
 
 

 

  
Abstract—The discrete-time equivalent control, obtained 

from sk+1 = 0, is a chattering-free sliding mode control in theory; 
however, it involves two practical problems in implementation, 
they are the numerical accessibility problem and the physical 
admissibility problem. The numerical accessibility problem is 
due to the unknown external disturbances, which appears in 
the equivalent control. The physical admissibility problem 
arises in the reaching phase, in which the control law is to drive 
the current state to the sliding surface in one sampling period. 
In this paper, a one-step delay estimator for the disturbance is 
employed to approximate the equivalent control with an O(T2) 
accuracy, where T is the sampling period. This leads to an O(T2) 
boundary layer in the vicinity of the sliding surface. On the 
other hand, the control admissibility issue is solved by 
extending the reaching phase, leading to sk+h = 0, with a positive 
on-line tuning parameter h. 

I. INTRODUCTION 
A sampled-data control system has its innate limitation on 

the switching frequency when implementing variable 
structure control laws. Continuous-time variable structure 
control with limited switching frequency leads to a serious 
chattering problem. Design of discrete-time sliding mode 
control becomes essential to sampled-data systems. It was 
pointed out in [1] that the system, when discrete variable 
structure control is employed, can at best achieve 
quasi-sliding motion, in which sliding mode is attained only 
at the sampling instants. In between consecutive sampling 
instants, the state trajectory will deviate from the sliding 
surface leading to minute errors with magnitude subject to 
the sampling period, T. In [2], a switching type of 
discrete-time sliding mode control law 
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was proposed to yield a system trajectory converging to the 
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discrete-time sliding surface, sk=0 [2]. The upper and the 
lower limits of the switching control, uk

+ and uk
−, were to 

satisfy the reaching condition | sk+1 |< | sk |. It was ascertained 
later in [3] that uk

+ and uk
− will converge to an identical value 

as discrete-time sliding mode is achieved and maintained. 
The ascertainment suggested that the switching behavior in 
u(k) will degenerate into a continuous form. In other words, a 
continuous control is an ultimate solution to the problem of 
discrete-time sliding mode. Furuta’s result gave a similar 
implication [4]. The proposed discrete-time control law took 
the form of state feedback with a continuous gain and a 
switching gain. The continuous gain was to maintain the state 
on the sliding surface, while the switching gain was a 
function of the sliding vector sk to steer the state into a sliding 
region. It is seen that the magnitude of the switching gain dies 
away as discrete-time sliding mode occurs. The control law is 
then left with the continuous part, leading the system into a 
chattering-free sliding motion. 

The nonswitching type of discrete-time sliding mode 
control was first proposed by Drakunov and Utkin in the 
context of discrete equivalent control, uk

eq, which brings the 
state to the sliding surface in one step (sk+1=0) [5]. Such a 
control law gives a definite solution to the discrete-time 
sliding mode problem. Although uk

eq is usually not 
numerically accessible (due to unknown disturbances) and 
not physically admissible (due to a far apart current state 
from the sliding surface), it provides us with an implication 
that a chattering-free sliding mode control law does exist 
theoretically. The latter endeavor of much research yielded 
useful results in accordance with this standpoint. Bartolini et. 
al. proposed a smooth, self-adaptive mechanism to tune up 
the discrete control law to approach the equivalent control 
[6]. Corradini and Orlando made use of time-delay control to 
estimate the effects of unknown system perturbations and 
came up with a dwindling control activity, which became 
chattering-free asymptotically [7]. In [8], the system state is 
driven by Gao’s method and finally crosses the sliding 
hyperplane in every successive sampling period. This results 
a zigzag motion about the sliding hyperplane [8]. A further 
improvement without switching control signal was proposed 
by Bartoszewicz [9]. In [9], the system state remains in a 
certain band around the sliding hyperplane, but not to pass 
through the hyperplane in each successive control step. It 
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provides tremendous progress than [8] and will be used to 
evaluate the performance with our approach in this paper.  

Chattering control was the original method to acquire 
robustness in a continuous-time variable structure system. 
For discrete-time systems, however, many recent research 
results have indicated that a chattering-free control strategy 
can also render robustness with a priori knowledge of the 
unknown disturbances. To scrutinize the proposed control 
formats and the simulation results of the above references 
[2,4,6,7], one can observe that chattering can still occur in 
the reaching phase of the total control motion in spite of the 
chattering-free performance in the sliding phase. Such a 
provisional chattering phenomenon is still undesirable in 
many systems that require smoothness in the control actions. 

In this paper, we will focus on the sampled-data systems to 
develop a total chattering-free discrete-time sliding mode 
control. We will carry on with Drakunov and Utkin’s method 
to mend the deficiency of the incomplete chattering-free 
behavior. As was mentioned above, uk

eq is usually not 
numerically accessible due to the unknown disturbances. 
Furthermore, if the current state is far from the sliding 
surface, the magnitude of uk

eq can be too large to be 
physically admissible. These implementation problems will 
be studied judiciously throughout this paper. Morgan et. al. 
[10] pointed out that disturbances with certain smoothness 
can be estimated through the discrete-time system dynamic 
equation. Similar idea can also be seen in [7]. Thus, uk

eq can 
be estimated with the accuracy of the disturbance estimation. 
Su et. al. [11] proposed a modified equivalent control law to 
maintain the state in an O(T2) boundary layer of the sliding 
surface ,denoted ∑. A chattering-free sliding motion in the 
boundary layer was observed. However, the control 
admissibility problem, which occurs in the reaching mode, is 
still unsolved yet. The attempt to drive the initial state to the 
sliding surface in one single sampling period requires a 
gigantic control magnitude. A natural conjecture to reduce 
the control magnitude is to prolong the reaching mode so as 
to render a ‘soft landing’ on ∑. Therefore, instead of using 
sk+1=0 to yield uk

eq, one can simply extend the reaching phase 
by using sk+h=0, where h is a positive integer, to compute the 
equivalent control. In this paper, an on-line tuning parameter 
h(k) is introduced. The tuning mechanism is operated 
according to the distance of ∑ from the current state. As the 
state is sufficiently close to ∑, the h(k) parameter is set to one 
and the discrete-time sliding mode is attained. 

The other parts of this paper are organized as follows. 
Section II is the problem formulation. Section III and IV 
represent the control concept, algorithm, and the simulation 
result. Final section is the conclusion. 

II. PROBLEM FORMULATION  
In a sampled-data system, each of the control variables 

retains only one degree of freedom within the sampling 

period kT ≤ t <(k+1)T, leading to shrinkage in the control 
signal space from 2

[0, ]( )m
TL  to Rm, m being the number of 

control inputs. Therefore, a sampled-data controller will 
inherently be less capable than a continuous one [1]. In the 
context of sliding mode control, a sampled-data control law 
can at best achieve sliding mode in discrete time. Whereas in 
between consecutive sampling instants, the state will deviate 
from the sliding surface, forming a boundary layer in the 
vicinity of the sliding hyperplane [11]. 

A. An O(T2) boundary layer in sliding mode 
Consider a linear time-invariant system with a prescribed 

sliding surface ∑ 
 x Ax Bu= + , (1) 

 ∑={ x| s(x)=Cx=0}, (2) 
where the state x∈ Rn, the control u∈ Rm, and the sliding 
vector s∈ Rm; A∈ Rnxn, B∈ Rnxm, are constant matrices, and 
C∈ Rm×n is chosen properly in order to achieve the desired 
sliding dynamics. The sampled-data system of (1) is  
 xk+1 = Φxk + Γuk  (3) 

where Φ= eAT, ∫=Γ
T A Bde
0

][ λλ , and T is the sampling period. 

Assuming CΓ is nonsingular, the discrete equivalent 
control can be obtained with sk+1=0 and becomes 
 uk

eq = −(CΓ)−1CΦxk, (4) 
which is a nonswitching type of control with chattering-free. 
With the equivalent control law (4) implemented through a 
zero-order-hold process in a sampled data system, sliding 
mode is attained only at each sampling instant, s|t=kT = s(x(kT)) 
= 0, but not in continuous-time. During the sampling interval, 
the system state strays away from the sliding surface. The 
farthest deviation instant is about half of the sampling period, 
which results in an O(T2) boundary layer in the vicinity of the 
sliding surface, i.e. s(kT+τ)∈ O(T2), where 0≤τ < T. The proof 
is presented in section IV with a numerical example shown in 
Fig.1. 

B. The external disturbances problem 
Now consider the case of linear time-invariant system with 

external disturbances, which is described as 
 x Ax Bu Df= + + , (5) 

where the unknown disturbance f∈ Rr is a bounded, smooth 
function of time with |f(t)|≤ fmax, and D∈ Rnxr is a constant 
matrix satisfying the matching condition rank[B, D]=rank[B] 
[12]. The sampled-data system of (5) becomes 
 xk+1 = Φxk + Γuk + dk, (6) 

where ∫ −+=
T A

k dTkDfed
0

))1(( λλλ  is the lumped effect of 

the disturbance f(t) within the sampling period kT ≤ t <(k+1)T. 
The discrete equivalent control  



 
 

 

 uk
eq = −(CΓ)−1C(Φxk+ dk) (7) 

can be applied conceptually to (5). Unfortunately, it cannot 
be implemented physically without obeying the law of 
causality.  

C. The control admissibility problem 
An admissible control uk in a practical system is usually 

bounded, i.e. 
 | uk |≤ M,  M > 0. (8) 
To check for the magnitude of the equivalent control law of 
(7), rewrite uk

eq  in Taylor’s series expansion  
 uk

eq = −(CΓ)−1C[(I + TA +…)xk + dk]  

 = −(CΓ)−1[sk + O(T) + Cdk], (9) 
where ∫ −+=

T A
k dTkDfed

0
))1(( λλλ  ∈  O(T) and CΓ = C[TI + 

(T2A)/2+…]B∈ O(T). If the state is located in the 
neighborhood of ∑, or sk∈ O(T), then uk

eq ∈ O(1), and  the 
control admissibility constraint (8) may hold. On the contrary, 
if the state is far away from ∑, or sk∈ O(1), then the 
magnitude of  uk

eq is a reciprocal function of T, uk∈ O(1/T), 
and uk

eq becomes too large to be admissible. 

III. THE CHATTERING FREE CONTROLLER 
To deal with the causality problem in uk

eq of (7), Su et. al 
proposed the modified control law [11] 
 uk = −(CΓ)−1C(Φxk+ dk−1), (10) 
where 1kd − is the disturbance in the previous sampling 
instant and can be computed by the past information 
 dk−1 = xk − Φxk−1 − Γuk−1. (11) 
Substituting (10) into system (6) yields 
 sk+1 = Cxk+1 = C(dk − dk−1)  

 ∫ −−−+=
T A dkTfTkfDeC
0

)}(])1[({ λλλλ   

  ( 1) 2

0
( ) ( )

T k TA

kT
C e D f d d O T

λλ
λ

σ σ λ
+ −

−
= ∈∫ ∫ . (12) 

If the external disturbance f(t) is a smooth function of time, 
the resultant sliding motion is of O(T2) accuracy. 

To deal with the control admissibility problem in (10), we 
propose to extend the reaching phase to decrease the 
magnitude of uk. A boundary layer, ∑T, containing ∑ is 
defined as 

 1
1{ ( ) ( ) }.T kx C C x d M−

−Σ = Γ Φ + ≤  (13) 

As the state is located inside of ∑T, the control uk of (10) is 
admissible and sliding mode is attained with O(T2) accuracy 
[11]. If the state is outside of ∑T, a modified control law 
ueq

*(k) is obtained by solving sk+h=0 (where h>1) instead of 
sk+1=0. The integer h is an on-line tuning parameter, hk. It is 
chosen such that ueq

*(k)∈ O(1/hT) satisfies the admissibility 

condition in (8). As the state is driven toward the vicinity of 
∑T, the parameter hk approaches to identity (hk → 1) and the 
O(T2) sliding mode is attained.  

Let t = kT be the current time with current state xk. The 
sampled-data system with sampling period hT is 
 kTthkTtdkTtdkTt tdtuBtxAhTtx ==== ++=+ )()()()( , (14) 

where ∫ −+==

T A
kTth dhTtDfetd

0
)()( λλλ , ∫=

hT A
d BdeB

0
][ λλ , 

and Ad = eA(hT). The proposed control is 
 ueq

*(k) = −(CBd)−1CAd xk − (C Γ)−1Cdk−1. (15) 
As soon as an appropriate hk is given, Ad(hk), Bd(hk) and 

dk−1, can be computed subsequently to render ueq
*(k). The 

dynamics of the discrete-time sliding mode without the 
higher order terms is approximated by substituting (14) into 
sk+1 and becomes 
 sk+1 = [CΦ − CΓ(CBd)−1CAd] xk + Cdk − Cdk−1  

 ≅  [C(I + TA) − (1/hk)C(I + hkTA)]xk + C(dk − Cdk−1)  

 ≅  [(hk − 1)/hk] sk + O(T2). (16) 
Since (hk − 1)/hk < 1, sk is stable in discrete time.  

The on-line tuning parameter hk is estimated at each 
sampling interval such that ueq

*(k) satisfies the constraint (8) 
during the extended reaching phase. On the other hand, the 
reaching condition of sliding mode can also be assured at 
each sampling instant from a continuous-time perspective,  

 ( ) ( ) ( ) ( )eqs kT CAx kT CBu kT CDf kT∗= + +   

 1( ) [ ( ) ( )] ( ) ( ) ( )k k kCAx kT C I h TA x kT h T Cd T CDf kT−≅ − + − +   

 ≅  −[Cx(kT)]/(hkT) + O(T) ≈ − s(kT)/(hkT), (17) 

where ∫ +=−=−

T A
k TOTkTDfdkTfDed

0

2
1 )()()]([ λλλ .  

It yields 

 21 0t kT t kT
k

ss s
h T= =≅ − < . (18) 

With equations (16) and (17), the proposed control (15) is 
validated to drive the system state toward the sliding surface 
gradually. We come to the following Lemma. 

Lemma 1. The control law (15) with the on-line tuning 
parameter hk is able to drive the linear system (5) with a 
smooth exogenous disturbance f(t) toward the O(T2) 
boundary layer ∑T in (13). 

A. The Simplified Chattering Free Controller 
According to Euler’s method 

 
0

( ) lim[ ( ) ( )]t kT T
x t x kT T x kT T= →

= + − . (19) 

The approximated state equation of (6) can be described as 
 xk+1 = (I + TA) xk + TB uk + dk. (20) 



 
 

 

The simplified control, based on (20), becomes 
 u*(k) = −(ChkTB)−1C(I + hkTA)xk − (CΓ)−1Cdk−1  

 1 1 1
1[( ) ] ( ) ( ) ( )k k k kCB Cx h T CB CAx C Cd− − −

−= − − − Γ , (21) 

where dk−1= xk−Φxk−1−Γu*(k−1), and d−1=0, for k=0, 1 ,…., n. 
Substituting (20) into sk+1 = Cxk+1, we obtain 

sk+1= CΦxk − (CΓ)(hkT)−1(CB)−1C(I+hkTA)xk + C(dk − dk−1) 
1

2
1

2( 1) ( )( ) ( ) ( )
2

k
k k k

k

h T CAB CB s C d d G T
h

−

−
− −= + − + , (22) 

where  2 2 2 3 3( ) [( ) 2 ( ) 3! ...] kG T C T A T A x= + +  

2 2 3 3 1(1 ) [( ) 3! ( ) 4! ...] ( )k kh C T A T A B CB Cx−− + +  

 2 3 2 4 3 1[( ) 2 ( ) 3! ( ) 4! ...] ( ) kC T A T A T A B CB CAx−− + + + .(23) 

During the reaching phase, hk is estimated at each sampling 
interval such that 2(hk−1)>>−TCAB(CB)−1 and  the control 
constraint (8) is satisfied. Then 
 2

1 1[( 1) ] ( ) ( )k k k k k ks h h s C d d G T+ −≅ − + − + . (24) 

and  
 ( ) ( ) [1 ( )] ( ) ( )k ks kT CAx kT h T C I h TA x kT= − +   

  −CB(CΓ)−1Cdk−1 + CDf(kT) ≈ − s(kT)/(hkT). (25) 
Hence, the continuous-time reaching condition holds as (18). 

IV. NUMERICAL EXAMPLE 
Given the linear time-invariant system 

 0 1 0 0
1 2 1 1

x x u f     
= + +     −     

 (26) 

where f(t)=0.5+5sin(0.1t)−cos(t) is the unknown external 
disturbance. Let s(x) = Cx = [1  1]x. 

A. An O(T2) boundary layer in sliding mode 
In order to verify the O(T2) dynamics during the sliding 

surface purely, the equivalent control (4) is applied to (26) by 
neglecting f(t). The initial condition is given as x1(0)=2, 
x2(0)=−1 and the sampled-data system of (26) is obtained 
with the sampling period T = 0.1second. Let  
 x(t)=C1(t)v1+ C2(t)v2 (27) 
be the solution of x Ax=  in (26). To differentiate (27) yields 
 1 21 2( ) ( ) ( ) ( )x t C t C t Ax tυ υ= + = . (28) 

Substituting (27) into (28) and comparing the coefficient 
parts of both equations, we obtain 
 1 1 1 2( ) ( ) ( )C t C t C tλ= + , (29) 

and 
2 2 1( ) ( )C t C t λ= . (30) 

The given numerical example has repeated eigenvalues 
λ1=λ2=1 with multiplicity 2. We can find two linearly 
independent eigenvectors ν1 = [1,1]T and ν2 = [0,1]T with 

these eigenvalues. Let C2(t)=βeλ1t =βet and C1(t)=αet +βtet be 
the solution of (30) and (29) respectively. Substituting them 
into (27), the solution of x Ax=  in (26) is 

 







+








+=

1
0

1
1

)()( ttt teteetx ββα . (31) 

The coefficients α and β are decided by the initial condition 
of the system. Let the solution of (26) without disturbance be 
the form as following 

 







+








+








+








=

2

1}
1
0

1
1

{
1
1

)(
K
K

eteetx ttt βα  (32) 

where K1 and K2 are arbitrary constants. Hence, 

 1 1 1 0
( ) { }

1 1 1 1
t t t tx t e te e eα β       

= + + +       
       

. (33) 

Substituting (32) into (26), we compare the coefficient parts 
with (33) and obtain 

 0)(
1
0

2 12

2 =







+








−

ku
KK

K . (34) 

It implies K2=0 and K1=u(k). The solution of (26) between 
the successive sampling instants can be described as 

 







+








+








+








=








0

)(
}

1
0

1
1

{
1
1

)(
)(

2

1 ku
eKTee

kx
kx KTKTKT βα . (35) 

Subtracting x1(k) from x2(k) in (35), we obtain 
 )]1)(()()1)(([ 21 KTkuKTkxKTkxe KT +−−+= −α  (36) 

and )]()()([ 12 kxkxkue KT −+= −β . (37) 

During the sampling interval, the discrete-time equivalent 
control uk

eq is solved with sk+1 = 0 and becomes 

 1 2(1 2 ) ( ) (1 2 ) ( )
(1 2 )

T T
eq
k T T

T e x k T e x ku
e Te

− + += −
− +

. (38) 

The discrete-time sliding mode during the sampling instant is 
 ττ τττ ekxekxs )21)(()21)(()( 21 ++−=   

 (1 2 )eq
ku e eτ ττ+ − + . (39) 

The ideal discrete-time sliding mode is zero at each sampling 
instant theoretically which implies s(k) = x1(k)+x2(k) = 0. The 
deviated state trajectory during the sampling interval can be 
obtained by substituting (38) into (39) and becomes  

 ]
)21(
)21()][()([2)( 12

T
TT Te

Tee
eeekxkxs

+−
+−−−=

ττ
τ τττ . (40) 

The maximum deviation point during each sampling period 
is obtained by differentiating (40) with respect to time; that is 

max 2 1
( ) ( )2[ ( ) ( )] [ 1 (2 1)] 0.

(1 2 )

T

T T
ds Tex k x k e
d e Te

τ
τ τ

τ τ τ
τ = = − + − + =

− +
 (41) 
Because the state strays away during the sampling interval, 



 
 

 

i.e. 2[x2(k)−x1(k)]eτ ≠0 during the discrete-time sliding phase, 
the farthest deviation instant is estimated to be 
 max [ (1 ) ] (1 ) 0.5T T Te Te e Tτ = − − − − ≅ . (42) 

Substituting (42) into (40), the estimated trend of the 
deviated dynamics is 

 ]
)21(
)21()][()([)( 2

2

12max

T

TT

TT

Te
Tee
eekxkxs

+−
+−−==τττ   

2 3 2

2 1 2

[ (2 2!) 3 4! ...] ( 2)[ ( ) ( )]{ [1 ...]}
[1 3 2! 5 3! ...] 2 2!
T T T Tx k x k

T T
⋅ + += − + + +

+ + +
  

 2 2
2 1[ ( ) ( )]( ){[1 (2 2!)] (3 4!) ...} ( )x k x k T T O T≅ − ⋅ + + ∈ . (43) 

Figure 1 shows that the farthest deviation instant is about half 
of T which results the O(T2) dynamic motion in the vicinity of 
∑, i.e. s(kT+τ)∈ O(T2), where 0≤τ <T. 
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Fig. 1.  An O(T2) boundary layer in the discrete-time sliding mode 

B. The control admissibility problem 
The same example with disturbance in (26) is used to 

compare the performance of both control methods (10) and 
(21). Given the control constraint M=15 and the sampling 
period T=0.01second, two simulations are shown in Fig. 2 
and Fig. 3 with the initial conditions x1(0)=2, x2(0)=−1, and 
x1(0)=−3, x2(0)=−1, respectively. 

The flexible parameter hk is simply estimated as 
 { ( ) }kh ceil u k M= . (44) 

The ‘ceil’ function rounds the elements of u(k)/M to the 
nearest integers greater than or equal to u(k)/M, i.e. hk is a 
positive integer.  

We observed that the total chattering free dynamics is 
assured conformably during the reaching phase and the 
sliding mode. However, the control admissibility problem is 
solved by the proposed control scheme (21) only. 
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Fig. 2. The comparison with initial condition x1(0)=2, x2(0)= −1 
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Fig. 3. The comparison with initial condition x1(0)= −3, x2(0)= −1 

C. The comparison with Bartoszewicz’s approach 
According to [9], if the bound of the discrete-time lumped 

effect of f(t) is known, i.e. 
 dlow ≤ dk ≤ dupper (45) 
where dlow and dupper are known constants. Let 
 dmean = (dlow + dupper)/2. (46) 
The control law proposed by Bartoszewicz is 
 uA_ Bart(k) = −(CΓ)−1[CΦxk + Cdmean − Sd(k+1)], (47) 
where Sd(k) is a known function defined in [9]. Let Sd(k) be as 
same as in [9] and 
 Sd(k)=[(k*−k)/k*]s(0) (48) 
where k=0, 1, …, k*. The positive constant k* is chosen by the 
designer in order to achieve good tradeoff between the 
necessary arrival time during the reaching phase and the 



 
 

 

control magnitude required for the convergence rate. 
The discrete-time sliding mode is obtained by applying (47) 
into the sampled-data system 
 sk+1 = CΦxk + CΓ uA_Bart(k) + Cdk  

      = Cdk − Cdmean + Sd(k+1), (49) 
which is the reaching law proposed by Bartoszewicz [9]. 
Finally, 
 sk+1 = Cdk − Cdmean (50) 
for any k ≥ k*. Let dmean=0. The constant k* is chosen as same 
as the approximated convergence characteristic in (16), i.e. 
k*=7 for the initial condition x1(0)=2, x2(0)= −1 and k*=27 for 
the initial condition x1(0)= −3, x2(0)= −1, respectively. The 
same conditions are used here to compare the performance of 
both control methods (21) and (47).  
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Fig. 4. The comparison with initial condition x1(0)=2, x2(0)= −1 
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Fig. 5. The comparison with initial condition x1(0)= −3, x2(0)= −1 

We observed that the characteristic of the control output and 

the discrete-time sliding mode dynamics behaves similarly in 
Fig. 4 and Fig. 5. However, the certain band around the 
sliding hyperplane (49) by using (47) is less accuracy than 
sk+1=C(dk−dk−1)∈ O(T2) by using proposed approach (21). 

If the change rate of the external disturbance is already 
known, a modified reaching law proposed by Bartoszewicz is 

 
1

0
( 1) [ ( ) ( )]

k

k k mean d d
i

s Cd Cd S k s i S i+
=

= − + + − −∑   

 = Cdk − Cdk−1 + Sd(k+1). (51) 

Finally, sk+1 ≅  Cdk − Cd k−1. (52) 
This enhances the dynamic boundary layer around the sliding 
hyperplane. However, the prior knowledge of the disturbance 
change rate is unnecessary in our approach. 

V. CONCLUSION 
Based on the former contribution of related research, a 

total chattering-free sliding mode control for sampled-data 
systems is proposed. The phenomenon of the deviated state 
during the sampling period, which results in the dynamic 
motion in O(T2) vicinity of ∑, is described. The farthest 
deviation instant is shown to be about half of T. The 
deficiencies related with the discrete-time equivalent control, 
obtained from sk+1=0,are focused, summarized, and solved.  
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