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Abstract— This paper describes a control system that pro-
vides the “utilities throttling” feature in the IBM R© DB2 R©
Universal DatabaseTM v8.1.

Administrative utilities (e.g., filesystem and database back-
ups, antivirus scan) are essential to the operation of production
systems. Unfortunately, production work can be severely
degraded by the concurrent execution of such utilities. Hence,
it is desirable for the system to self-manage its utilities to
limit their performance impact, with only high-level policy
input from the administrator. We focus on policies of the
form “There should be no more than an x% degradation
of production work due to utility execution.”

We have designed a throttling mechanism called self-
imposed sleep (SIS) which forces utilities to slow down their
processing by a configurable amount. We design a feedback
control system based on online measurements of an internal
database metric that correlates with system performance. A
novel aspect of this problem is estimating the baseline, defined
as the performance that the system would provide if the utility
was not executing. The complete control system combines an
online state estimator with a PI controller that achieves good
performance and adapts to changing workloads.

I. I NTRODUCTION

A. Motivation

The day-to-day operation of many important software
systems involves the execution of administrative utilities
needed to preserve the system’s integrity and efficiency. In
database management systems, the administrative utilities
address recoverability (backup/restore), data reorganization
and statistics collection (among other things). On worksta-
tions, users periodically execute programs for virus scan-
ning and disk de-fragmentation. In Java Virtual Machines,
garbage collection is an asynchronous administrative utility.
Unfortunately, the execution of such online utilities can
impose a severe performance penalty on any user work that
occurs concurrently.

For example, Fig.1 demonstrates the dramatic perfor-
mance degradation from running a database BACKUP while
emulated clients are running a transaction-oriented work-
load against that database. The test system is described in
Sect.V-A. When the BACKUP is started att=600sec, the
user workload’s throughput drops to between 25–50% of its
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Fig. 1. Performance degradation due to running utilities. Plot shows
throughput measured at the client, averaged over a 60s interval.

original level. If there are multiple concurrent utilities, the
situation can get much worse.

To minimize the impact of such jobs, administrators
typically defer such tasks to low-utilization periods such as
overnight, holidays or scheduled downtimes [1]. However,
such windows are shrinking or disappearing [2] due to
24×7 operations (e. g. , due to globalization), as well as
from increasing sizes of data that must be processed. For
production e-commerce systems, such periods of decreased
performance can be very costly[3]. Thus, it is important to
address the issue of utility impact on user workload.

B. Target System

In this paper, we focus on the problem of managing
utilities for the DB2 Universal Database server. A sketch of
the main components of interest is shown in Fig.2. We can
consider the server to support two types of work: (a) queries
and transactions submitted by the regular users and (b)
administrative tasks submitted by the database administrator
(DBA). Interactions with the users (or clients) are managed
by worker agents on the server, who perform the work
(query processing, etc) on their behalf. The utility work
is performed by a separate set of one or more agents. The
worker agents and the utility agents compete for system
resources, such as CPU and disk, which are managed by
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Fig. 2. A sketch depicting the main components and interactions of the
target system: DB2 server on Linux/Unix/Windows.

the Operating System (OS). These agents are implemented
according to the OS-specific abstraction of processes or
threads, which are in one of three states: in a CPU queue,
in an IO queue or in a wait state. Runnable processes
reside in a CPU queue, from which the OS scheduling
algorithm chooses processes to execute on the CPU(s).
When a process makes an IO request, it is transferred to
an IO queue until the IO request is served at which point it
can return to the CPU queue. The wait queue is a holding
area for processes that are not schedulable, typically because
they are waiting for some event, such as synchronization or
a timer. A typical database server can have multiple CPU
and IO channels, thus the number of resources can be quite
large.

When online utilities are executed, they interfere with the
user workload by occupying space in the various resource
queues, and consuming CPU cycles, IO bandwidth and
memory space. Hence, in order to manage the performance
impact of utilities, it is clear that the utilities’ resource
consumption must be altered. We use the termthrottling
to refer to limiting the execution of utilities in some way
so as to reduce their performance impact.

C. Organization

The rest of this paper is organized as follows. In Sect.II ,
we formulate the utilities throttling problem as a feed-
back control problem. In Sect.III , we briefly describe the
throttling mechanism we have developed for throttling the
utilities. This is a fairly general and reusable mechanism
that is applicable to a wide variety of software systems. The
Throttle Managerdescribed in Sect.IV uses this throttling
mechanism to automatically throttle utilities to limit their
impact. We present empirical results showing the behav-
ior and performance of the controller in Sect.V. Sect.VI
contains a summary and discussion of future work.

II. PROBLEM FORMULATION

There are a variety of mechansims that may be used for
throttling utilities, for example, OS priorities, per-resource
bandwidth quotas, and others. These are discussed later in
Sect.III . Each of these mechanisms has an input which
controls the extent to which the utility is throttled. It is
possible to directly expose these mechanisms to the DBA,
and allow her full and direct control over the utility resource
consumption. However, this is not desirable:

1) Due to the multiplicity of resources, determining
the per-resource parameters is a nontrivial challenge.
Each resource requires its own setting, and depend-
ing on the bottleneck resource at each point in the
workload, that resource’s parameters must be tuned
carefully. This is a problem especially in large instal-
lation with hundreds or even thousands of disks.

2) The resource requirements of the workload and the
utilities change over time. Hence, the throttling con-
trol must be continuously adjusted in order to com-
pensate for the changing nature of the resource con-
tention.

In the spirit of IBM’s autonomic computing [4] initiative,
the software system (DB2) should manage the low-level de-
tails of the mechanism, and only expose high-level controls
to the administrator.

Therefore, we construct a feedback control system which
adjusts the throttling parameter based on measurements of
performance metrics from DB2. This raises the question
of what should be the input from the DBA to the control
system?

We have proposed to support the following high-level
goal

Administrative Utility Performance Policy: There
should be no more than an x% performance
degradation of production work as a result of
executing administrative utilities.

where the degradation is relative to the performance when
there is no utility work in the system. Such a policy maps
directly into the type of IT policy that administrators would
like to enforce, and hence it is a significant advantage over
having to learn and manage low-level details and imple-
mentation specifics of the target software system. In these
policies, the administrator thinks in terms of “degradation
units” that are normalized in a way that is fairly indepedent
of the specific performance metric (e.g., response time,
transaction rate). Commonly used values ofx will be in the
range 5–20%, and can be set based on the user population’s
sensitivity to system performance.

In the ideal case, utilities should have zero impact
on the workload (i. e. ,x = 0). In a complex software
system, this may not be possible, and moreover, it may
not be desirable. The difficulty in obtaining zero impact
is due to the fact that the Operating System is the final
arbiter of resource utilization, and not DB2. As we discuss
in Sect.III , mechanisms provided by popular commercial



DB2
Utilities

Sensor

Admin Impact
Limit

Throttling Level

Performance
Metric

Users

Throttle Manager

Controller

Impact
Estimator

Fig. 3. Control Loop for DB2 Utilities Throttling

OSes are ineffective as throttling mechanisms. Since these
OSes do not allow applications to directly control their
resource allocation decisions, application-level mechanisms
are inherently limited in the amount of control they can
exert. The reason that zero impact is undesirable is that by
reducing the resources devoted to utilities, their execution
time is also lengthened. In a system that has 24×7 activity,
enforcing a zero impact may lengthen the utility execution
to an undesirable extreme.

From a system efficiency point of view, an implicit goal is
that system resourcs should not be idle unnecessarily, i. e. ,
the utilities should finish as soon as possible. Combining
this observation with the administrative policy goal implies
that the system should operate close to thex% degradation
point. Thus, the utilities throttling problem maps into a
regulatory control problem.

A novel and challenging aspect of this problem is that
the metric “degradation” is not commonly available or easy
to obtain. Raw performance metrics such as throughput,
IO rate, etc can be collected, and the degradation must be
inferred from these metrics.

The final control system is depicted in Fig.3. The ad-
ministrator provides the impact (degradation) limit from
the policy. TheImpact Estimator infers the current impact
level of the utilities based on available metrics from DB2.
Based on these values, theController adjusts the throttling
level of the running utilities. These two components to-
gether constitute theThrottle Manager, which is described
in IV.

III. T HROTTLING MECHANISM

There is a large variety of mechanisms that may be
employed in order to throttle utilities. For example, all
OSes support processes or thread priorities. However, in
common OSes such as Unix and Windows, these priorities
only control contention for CPU resources. Hence, for IO-
bound utilities like BACKUP, priorities are not an effective
mechanism, as shown in [5]. Another possibility is to
impose bandwidth quotas for I/O and CPU usage, but this
is very intrusive, and requires significant re-engineering of
the existing code.

For generality, portability and ease of use, we have
developed a mechanism called self-imposed sleep (SIS)
which relies on thesleep() system call provided by all

FUNCTION Utility()
BEGIN

WHILE (NOT done)
BEGIN

... do some work ...
SleepIfNeeded()

END
END

(a) InsertingSIS into an utility

FUNCTION SleepIfNeeded()
BEGIN

throt = GetThrottlingLevel() ; // throt is 0..1
workTarget = CYCLE TIME * (1 - throt) ;
timeWorked = Now() - workStart ;
IF (timeWorked > workTarget)

sleepTime = CYCLE TIME * throt ;
SLEEP( sleepTime ) ;
workStart = Now() ;

ENDIF
END

(b) SIS implementation

Fig. 4. High-level utility structure and sleep point insertion

modern OSes. This system call is parameterized by a time
interval, and it causes the process or thread to be placed
in the wait queue (Fig.2) for the specified interval. Fig.4
describes a throttling API that uses this sleep service.

The SIS call takes as input athrottling level∈ [0, 1].
This is treated as the fraction of time that the utility
should be sleeping. Our implementation (Fig.4(b)) alter-
nates periods of work and sleep. After the calling utility
has worked (timeWorked ) for a sufficient amount of
time (workTarget ), the SIS implementation puts it to
sleep according to the throttling level. The sleep fraction
is expressed relative to acycle time, which consists of one
work and one sleep phase. This cycle time is considered a
constant, although its actual value may vary according to
the utility being considered.

It is relatively trivial to insert thisSIS call into the main
work loop of an utility, as shown in Fig.4(a). In order to
get the maximum benefit from this API, theSIS point must
be inserted in each place where some basic work unit is
processed.

Note that if the throttling level is0, the utility will never
sleep and behaves as if it were unthrottled. If the throttling
level is 1, the utility does minimum work each cycle. In
order to ensure that utilities make some minimal progress
each cycle, we do not allow the utility to be fully throttled.

We empirically verify the effectiveness of this mechanism
as follows. Using the testbed and workload described in
Sect.V-A, we measure the transaction throughput at the
clients. Each datapoint in Fig.5 represents the average
throughput measured over a 20-minute interval while the
BACKUP is running with a throttling level that is kept fixed
throughout the interval. We can see that the throttling level
has a significant and almost linear effect on the measured
client side throughput.

In Fig.6, we study the dynamics of the control mech-
anism. The utility is started at 600sec, after which we
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Fig. 5. Average performance at different throttling levels
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Fig. 6. Effect of dynamically varying the throttling level. Throughput is
measured in Tx/sec at the emulated clients.

vary the throttling level in a sinusoid pattern, where each
throttling level is maintained for 60 seconds. We see that
the SIS mechanism is a nice effector for throttling since it
has an effect on the utility impact with almost no delay.

IV. FEEDBACK CONTROL FORPOLICY ENFORCEMENT

As discussed in Sect.II , the purpose of the feedback con-
trol system is to translate degradation units (specified in the
policy) into throttling units. Moreover, this system should
also react quickly to changes in the resource requirements
of utilities and/or production work.

A. Impact Estimator

In Fig.3, we see that the administrator input is in the units
of performance degradation. However, there is no direct
feedback available from DB2 in these units. Therefore, we
first construct a transducer for measuring the current level
of performance degradation. The degradation is defined as
the performance relative to situation where there is no utility
work running. We call this latter performance thebaseline.
Given the baseline, we can determine the current impact
level as:

degradation = 1− current performance
baseline

We use an internal metric called pageometer as the intrin-
sic measure of performance. The exact metric is not so
important, except that it correlates well with the desired
client-side performance metric. In the case of DB2, pa-
geometer correlates with throughput for short-transaction

(OLTP) workloads, but it also provides a good indication of
performance degradation in the case of a decision-support or
OLAP workload (where measuring throughput makes less
sense).

A straightforward way to determine the baseline is to
suspend all utilities for a brief period and measure the per-
formance during that period as the baseline. This procedure
may be repeated periodically to adjust for changing user
workloads. Clearly, the responsiveness of the system to a
sudden surge in workload will be limited, since the throt-
tling system may not be aware of an underlying baseline
change until the next measurement period. Moreover, the
abrupt pausing and resumption of the utilities may lead to
undesirable short-term end-user performance. Finally, such
pauses during idle periods may be unnecessary and hence
lead to underutilized system resources.

Instead, we leverage theSIS mechanism to provide a
more responsive baseline estimate. The key observation is
that at a throttling level of 1, the system performance should
be close to the baseline. In general, based on the behavior
of the throttling mechanism, as seen in Fig.5 and Fig.6, we
hypothesize that there is a linear relationship between the
throttling levelu and system performancey:

y = θ0 − θ1 ∗ (1− u) (1)

The intuition behind using this form of the model is that
θ0 represents the baseline performance, and that the utility
degrades this performance according to its throttling value.
At u = 0 (no throttling), it has the maximum impact, and
at u = 1 (maximum throttling), it has no impact.

Thus, if we can construct a good online state estimator
for θ = (θ0, θ1), then it automatically yields the current
baseline estimate. We have found that using recursive least
squares[6] with exponential forgetting provides reasonable
results for the model fit. Exponential forgetting allows the
estimator to adapt when either the workload changes (θ0)
or the impact (θ1) of the utility on the workload changes
(as for BACKUP).

B. Controller

The impact estimator of the previous section provides us
with an estimate of the current degradation level. The con-
trol error then is the difference between the administrator’s
desired impact level and this estimated degradation.

Because of the relatively straightforward effects of
our control knob on performance, we use a standard
Proportional-Integral (PI) controller from linear control
theory[7].

u(k + 1) = KP ∗ e(k) + KI ∗
k∑

i=0

e(i) (2)

In our implementation, this value is posted to shared mem-
ory, which is then accessed by theSIS implementation
using theGetThrottlingLevel() call. This interface
allows the maximum flexibility to implement theThrottle



Manager either as an OS service, as an asynchronous
thread within the target application, or as a separate ap-
plication.

For simplicity, we choose fixed values ofKP and KI .
For picking KP , KI , we assume the system is itself a 0-
order system given by Eqn.1. We design for a settling time
of 5 minutes under the assumption that the utility has a very
heavy impact (θ1 is large). This constraint was considered
reasonable given the nature of the workloads experienced
by our system.

The fact that we use theImpact Estimator in the closed
loop requires us to make the following two enhancements
to the basic PI algorithm.

1) During the initialization phase, the controller gener-
ates a fixed ramp control signal ranging from 0 to 1.
This allows the model to be initialized.

2) In normal operation, we add a small white-noise
“jitter” into the output of the PI controller. This
provides a persistent excitation condition to prevent
the RLS estimates from degrading.

V. EMPIRICAL ASSESSMENTS

A. Testbed Description

Our target system is a modified version of the IBM
DB2 Universal Database v8.1 running on a 4-CPU RS/6000
server with 2GB RAM, with the AIX 4.3.2 operating
system. To emulate client activity, we apply an artificial
transaction processing workload which is similar to the
industry-standard TPC-C database benchmark. This work-
load is considered our “production” load. The database is
striped over 8 physical disks connected via an SSA disk
subsystem. The utility we focus on is an online BACKUP
of this database. This backup is parallelized, consisting of
multiple processes that read from multiple tablespaces, and
multiple other processes that write to separate disks.

For most of the measurements shown here, the workload
is run for an initial warm-up period to populate the buffer
pools and other system structures. After this, the utility is
invoked under various conditions. The number of emulated
users is kept constant for the duration of the run. We
measure performance metrics such as throughput, average
transaction times, and system utilizations for the entire run.

For the purposes of these experiments, the utility cycle
time (Fig.4) was chosen to be 10 seconds, and the control
interval is 20 seconds.

B. Effectiveness of Feedback Control

We now evaluate whether the feedback control approach
can effectively translate an administrative degradation pol-
icy of 10% into appropriate settings forSIS.

We first show in Fig.7 that the throttling system follows
the policy limit in the case of a steady workload generated
by 25 emulated users. Here, the BACKUP utility is started
near t = 400, after the workload warmup (which is not
shown). For comparison, the performance of a run with the
baseline workload alone as well as one with an unthrottled
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Fig. 7. Throttling a utility under a steady workload under a 10% impact
policy. Data points represent 1-minute averages.

utility are also shown. Note how the throttling system results
in a throughput profile that is more parallel to the no-utility
case. In Fig.7(c), we show the value ofθ0 estimated by
the impact estimator. For comparison, the “Baseline” line
shows theactual performance by a workload without any
utility running. We can see that the state estimator converges
quickly after the initial controller rampup, but there is a
small steady-state estimation error. This indicates that the
simple model of Eqn.1 does not completely capture the
system behavior.

In order to study the response of the system to a change in
workload, we consider in Fig.8 a scenario which initially
has 10 emulated users accessing the database. Neart =
1200, an additional 15 users start accessing the system. We
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Fig. 8. Response of throttling system to a workload surge under a 10%
impact policy. Data points represent 1-minute averages.

can see that the controller initially responds by lowering
the throttling value, but by timet = 1600, the system has
recovered (with a small overshoot). Note that the controller
is not meeting the performance target in the 10-user phase
of this system ; this is caused by a limitation of the throttling
mechanism which prevents the controller from setting a
higher throttling level.

VI. CONCLUSIONS ANDFUTURE WORK

Running utility functions against a production system can
prove to be an administrative nightmare. In this paper, we
have constructed a feedback control system for throttling
utilities. This allows the system to present a higher-level,
policy-based interface to the administrator, and significantly
ease the system management burden. The feedback loop is
used to translate the policy specification into control actions
in terms of the throttling mechanism. Our prototype system
implemented for utilities running in the DB2 Universal
Database achieves within 10% of the desired degradation
policy in most cases, both when workloads are steady
and when they change. This is quite reasonable given the
stochastics in the system.

The architecture shown here can be easily adapted for use
in other systems; it is not specific to database management
systems. The main requirement is that the core of the work
phase of the utility should be identifiable, so that the sleep
point can be inserted there. A secondary requirement is

that the performance metric of interest should be available
to be measured; ideally it should be a server-side metric
which can be collected at frequent intervals without much
overhead. While we cannot claim that the specific controller
proposed here would apply across all instances of all
utilities in all systems, we plan to investigate this generality
further.

Many challenges remain. In this paper, we have designed
a controller with fixed parameters which may not be ap-
propriate for all systems. We plan to investigate adaptive
control techniques to automatically tune the controller pa-
rameters and the control interval based on the characteristics
of the target system. In addition, a system will typically
have multiple utilities running concurrently. The solution
we have described here computes a single throttling value
for all utilities, which may not be the most efficient. In the
case of multiple utilities, it may be advantageous to throttle
utilities separately according to their individual impacts
on the workload. Separating these individual impacts and
setting the appropriate throttling level presents a significant
level of complexity beyond the single-utility case.

VII. A TTRIBUTIONS

IBM and DB2 are registered trademarks of IBM Corpo-
ration.
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