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Abstract— In this paper, robust adaptive control is presented
for a class of perturbed strict-feedback nonlinear systems with
both completely unknown control coef£cients and parametric
uncertainties. The proposed design method does not require
the a priori knowledge of the signs of the unknown control
coef£cients. It is proved that the proposed robust adaptive
scheme can guarantee the global uniform ultimate bounded-
ness of the closed-loop system signals.

I. INTRODUCTION

With the exciting development of adaptive control for
parametric uncertain nonlinear systems [1], much attention
has been paid to the application-motivated problem of
robust adaptive control for nonlinear systems in the presence
of time-varying disturbances, as described by the following
class of single-input-single-output (SISO) nonlinear uncer-
tain systems in the perturbed strict-feedback form

ẋi = gixi+1 + θT
i ψi(x̄i) + ∆i(t, x), i = 1, ..., n − 1

ẋn = gnu + θT
n ψn(x) + ∆n(t, x) (1)

where x = [x1, ..., xn]T ∈ Rn, x̄i = [x1, ..., xi]T , i =
1, ..., n − 1 are the state vectors, u ∈ R is the control,
θi ∈ Rpi , i = 1, ..., n are the unknown constant parameter
vectors, pi’s are positive integers, ψi(x̄i), i = 1, ..., n are
known nonlinear functions which are continuous and satisfy
ψi(0) = 0, unknown constants gi, i = 1, ..., n − 1 are
referred to as virtual control coef£cients [1], gn is referred
to as the high-frequency gain, and ∆i’s are unknown
Lipschitz continuous functions.

When gi = 1, robust adaptive control algorithms for
system (1) have been developed in [2][3][4], and [5] for sys-
tems with inverse dynamics. When gi’s are unknown with
known signs, several excellent adaptive control algorithms
are also developed in the literature for nonlinear systems.
For unknown constant gi’s, an adaptive control solution
was presented in [1] for strict-feedback nonlinear systems
without disturbance ∆i. When gi’s are functions of states,
adaptive control schemes were proposed for uncertain strict-
feedback and pure-feedback nonlinear systems with the
aid of neural network parameterization in [6], [7]. When
gi’s are completely unknown, i.e., with unknown signs, the
£rst solution was given in [8] for a class of £rst-order
linear systems using Nussbaum functions, adaptive control
was given in [9] for £rst-order nonlinear systems, adaptive
output feedback control is proposed in [10] for general
nonlinear system, and adaptive control was investigated for
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a class of high-order nonlinear systems in the parameter-
strict-feedback form in [11], [12]. A recent work on output
feedback control of uncertain systems with unknown control
direction was reported in [13].

In [14], a class of uncertain nonlinear systems with
completely unknown time-varying gi’s, uncertain time-
varying parameters and unknown time-varying bounded
disturbances. The exponentially decaying terms have been
introduced in the controller design to handle the bounded
disturbances. The nice properties of Nussbaum functions
are dif£cult to be utilized directly in the stability analysis
due to the presence of the exponential terms. In addition,
the stability proof has to be function-dependent by fully
exploiting the speci£c Nussbaum functions being chosen.
Though a much neater proof was provided in [14] for
the choice of N(ζ) = exp(ζ2) cos(π

2 ζ), it is not the
case for N(ζ) = ζ2 cos(ζ) as chosen in this paper. The
proof cannot be straightforwardly extended and the speci£c
properties of the function need to be investigated fully in
the derivation. Due to the different problem formulations
and methodologies used (e.g., projection algorithm has to
be utilized for on-line tuning of the time-varying unknown
parameters in [14]), the proposed design in this paper is
much more tighter and the controller is composed of smooth
functions, which is a must in backstepping design.

In this paper, robust adaptive control is proposed for
systems in strict feedback form with disturbances. The main
contributions are: (i) a new technical lemma is introduced,
which plays a fundamental role in solving the proposed
problem, (ii) the controller does not require the a priori
knowledge of the signs of the unknown control coef£cients,
and the unknown bounds of the disturbance terms are
estimated on-line for improving performance, and (iii) the
proposed design method expands the class of nonlinear
systems for which robust adaptive control approaches have
been studied through the introduction of exponential decay-
ing terms in stability analysis.

II. PROBLEM FORMULATION AND PRELIMINARIES

The control objective is to construct a robust adaptive
nonlinear control law so that the state x1 of system (1) is
driven to a small neighborhood of the origin, while keep
internal Lagrange stability.

In system (1), the unknown nonlinear functions ∆i(t, x)
could be due to many factors [3], such as measurement
noise, modeling errors, external time-varying disturbances,
modeling simpli£cations or changes due to time variations.
The occurrence of virtual control coef£cients gi’s is also



quite common in practice. The examples range from electric
motors and robotic manipulators to ¤ight dynamics [1].

Assumption 1: There exist unknown positive constants
p∗i , 1 ≤ i ≤ n, such that ∀(t, x) ∈ R+ × Rn, |∆i(t, x)| ≤
p∗i φi(x1, · · · , xi), where φi is a known nonnegative smooth
function.

A function N(ζ) is called a Nussbaum-type function if
it has the following properties [8]

lim
s→+∞ sup

∫ s

s0

N(ζ)dζ = +∞ (2)

lim
s→+∞ inf

∫ s

s0

N(ζ)dζ = −∞ (3)

Commonly used Nussbaum functions include: ζ2 cos(ζ),
ζ2 sin(ζ) and exp(ζ2) cos(π

2 ζ) [15]. In this paper, the even
Nussbaum function, N(ζ) = ζ2 cos(ζ), ζ ∈ R, is used for
analysis. In comparison with the de£nition for Nussbaum
functions in [12], the de£nition given by (2) and (3) gives a
much larger set of functions, though the example functions
satisfy both de£nitions.

Lemma 1: Let V (·) and ζ(·) be smooth functions de£ned
on [0, tf ) with V (t) ≥ 0, ∀t ∈ [0, tf ), and N(ζ) =
ζ2 cos(ζ). If the following inequality holds:

V (t) ≤ c0 + e−c1t

∫ t

0

[g0N(ζ) + 1]ζ̇ec1τdτ,∀t ∈ [0, tf ) (4)

where constant c1 > 0, g0 is a nonzero constant, and
c0 represents some suitable constant, then V (t), ζ(t) and∫ t

0
g0N(ζ)ζ̇dτ must be bounded on [0, tf ).

Proof: See Appendix.
Though the proof is not trivial even for £nite tf already,

it is the case that tf → ∞ is of interest. This can be easily
extended due to Proposition 1 below. Consider

ẋ(t) ∈ F (x(t)), x(0) = x0 (5)

where z �→ F (z) ⊂ RN is upper semicontinuous on
Rn with non-empty convex and compact values. It is well
known that the initial-value problem has a solution and that
every solution can be maximally extended.

Proposition 1: [16] If x : [0, tf ) → RN is a bounded
maximal solution of (5), then tf = ∞.

Remark 1: From our understanding, we can make a
conjecture that Lemma 1 is true for all the Nussbaum
functions. Because of the presence of ec1τ in (4), the
proof is function-dependent. We hope that interested reader
can prove the Lemma for general Nussbaum functions.
In addition, we would like to point out that N(·) is not
necessarily to be an even function, which is only made
for the convenience of proof. If N(·) is chosen as an odd
function, e.g., N(ζ) = ζ2 sin(ζ), the Lemma can be easily
proven by following the same procedure.

III. ROBUST ADAPTIVE CONTROL AND MAIN RESULTS

In this section, the robust adaptive control design proce-
dure for nonlinear system (1) is presented. The design of
both the control law and the adaptive laws is based on a

change of coordinates z1 = x1, zi = xi−αi−1, i = 1, ..., n,
where the functions αi, i = 1, ..., n − 1 are referred to
as intermediate control functions which will be designed
using backstepping technique, b̂i is the parameter estimate
for b∗i which is the grouped unknown bound for p∗i , θ̂a,i

represents the estimate of unknown parameter θ∗a,i which is
an augmented parameter and consists of gj , j = 1, · · · , i−1
and θj , j = 1, · · · , i as will be clari£ed later, and ζi is the
argument of the Nussbaum function. At each intermediate
step i, we design the intermediate control function αi using
an appropriate Lyapunov function Vi, and give the updating

laws ˙̂
bi,

˙̂
θa,i and ζ̇i. At the nth step, the actual control

u appears and the design is completed. For clarity and
conciseness, let us de£ne θ̃a,i = θ̂a,i − θ∗a,i, b̃i = b̂i − b∗i ,
constants

ci1 := min{2ki0,
σθi

λmin(Γ−1
i )

, σbi
γi} (6)

ci2 := b∗i 0.2785εi +
1
2
σθi

‖θ∗a,i − θ0
a,i‖2 +

1
2
σbi

(b∗i − b0
i )

2(7)

the Lyapunov function candidate

Vi =
1
2
z2
i +

1
2
θ̃T

a,iΓ
−1
i θ̃a,i +

1
2
γ−1

i b̃2
i (8)

and the intermediate variables including the control func-
tions and adaptive laws

ηi = kizi + θ̂T
a,iψa,i + b̂iφ̄i tanh

(ziφ̄i

εi

)
(9)

αi = N(ζi)ηi (10)

ζ̇i = ziηi (11)
˙̂
θa,i = Γi

[
ziψa,i − σθi

(θ̂a,i − θ0
a,i)

]
(12)

˙̂
bi = γi

[
ziφ̄i tanh

(ziφ̄i

εi

)
− σbi

(b̂i − b0
i )

]
(13)

where constants b̂i and θ̂a,i, functions ψa,i and φ̄i are
de£ned by

b∗i = max{p∗1, · · · , p∗i } (14)

θ∗a,i = [1, g1, ..., gi−1, θ
T
i , θT

1 , ..., θT
i−1]

T (15)

φ̄i(x̄i) = φi +
i−1∑
j=1

∣∣∂αi−1

∂xj

∣∣φj (16)

ψa,i = [βi,−∂αi−1

∂x1
x2, ...,−∂αi−1

∂xi−1
xi,

ψT
i ,−∂αi−1

∂x1
ψT

1 , ...,−∂αi−1

∂xi−1
ψT

i−1]
T (17)

with αn = u, b∗1 = p∗1, φ̄1 = φ1, θ∗a,1 = θ1, ψa,1 = ψ1, and
βi being de£ned by

βi = −
i−1∑
j=1

∂αi−1

∂θ̂a,j

˙̂
θa,j −

i−1∑
j=1

∂αi−1

∂b̂j

˙̂
bj − ∂αi−1

∂ζi−1
ζ̇i−1 (18)

and Γi = ΓT
i > 0, γi > 0, εi > 0, θ̂a,i and b̂i are the

estimates of θ∗a,i and b∗i , constant k10 = ki − 1
4 > 0, and

σθi
, σbi

, θ0
a,i, and b0

i are positive design constants.



In this paper, the following inequalities play an important
role

0 ≤ |x| − x tanh(
x

ε
) ≤ 0.2785ε, for ε > 0, x ∈ R[3] (19)

−θ̃T
a,i(θ̂a,i − θ0

a,i) ≤ −1
2
‖θ̃a,i‖2 +

1
2
‖θ∗a,i − θ0

a,i‖2 (20)

−b̃i(b̂i − b0
i ) ≤ −1

2
b̃2
i +

1
2
(b∗i − b0

i )
2 (21)

Step 1: To start, let us study the z1-subsystem of (1):

ẋ1 = g1x2 + θT
1 ψ1(x1) + ∆1(t, x) (22)

where x2 is taken for a virtual control input. In light of
Assumption 1, we have

z1ż1 = z1(g1x2 + θT
1 ψ1(x1) + ∆1(t, x))

≤ z1(g1x2 + θT
1 ψ1) + b∗1|z1|φ̄1 (23)

Consider the Lyapunov function candidate given in (8). The
time derivative of V1 along (23) is

V̇1 ≤ z1(g1x2 + θ∗T
a,1ψa,1) + b∗1|x1|φ̄1

+θ̃T
a,1Γ

−1
1

˙̂
θa,1 + γ−1

1 b̃1
˙̂
b1 (24)

Since x2 = z2 + α1, substituting (9)-(11) with i = 1 into
(24) yields

V̇1 ≤ g1z1z2 + g1N(ζ1)ζ̇1 + z1θ
∗T
a,1ψa,1 + b∗1|x1|φ̄1

+θ̃T
a,1Γ

−1
1

˙̂
θa,1 + γ−1

1 b̃1
˙̂
b1 (25)

Adding and subtracting ζ̇1 on the right hand side of (25),
and noting (12) and (13), we have

V̇1 ≤ −k1z
2
1 + g1z1z2 + g1N(ζ1)ζ̇1 + ζ̇1 + b∗1|x1|φ̄1

−b∗1x1φ̄1 tanh(
x1φ̄1

ε1
) − σθ1 θ̃

T
a,1(θ̂a,1 − θ0

a,1)

−σb1 b̃1(b̂1 − b0
1) (26)

Using the inequalities (19)-(21), (26) becomes

V̇1 ≤ −c11V1 + c12 + g1N(ζ1)ζ̇1 + ζ̇1 + g2
1z2

2 (27)

with constants k10 = k1− 1
4 > 0, and c11, c12 being de£ned

in (6) and (7) respectively.
Let ρ1 := c12

c11
. Multiplying (27) by ec11t leads to

d

dt
(V1e

c11t) ≤ c12e
c11t + g1N(ζ1)ζ̇1e

c11t

+ζ̇1e
c11t + g2

1z2
2ec11t (28)

Integrating (28) over [0, t], we have

V1(t) ≤ ρ1 + V1(0) + e−c11t

∫ t

0

[g1N(ζ1) + 1]ζ̇1e
c11τdτ

+
∫ t

0

g2
1z2

2e−c11(t−τ)dτ (29)

Remark 2: If there was no uncertain term ∆1 as in
[11][12], where the uncertainty is from unknown parameters
only, adaptive control can be used to solve the problem
elegantly and the asymptotic stability can be guaranteed.

However, it is not the case here due to the presence of
the uncertainty terms ∆1 in system (1). For illustration,
integrating (27) over [0, t] leads to

V1(t) ≤ V1(0)+c12t+
∫ t

0

(g1N(ζ1)+1)ζ̇1dτ +
∫ t

0

g2
1z2

2dτ

from which, no conclusion on the boundedness of V1(t) or
ζ1(t) can be drawn by applying Lemma 1 in [12] due to
the extra term c12t. The problem can be successfully solved
by multiplying the exponential term ec11t to both sides of
(27) as in the paper. From (29), the stability results can
be drawn by invoking Lemma 1 if

∫ t

0
g2
1z2

2e−c11(t−τ)dτ is
upper bounded.

Remark 3: In equation (29), if there is no extra term∫ t

0
g2
1z2

2e−c11(t−τ)dτ within the inequality, we can con-
clude that V1(t), ζ1 and z1, θ̂a,1, b̂1 are all bounded on
[0, tf ) according to Lemma 1. Thus, from Proposition
1, tf = ∞, and we claim that z1, θ̂a,1, b̂1 are globally
uniformly ultimately bounded. Due to the presence of term∫ t

0
g2
1z2

2e−c11(t−τ)dτ in (29), Lemma 1 cannot be applied
directly. By noting that

e−c11t

∫ t

0

g2
1z2

2ec11τdτ ≤ e−c11tg2
1 sup

τ∈[0,t]

z2
2

∫ t

0

ec11τdτ

≤ g2
1 supτ∈[0,t] z

2
2

c11

we know that if z2 can be regulated as bounded, the bound-
edness of

∫ t

0
g2
1z2

2e−c11(t−τ)dτ is obvious. Then, according
to Lemma 1, the boundedness of z1(t) can be guaranteed.
The effect of

∫ t

0
g2
1z2

2e−c11(t−τ)dτ will be dealt with at the
following steps.

Step i (2 ≤ i ≤ n − 1): In view of Assumption 1, we
have

ziżi ≤ zi(gixi+1 + θ∗T
a,iψa,i) + b∗i |zi|φ̄i

where b∗i , θ∗a,i, φ̄i, ψa,i and βi are de£ned in (14), (15),
(16), (17) and (18) respectively.

Consider the Lyapunov function candidate Vi given in (8).
Selecting αi and parameters adaptation laws as in (10)-(13),
we can similarly obtain

Vi(t) ≤ ρi + Vi(0) + e−ci1t

∫ t

0

[giN(ζi) + 1]ζ̇ie
ci1τdτ

+
∫ t

0

g2
i z2

i+1e
−ci1(t−τ)dτ

with ρi := ci2
ci1

, constants ki0 = ki − 1
4 > 0, and ci1, ci2

being de£ned in (6) and (7) respectively.
Remark 4: Similarly, if zi+1 can be regulated as

bounded, and therefore
∫ t

0
g2

i z2
i+1e

−ci1(t−τ)dτ is bounded
at the following steps, then according to Lemma 1, the
boundedness of zi(t) can be guaranteed.

Step n: In this £nal step, the actual control u appears.
Similarly, we have

znżn ≤ zn(gnu + θ∗T
a,nψa,n) + b∗n|zn|φ̄n



where b∗n, θ∗a,n, φ̄n, ψa,n and βn are de£ned in (14), (15),
(16), (17) and (18) respectively.

Consider the Lyapunov function candidate Vn given in
(8). Selecting u and parameters adaptation laws as in (10)-
(13), we can similarly obtain

Vn(t) ≤ ρn + Vn(0) + e−cn1t

∫ t

0

[gnN(ζn) + 1]ζ̇necn1τdτ

with ρn := cn2
cn1

, constants cn1, cn2 > 0 being de£ned in (6)
and (7) respectively.

Using Lemma 1, we can conclude that ζn(t) and Vn(t),
hence zn(t), θ̂a,n(t), b̂a,n(t) are bounded on [0, tf ). From
the boundedness of zn(t), the boundedness of the extra
term

∫ t

0
g2

n−1z
2
ne−cn−1,1(t−τ)dτ at Step (n − 1) is readily

obtained. Applying Lemma 1 backward (n−1) times, it can
be seen from the above design procedures that Vi(t), zi(t),
θ̂a,i(t), b̂a,i(t), and hence xi(t) are bounded on [0, tf ).

Theorem 1: For the perturbed strict-feedback nonlinear
system (1) with completely unknown control coef£cients gi,
under Assumption 1, if we apply the controller (10)-(13),
the solutions of the resulting closed-loop adaptive system
are globally uniformly ultimately bounded. Furthermore,
given any µ > µ∗ =

√∑n
i=1 2(ρi + ci), there exists T

such that, for all t ≥ T , we have ‖z(t)‖ ≤ µ, where
z(t) := [z1, · · · , zn]T ∈ Rn, ρi := ci2

ci1
, i = 1, · · · , n,

constants ci1 > 0 and ci2 > 0 are de£ned by (6) and (7)
respectively, and ci is the upper bound of

∫ t

0
(giN(ζi)ζ̇i +

ζ̇i + g2
i z2

i+1)e
−ci1(t−τ)dτ , i = 1, · · · , n − 1 and cn is

the upper bound of
∫ t

0
(gnN(ζn)ζ̇n + ζ̇n)e−cn1(t−τ)dτ .

The compact set Ωz = {z ∈ Rn|‖z(t)‖ ≤ µ} can be
made as small as desired by appropriately choosing the
design constants. Furthermore, the output y(t) satis£es the
following property:

|y(t)| ≤
√

2V1(0)e−c11t + 2(ρ1 + c1),∀t ≥ 0. (30)
Proof: The proof can be easily completed by follow-

ing the above design procedures from Step 1 to Step n.
According to Proposition 1, if the solution of the closed-
loop system is bounded, then tf = ∞. Therefore, we can
obtain the globally uniformly ultimately boundedness of all
the signals in the closed-loop system. Since x1(t) = z1(t),
from the de£nition of V1 and (29), the property (30) can be
readily obtained. Thus, by appropriately choosing the design
constants, we can achieve the regulation of the state x1(t)
to any prescribed accuracy while keeping the boundedness
of all the signals and states of the close-loop system.

IV. CONCLUSION

In this paper, a robust adaptive control approach for a
class of perturbed uncertain strict-feedback nonlinear sys-
tems with unknown control coef£cients has been presented.
The design method does not require the a priori knowledge
of the signs of the unknown control coef£cients due to the
incorporation of Nussbaum gain in the controller design. It
has been proved that the proposed robust adaptive scheme
can guarantee the global uniform ultimate boundedness of
the closed-loop system signals.
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Adaptive Control Design. New York: Wiley, 1995.

[2] Z. P. Jiang and D. J. Hill, “A robust adaptive backstepping scheme for
nonlinear systems with unmodeled dynamics,” IEEE Trans. Automat.
Contr., vol. 44, pp. 1705–1711, 1999.

[3] M. M. Polycarpou and P. A. Ioannou, “A robust adaptive nonlinear
control design,” Automatica, vol. 32, no. 3, pp. 423–427, 1996.

[4] B. Yao and M. Tomizuka, “Adaptive robust control of siso nonlinear
systems in a semi-strict feedback form,” Automatica, vol. 33, no. 5,
pp. 893–900, 1997.

[5] Z. P. Jiang and L. Praly, “Design of robust adaptive controllers for
nonlinear systems with dynamic uncertainties,” Automatica, vol. 34,
no. 7, pp. 825–840, 1998.

[6] S. S. Ge, C. C. Hang, T. H. Lee, and T. Zhang, Stable Adaptive Neural
Network Control. Boston: Kluwer Academic Publisher, 2002.

[7] S. S. Ge, C. C. Hang, and T. Zhang, “Stable adaptive control for
nonlinear multivariable systems with a triangular control structure,”
IEEE Trans. Automat. Contr., vol. 45, no. 6, pp. 1221–1225, 2000.

[8] R. D. Nussbaum, “Some remarks on the conjecture in parameter
adaptive control,” Systems & Control Letters, vol. 3, pp. 243–246,
1983.

[9] B. Mªartensson, “Remarks on adaptive stabilization of £rst-order
nonlinear systems,” Systems & Control Letters, vol. 14, pp. 1–7,
1990.

[10] X. Ye, “Adaptive nonlinear output-feedback control with unknown
high-frequency gain sign,” IEEE Trans. Automat. Contr., vol. 46, pp.
112–115, 2001.

[11] Z. Ding, “Adaptive control of nonlinear systems with unknown virtual
control coef£cients,” Int. J. Adaptive Control and Signal Processing,
vol. 14, pp. 505–517, 2000.

[12] X. Ye and J. Jiang, “Adaptive nonlinear design without a priori
knowledge of control directions,” IEEE Trans. Automat. Contr.,
vol. 43, no. 11, pp. 1617–1621, 1998.

[13] Z. P. Jiang, I. Mareels, D. J. Hill, and J. Huang, “Universal output
feedback controllers for nonlinear systems with unknown control
direction,” in Proc. American Control Conference, Denver, CO, 2003,
pp. 573–578.

[14] S. S. Ge and J. Wang, “Robust adaptive tracking for time-varying
uncertain nonlinear systems with unknown control coef£cients,”
IEEE Trans. Automat. Contr., vol. 48, no. 8, pp. 1463–1469, 2003.

[15] A. Ilchmann, Non-Identi£er-Based High-Gain Adaptive Control.
London: Springer-Verlag, 1993.

[16] E. P. Ryan, “A universal adaptive stabilizer for a class of nonlinear
systems,” Systems & Control Letters, vol. 16, pp. 209–218, 1991.

APPENDIX

Proof of Lemma 1: To start with, re-write (4) as

V (t) ≤ c0 + e−c1t

∫ t

0

[g0N(ζ) + 1]ζ̇ec1τdτ,∀t ∈ [0, tf ) (31)

We £rst show that ζ(t) is bounded on [0, tf ) by seeking
a contradiction. Suppose that ζ(t) is unbounded and two
cases should be considered: (i) ζ(t) has no upper bound
and (ii) ζ(t) has no lower bound.

Case (i): ζ(t) has no upper bound on [0, tf ). In this case,
there must exist a monotone increasing sequence {ti}, i =
1, 2, · · ·, such that {ωi = ζ(ti)} is monotone increasing with
ω1 > |ζ(0)|, limi→+∞ ti = tf , and limi→+∞ ωi = +∞.

For clarity, de£ne

Ng(ωi, ωj) =
∫ ωj

ωi

g0N(ζ(τ))e−c1(tj−τ)dζ(τ) (32)



with an understanding that Ng(ωi, ωj) = Ng(ω(ti), ω(tj))
= Ng(ti, tj) for notation convenience, and ωi ≤ ωj , τ ∈
[ti, tj ]. Let ζ−1(x) denote the inverse function of ζ(τ), i.e.,
ζ(ζ−1(τ)) = ζ−1(ζ(τ)) ≡ τ . Noting N(ζ) = ζ2 cos(ζ),
(32) can be re-written as

Ng(ωi, ωj) =
∫ ωj

ωi

g0ζ
2 cos(ζ)e−c1[tj−ζ−1(ζ)]dζ (33)

Integration by parts, we have

Ng(ωi, ωj) = g0ζ
2 sin(ζ)e−c1[tj−ζ−1(ζ)]

∣∣∣ωj

ωi

−
∫ ωj

ωi

g0 sin(ζ)d{ζ2e−c1[tj−ζ−1(ζ)]} (34)

Noting the fact that dζ−1(ζ) = dτ and d{ζ2e−c1[tj−ζ−1(ζ)]}
= 2ζe−c1[tj−ζ−1(ζ)]dζ + c1ζ

2e−c1(tj−τ)dτ , equation (34)
becomes

Ng(ωi, ωj) = g0ζ
2 sin(ζ)e−c1[tj−ζ−1(ζ)]

∣∣∣ωj

ωi

−
∫ ωj

ωi

2g0ζ sin(ζ)e−c1[tj−ζ−1(ζ)]dζ

−
∫ tj

ti

c1g0ζ
2 sin(ζ)e−c1(tj−τ)dτ (35)

Integration by parts for the term∫ ωj

ωi
2g0ζ sin(ζ)e−c1[tj−ζ−1(ζ)]dζ in (35), we have∫ ωj

ωi

2g0ζ sin(ζ)e−c1[tj−ζ−1(ζ)]dζ

= −2g0ζ cos(ζ)e−c1[tj−ζ−1(ζ)]
∣∣∣ωj

ωi

+
∫ ωj

ωi

2g0 cos(ζ)d{ζe−c1[tj−ζ−1(ζ)]} (36)

Noting that d{ζe−c1[tj−ζ−1(ζ)]} = e−c1[tj−ζ−1(ζ)]dζ +
c1ζe−c1[tj−ζ−1(ζ)]dτ , equation (36) becomes∫ ωj

ωi

2g0ζ sin(ζ)e−c1[tj−ζ−1(ζ)]dζ

= −2g0ζ cos(ζ)e−c1[tj−ζ−1(ζ)]
∣∣∣ωj

ωi

+
∫ ωj

ωi

2g0 cos(ζ)e−c1[tj−ζ−1(ζ)]dζ

+
∫ tj

ti

2c1g0ζ cos(ζ)e−c1(tj−τ)dτ (37)

Substituting (37) into (35) yields

Ng(ωi, ωj) = g0ζ
2 sin(ζ)e−c1[tj−ζ−1(ζ)]

∣∣∣ωj

ωi

+2g0ζ cos(ζ)e−c1[tj−ζ−1(ζ)]
∣∣∣ωj

ωi

−
∫ ωj

ωi

2g0 cos(ζ)e−c1[tj−ζ−1(ζ)]dζ

−
∫ tj

ti

2c1g0ζ cos(ζ)e−c1(tj−τ)dτ

−
∫ tj

ti

c1g0ζ
2 sin(ζ)e−c1(tj−τ)dτ (38)

Similarly, integration by parts for the term∫ ωj

ωi
2g0 cos(ζ)e−c1[tj−ζ−1(ζ)]dζ in (38) by noting that

d{e−c1[tj−ζ−1(ζ)]} = c1e
−c1[tj−ζ−1(ζ)]dτ , we have∫ ωj

ωi

2g0 cos(ζ)e−c1[tj−ζ−1(ζ)]dζ

= 2g0 sin(ζ)e−c1[tj−ζ−1(ζ)]
∣∣∣ωj

ωi

−
∫ tj

ti

2c1g0 sin(ζ)e−c1(tj−τ)dτ (39)

Substituting (39) into (38), we have

Ng(ωi, ωj) = g0ζ
2 sin(ζ)e−c1[tj−ζ−1(ζ)]

∣∣∣ωj

ωi

+2g0ζ cos(ζ)e−c1[tj−ζ−1(ζ)]
∣∣∣ωj

ωi

−2g0 sin(ζ)e−c1[tj−ζ−1(ζ)]
∣∣∣ωj

ωi

+
∫ tj

ti

2c1g0 sin(ζ)e−c1(tj−τ)dτ

−
∫ tj

ti

2c1g0ζ cos(ζ)e−c1(tj−τ)dτ

−
∫ tj

ti

c1g0ζ
2 sin(ζ)e−c1(tj−τ)dτ (40)

Let us £rst consider the term∫ tj

ti
2c1g0 sin(ζ)e−c1(tj−τ)dτ on the right side of (40).

Using integral inequality (b − a)mf1 ≤ ∫ b

a
f(x)dx ≤

(b − a)mf2 with mf1 = infa≤x≤b f(x) and mf2 =
supa≤x≤b f(x), and noting that 0 < e−c1(tj−τ) ≤ 1 for
τ ∈ [ti, tj ], we have

∣∣∣
∫ tj

ti

2c1g0 sin(ζ)e−c1(tj−τ)dτ
∣∣∣ ≤ (tj − ti)2c1g0 (41)

Next, for the term
∫ tj

ti
2c1g0ζ cos(ζ)e−c1(tj−τ)dτ , apply-

ing integral inequality similarly by noting that 0 <
e−c1(tj−τ) ≤ 1 for τ ∈ [ti, tj ], we have
∣∣∣
∫ tj

ti

2c1g0ζ cos(ζ)e−c1(tj−τ)dτ
∣∣∣ ≤ (tj−ti)2c1g0ωj (42)

Then, let us consider the term∫ tj

ti
c1g0ζ

2 sin(ζ)e−c1(tj−τ)dτ . Using the property that if

f(x) ≤ g(x), ∀x ∈ [a, b], then
∫ b

a
f(x)dx ≤ ∫ b

a
g(x)dx and

noting that

−ω2
j ec1τ ≤ ζ2(τ) sin(ζ(τ))ec1τ ≤ ω2

j ec1τ ,∀τ ∈ [ti, tj ]

we have

e−c1tj

∫ tj

ti

c1g0ζ
2 sin(ζ)ec1τdτ

≤ e−c1tj c1g0ω
2
j

∫ tj

ti

ec1τdτ = g0ω
2
j [1 − e−c1(tj−ti)]

e−c1tj

∫ tj

ti

c1g0ζ
2 sin(ζ)ec1τdτ

≥ −e−c1tj c1g0ω
2
j

∫ tj

ti

ec1τdτ = −g0ω
2
j [1 − e−c1(tj−ti)]



i.e.,
∣∣∣e−c1tj

∫ tj

ti

c1g0ζ
2 sin(ζ)ec1τdτ

∣∣∣
≤ g0ω

2
j [1 − e−c1(tj−ti)] (43)

Noting that ζ−1(ωi) = ζ−1(ζ(ti)) = ti and ζ−1(ωj) =
ζ−1(ζ(tj)) = tj , from (41), (42) and (43), we have the
following two inequalities

Ng(ωi, ωj) ≤ g0ω
2
j [sin(ωj) + 1 − e−c1(tj−ti)]

+fu(ωi, ωj) (44)

Ng(ωi, ωj) ≥ −g0ω
2
j [− sin(ωj) + 1 − e−c1(tj−ti)]

+fl(ωi, ωj) (45)

where

fu(ωi, ωj) = g0ωj cos(ωj) − 2g0 sin(ωj)
+(tj − ti)2c1g0ωj + (tj − ti)2c1g0

−g0e
−c1(tj−ti)ω2

i sin(ωi) − 2g0e
−c1(tj−ti)ωi cos(ωi)

+2g0e
−c1(tj−ti) sin(ωi)

fl(ωi, ωj) = g0ωj cos(ωj) − 2g0 sin(ωj)
−(tj − ti)2c1g0ωj − (tj − ti)2c1g0

−g0e
−c1(tj−ti)ω2

i sin(ωi) − 2g0e
−c1(tj−ti)ωi cos(ωi)

+2g0e
−c1(tj−ti) sin(ωi)

Re-write (31) as

V (ti) ≤ c0 +
∫ ζ(ti)

ζ(0)

g0N(ζ(τ))e−c1(ti−τ)dζ(τ)

+
∫ ζ(ti)

ζ(0)

e−c1(ti−τ)dζ(τ) (46)

Noting (44), we have

V (ti) ≤ c0 + Ng(ζ(0), ωi) + (ωi − ζ(0)) sup
τ∈[0,ti]

e−c1(ti−τ)

≤ c0 + g0ω
2
i [sin(ωi) + 1 − e−c1ti ] + fu(ζ(0), ωi)

+(ωi − ζ(0))

= ω2
i {g0[sin(ωi) + 1 − e−c1ti ] +

1
ω2

i

[c0 + fu(ζ(0), ωi)

+(ωi − ζ(0))]}
Taking the limit as i → +∞, hence ti → tf , ωi → +∞,
fu(ζ(0),ωi)

ω2
i

→ 0, we have

0 ≤ lim
i→+∞

V (ti) ≤ lim
i→+∞

ω2
i g0[sin(ωi) + 1 − e−c1ti ]

which, if g0 > 0, draws a contradiction when [sin(ωi) +
1−e−c1ti ] < 0, and if g0 < 0, draws a contradictions when
[sin(ωi)+1−e−c1ti ] > 0. Therefore, ζ(t) is upper bounded
on [0, tf ).

Case (ii): ζ(t) has no lower bound on [0, tf ). There must
exist a monotone increasing sequence {ti}, i = 1, 2, · · ·,
such that {ωi = −ζ(ti)} with ω1 > |ζ(0)|, limi→+∞ ti =
tf , and limi→+∞ ωi = +∞.

Letting χ(t) = −ζ(t), (31) is re-written as

V (ti) ≤ c0 −
∫ ω

i

ζ(0)

g0N(−χ(τ))e−c1(ti
−τ)dχ(τ)

−
∫ ω

i

ζ(0)

e−c1(ti
−τ)dχ(τ) (47)

Noting that N(·) is an even function, i.e., N(χ) = N(−χ),
(47) becomes

V (ti) ≤ c0 −
∫ ω

i

ζ(0)

g0N(χ(τ))e−c1(ti
−τ)dχ(τ)

−
∫ ω

i

ζ(0)

e−c1(ti
−τ)dχ(τ)

Noting (45), we have

V (ti) ≤ c0 − Ng(ζ(0), ωi) − [ωi − ζ(0)] inf
τ∈[0,t

i
]
e−c1(ti

−τ)

≤ c0 + g0ω
2
i [− sin(ωi) + 1 − e−c1t

i ] − fl(ζ(0), ωi)
−(ωi − ζ(0))e−c1t

i

= ω2
i {g0[− sin(ωi) + 1 − e−c1t

i ] +
1
ω2

i

[c0 − fl(ζ(0), ωi)

−(ωi − ζ(0))e−c1t
i ]}

Taking the limit as i → +∞, hence ti → tf , ωi → +∞,
fl(ζ(0),ωi)

ω2
i

→ 0, we have

0 ≤ lim
i→+∞

V (ti) ≤ lim
i→+∞

ω2
i g0[sin(ωi)+1− e−c1t

i ] (48)

which, if g0 > 0, draws a contradiction when [− sin(ωi) +
1 − e−c1ti ] < 0, and if g0 < 0, draws a contradictions
when [− sin(ωi)+1−e−c1t

i ] > 0. Therefore, ζ(t) is lower
bounded on [0, tf ).

Therefore, ζ(t) must be bounded on [0, tf ). In addition,
V (t) and

∫ t

0
g0N(ζ)ζ̇dτ are bounded on [0, tf ). ♦


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeP18.4
	Page0: 1917
	Page1: 1918
	Page2: 1919
	Page3: 1920
	Page4: 1921
	Page5: 1922


