,
or separately by a dedicated dequeue thread, which will
pass the requests to a worker thread. We assume that
the server is multi-instance safe. In other words, if
we run multiple instances of the server, each instance
should work well in presence of others. This assump-
tion holds for many Internet server applications, such as
web servers, mail servers, and FTP servers.

To convert a legacy application into a QoS-aware one,
the classifier, sensors, and actuators must be added. One
approach is to add generic versions of these compo-
nents as a general kernel-level mechanism. A classifier
seprates incoming requests in the kernel by class. Af-
ter classification, input request traffic of each class is
queued separately on a different, per-class, kernel port
(socket). To the legacy server application, these ports
look like ordinary sockets. A separate instance of the
best-effort server is instantiated to listen to each port.
Hence, a separate server instance is assigned to each
class of clients. This design greatly facilitates the design
of resource allocation mechanisms. Namely, operating
system support may be used to to allocate the resources
among different servers.

Another practical problem in applying control to
computing services lies in the interdisciplinary nature of
the expertise needed to close the control loop. To al-
leviate this problem, the authors designed a middleware
package called, ControlWare [20], which allows the user
to express QoS specifications offline, maps these spec-
ifications into appropriate feedback control loop sets,
and connects loops to the right performance sensors and
actuators in the application such that the desired QoS
is achieved. A main novelty of this middleware lies
in isolating the software application programmer from

control-theoretic concerns while utilizing this theory to
achieve the desired QoS guarantees. At the same time,
ControlWare isolates the control engineer from the soft-
ware task of interfacing the controller to the controlled
software system and designing software performance
sensors and actuators.

ControlWare contains a library of macros written in a
topology description language, each formulating a par-
ticular type of QoS guarantee as a feedback control
problem. The library is extensible in that a control engi-
neer can transform a new guarantee type into a macro
that describes the corresponding loop interconnection
topology and stores that macro in the middleware’s li-
brary. Currently, the library includes macros for abso-
lute convergence guarantees, relative differentiated ser-
vice guarantees, prioritization, and optimization guaran-
tees. Each macro, like a block diagram, includes com-
ponents such as sensors, actuators, and controllers. Con-
trolWare contains a library of common sensors and ac-
tuators that can be used in these software control loops.
These sensors and actuators are written by software en-
gineering who are familiar with the application, but do
not needed to understand the control-theoretic principles
behind the feedback loop. The library is extensible in
that it is possible for an application programmer to add
new sensor and actuator types. A control engineer can
therefore quickly assemble loops that connect the con-
troller to the controlled process by virtue of the sensors
and actuators imported. The controller is then tuned, the
software is compiled, and run-time guarantees are en-
forced.

6 Related Work

Several recent papers [4, 1, 5] presented a control the-
oretical approach to web server resource management
based on web content adaptation. QoS guarantees on re-
quest rate and delivered bandwidth were achieved. In
[19, 18, 12], control theory was used for CPU schedul-
ing to achieve QoS guarantees on service delay. A sim-
ilar approach was used for e-mail server queue manage-
ment [15]. In [17], guarantees were made on power
dissipation by applying control-theoretical techniques to
microprocessor thermal management. At the network
layer, control theory was applied to packet flow control
in Internet routers [9, 7]. Due to the usefulness of the
control-theoretic approach and its versatile applications,
middleware frameworks emerged for control-based QoS
assurances [20]. The authors of [20, 10, 8] provided
tools to help apply control-theoretic design techniques
to a larger class of systems.
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Several predictive frameworks were designed to aug-
ment the feedback control component. In addition to
the ones we mentioned in this paper, a theory for using
utilization bounds was developed for predicting dead-
line misses, when worst case latency guarantees must be
attained. These bounds are an extension of the origi-
nal work by Liu and Layland [11]. The original bounds
were limited to the assumption that requests arrive peri-
odically [14, 16] or to simple extensions of the periodic
arrival model [13]. Abdelzaher’s work [2] is the first to
relax the periodicity assumption completely, thus gener-
ating results that are compatible with arbitrary queuing
systems such as web servers where requests arrive ran-
domly with nothing known a priori on their arrival pat-
tern. In [3], the notion of utilization bounds for schedu-
lability of aperiodic tasks is generalized to the case of
distributed resource services.

7 Conclusions and Future Work

In this paper, we demonstrated the application of con-
trol theory to web server performance control. The use
of prediction was described to account of the non-linear
behavior of delay control loops. Practical issues in the
application of performance control were described. A
brief summary of related performance feedback control
efforts was presented. In conclusion, with the increas-
ing complexity of computing systems, feedback control
is increasingly important to provide performance assur-
ances in the presence of growing system complexity.
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