
A Non-Orthogonal Projection Approach to 
Characterization of Almost Positive Real 
Systems with an Application to Adaptive 
Control 
 

Mark Balas, Senior Member, IEEE and Robert Fuentes, Member IEEE 
 
 
 
Abstract: In this paper we develop a very general 
projection approach to obtain and unify necessary 
and sufficient conditions for making a linear time-
invariant system positive real using static output 
feedback. Such systems are called “Almost positive 
Real”. These conditions are that the open-loop 
system must be weakly minimum phase, have 
positive definite high frequency gain and the 
marginally stable zero system alone must be 
positive real. When dynamic output feedback is 
used the necessary and sufficient conditions reduce 
to weakly minimum phase with a positive definite 
high frequency gain. These results yield a stability 
proof for Direct Model Reference Adaptive Control 
and Disturbance Cancellation using only almost 
positive real systems. 
 
Introduction:  
 There is substantial interest in positive 
real and strictly positive real systems for various 
aspects of control system design and analysis, 
[1]-[3]. Here we will address the problem of 
using  
output feedback to make a system positive real. 
We consider the following controllable and 
observable linear continuous-time square plant: 
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From [18], the transmission (or blocking) zeros 
of this system are the values of s where 
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The system (A, B, C) is said to be minimum 
phase when  
 

 (2) 

When (2) is true only for  (A, B, C) is 
weakly minimum phase; this follows a similar 
definition for nonlinear systems in [9]. Also A is 
said to be stable when all its eigenvalues lie in 
the open left half-plane and weakly stable when 
they lie in the closed left half-plane. 
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The high frequency gain of (1) is CB and the 
system is said to be relative degree one when CB 
is nonsingular. 
 We will use a static output feedback 
control law given by 

   (3) 

The closed-loop transfer function for (1) and (3) 
is 
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and the open-loop version P(s) is given with G 
set to zero. 
 
Definition: An m x m rational matrix transfer 
function P(s) is positive real (PR) when 
All elements of P(s) are analytic in the open right 
half-plane Re(s)>0 with only simple poles on the 
imaginery axis (the residue matrix at these poles 
must be positive semi-definite), and 
Re P(s) is positive semi-definite for Re(s)>0 
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From the Positive Real Lemma [4], it is known 
that this is equivalent to  

  (5) 
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where we have used the convention: 

 

 There is little controversy over this 
classic definition of PR. However, when it 
comes to strict positive real, things are less clear. 
We use the following: 
Definition: An mxm rational matrix transfer 
function P(s) is strictly positive real (SPR) when 

te.semidefini positive and symmetric for  0 and
 definite positive and symmetric for  0
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We remark that, of all 
the definitions of SPR, this one is equivalent to 
the Kalman-Yacubovic (K-Y) conditions as 
shown in [5]: 

  (6) 

This can be seen from the Positive Real Lemma 

by  

Henceforth, when we speak of P(s) being SPR, 
we can use this equivalence of a minimal 
realization (A, B, C) satisfying (6). 
 We seek necessary and sufficient 
conditions on (A, B, C) for an output feedback 
control law (3) to make the closed-loop transfer 
function PR/SPR and say that  
“(A, B, C) is almost PR/SPR”. This also called 
“Output feedback equivalence to a PR/SPR 
system.” Various authors have addressed 
different aspects of this problem. In [6] Theo 3.1, 
Gao and Ioannou have shown that PR implies 
CB is positive definite. Additionally they have 
shown that SPR implies: 

 

But not necessarily conversely, except for some 
special cases. 
 In [7] Theo 4.1, Weiss, Wang, and 
Speyer show that, if CB is positive definite and 
the open-loop system is minimum phase, then (3) 
will produce PR. Here we will show that these 
conditions are necessary and sufficient for  
(A, B, C) to be almost SPR. In [8], Gu addresses 
the problem of quadratic stabilization via linear 
control. This is related but not the same as our 
problem. In his Cor 3.7, Gu seems to prove a 
related result although it is based on a retracted 
or model reduced version of K-Y in Theo 2.11 of 
that paper. Gu’s result also uses a scaled version 
KPC(s) of the closed-loop transfer function, 
where K is nonsingular. A similar result can be 
accomplished with a modified output feedback 

controller: 
 (7) 

taking H to be the inverse of K. We hope to 
clarify this with a clear proof that indicates the 
exact form of the feedback law (3) and the 
simple structure of the gain G. 
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Projections and Retractions: 

We will use a non-orthogonal projection 
approach to obtain our results on almost PR/SPR 
in a unified way. An idempotent operator P on 

is a projection and, from [19] pp20-21, we 
have  
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An orthogonal projection is one where 
 

Given an m-dimensional subspace 
with a (possibly non-orthogonal) 

projection 

nS ℜ in 
P onto it, we will 

define:W If we 
let the columns of W form an orthonormal basis 
for S, then W which is 
orthogonal projection onto S. Therefore 

is unique and we call W the retraction 
of P (or the subspace S) onto ℜ  Thus we can 
retract or “pullback” a projection into a lower 
dimensional space. 
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Almost SPR Result: We now state the following: 
Theorem 1: (A, B, C) is Almost SPR with control 
law (3) if and only if the high frequency gain CB 
is positive definite and the open-loop system is 
minimum phase. The output Feedback Gain that 
does this is ))(( 11

1 ACBI m
−+−≡ γG with 

0>γ and sufficiently large (see eq (9)). 
 
We need three lemmae: 
Lemma 1: If CB is nonsingular then 

 is a (non-orthogonal) projection 
onto the range of B, R(B), along the null space of 
C,N(C) with  the complementary 
projection, and  
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Proof of Lemma 1: 
Consider

; 
hence it is a projection. Clearly, 
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 This completes the proof of 

Lemma 1. 
Lemma 2: If CB is nonsingular, then  

 

This coordinate transformation puts (1) into 

normal form:  (8) 

where the subsystem: is called the 
zero dynamics of (1) and 

 

 
Proof of Lemma 2: 

Consider that  

Also 
CP

Furthermore 

when the n-m columns of 

form an orthonormal basis for . Then 
we have W  and the 
retraction:  
Now, using from lemma 1, we have 

 

And  

 

This yields the normal form (8). 
 

Choose W  Then W has an inverse 

explicitly stated as W .This 

gives  

because the columns of W are in and 
Furthermore 

 

 

Also direct calculation 

yields:
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This completes the proof of Lemma 2. 
 
Lemma 3: Assume CB is nonsingular. Define 
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a) is stable if and only if (A,B,C) is 
minimum phase and  
b)  is weakly stable if and only if (A,B,C)  is 
weakly minimum phase. 
 
Proof of Lemma 3: 
Henceforth in the interest of saving space we 
will omit the proofs and refer the reader to the 
expanded version of this paper [21]. 
Note that by rescaling W with the inverse of CB, 
this co-ordinate transformation can produce 

 which will 

drastically simplify the proofs in [8]. Finally, our 
coordinate transformation produces the so-called 
“normal form” and the dynamics associated with 

are the “zero dynamics” [9]. 
 In the proof of Theorem 1: 
we must choose:   

  (9) 

to make   C

Almost PR Results: 
It is now relatively easy to state necessary 
conditions for output feedback to make  
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(A, B, C) PR as well: 
Theorem 2: If the linear system (A, B, C) can be 
made PR by output feedback (3) then (A, B, C) is 
weakly minimum phase and CB is positive 
definite, but not conversely. 
 
To see that the converse is false, take 

which is already in 

normal form with the weak minimum phase 
property and CB=1. Let 
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Note that a slight change in the above example, 

i.e. , will produce 

. Yet 
this system is still weakly minimum phase with 
CB>0.So it takes something stronger than the 
weakly minimum phase condition to get PR via 
output feedback. We now give necessary and 
sufficient conditions for this: 
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Theorem 3: (A, B, C) is almost PR with output 
feedback (3) if and only if CB is positive definite, 
the open-loop system is weakly minimum phase 
and the transfer function of the zero dynamics 
retracted onto its marginal spectral subspace: 
 0
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 is the spectral decomposition of 22A  into its 
stable subspace ( where all eigenvalues are in 
the open left half-plane) and its marginal 
subspace ( where all the eigenvalues are simple 
and on the imaginery axis).So 

212
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dynamics ),, 211222 AAA(  are given in Lemma 2. 
 
Note that since CB is positive definite, scaling 
by it or its inverse does not change the PR 
property. 
Consequently, 0

12
10
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replace PR in Theo. 3. Similar results using 
passivity were obtained recently in [20]. 
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Dynamic Output Feedback: 
 Finally, one might imagine that weaker 
necessary and sufficient conditions might suffice 
in Theo.1 or Theo.3 when Dynamic Output 
Feedback is used, e. g.  

   (11) 
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The simplest way to use the dynamic controller 
is to cancel all the zero dynamics, i.e. 
choose 
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will satisfy 2222 εε A=& which is stable 
when the open-loop system is minimum phase. 
With these dynamics cancelled, the closed-loop 
transfer function becomes  
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which is SPR with 
in the K-Y conditions 

(6), as long as CB is positive definite. 
 However we can combine (1) and (11) 
into the well-known Extended Output Feedback 
Formulation: 
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This is a minimal realization of the closed loop 
transfer function given by 

BCLBAsPC
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made SPR by choice of gain matrix L~ . Now we 
can apply Theo.1 to (11) and see that necessary 
and sufficient conditions for this 
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with a persistent disturbance of the form: 
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where  Dφ is a vector of known bounded basis 
functions which can be generated in real time, e. 
g. sinusoidal functions or steps generated by the 
known time invariant marginally stable system 

.However DF Dθ is unknown. 
 The reference model tracking problem 
of [14]-[15] can be stated simply as the 
following: 

 





=
=

→−≡ ∞→

stable marginally ;
 where

0

mmmm

mmm

tmy

FzFz
zCy

yye

&

(16) 

Therefore, is minimum phase if and 

only if 
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is minimum phase. So the 
Extended Output Feedback Control Law in (11) 
will require the very same necessary and 
sufficient con itions as in Theo. 1 to produce 
closed-loop 

~ sPC SPR. Consequently, static 
output feedback is completely adequate to the 
task! In [12], this same conclusion is drawn. 

Thus the plant (13) must track the model (16) in 
the presence of the disturbance (14). 
This will be accomplished by the Adaptive 
Control Law: 
 
 DDyemm GeGzGu φ++=   (17) 
We introduce the ideal trajectories: 
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 In the case of Almost PR, some things 
simplify with dynamic output feedback: 
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11*Theorem 4: (A, B, C) is Amost PR with dynamic 

output feedback if and only if the high frequency 
gain CB is positive definite and the open-loop 
system is weakly minimum phase. The existence of gains to satisfy (18)-(19) is 

equivalent to the following Matching 
Conditions: 

*
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Note that, in [9] Theo.4.7, these same conditions 
are shown to make nonlinear systems “passive” 
using dynamic output feedback. Hence, our 
Theo.4 is a corollary of that in [9]. However, our 
result uses the dynamic controller to cancel only 
the zero dynamics retracted onto the marginally 
stable subspace, whereas [9] cancels all the zero 
dynamics. So our approach will result in a lower 
order dynamic controller, in general. 
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Illustrative Examples: We refer the reader to [21]  We present results on the existence of 

solutions to these Matching Conditions next.  
Application: Adaptive Control: Theorem 5: If CB>0, then 
 In this section we will apply the above 
results to Direct Model Reference Adaptive 
Control [14]-[15] and Disturbance Rejection [16] 
to obtain a stronger stability result than is 
presented in those papers. Consider the 
following finite-dimensional linear time-
invariant system: 

a) (20) has unique solutions (  if and 

only if no eigenvalue of is common with a 
transmission zero of the open loop system 
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b) (21) has unique solutions (  if and 

only if no eigenvalue of is common with any 
transmission zero of the open loop system 
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We have the following improved adaptive 
stability result:  
Theorem 6: Let the plant (13) with persistent 
disturbance (14) be controlled to track the 
reference model (16) by the adaptive controller 
(17) with adaptive gains (26). If the high 
frequency gain CB>0 and the open-loop 
plant is weakly minimum phase and 
the transfer function of the zero dynamics 
retracted to the marginal spectral subspace is 
positive real, then 

),,( CBA

0→ ∞→tye

).D

 and the plant 
output tracks the model output and rejects the 
persistent disturbance with bounded adaptive 
gains (  ,, me GG G
Note that if ( were almost SPR (i.e. 
CB>0 and minimum phase) then the 
above result would be true. However, this was 
shown before in [14] and [15]. 

),, CBA
),,( CBA

 
Conclusions and Remarks: Please see [21] for 
these. 
  
References: 
1) R. Lozano, et alia, Dissipative Systems 
Analysis and Control, Springer, London, 2000. 
2) B. R. Barmish, “Necessary and Sufficient 
Conditions for Quadratic Stabilizability of an 
Uncertain linear System”, J. Optimization theory 
and Applications, Vol. 46, pp 399-408, 1985. 
3) K. S. Narendra and A. M. Annaswamy, Stable 
Adaptive Systems, Prentice-Hall, 1989 
4) B. D. O. Anderson and S. Vongpanitlerd, 
Network Analysis and Synthesis-A Modern 
System Theory Approach,Prentice-Hall, 1973. 
5) J. T. Wen, “ Time Domain and Frequency 
Domain Conditions for Strict positive Realness”, 
IEEE Trans., Vol. AC-33, pp 988-992, 1988. 
6) G. Gao and P. Ioannou, “ Necessary and 
Sufficient Conditions for Strictly Positive Real 
Matrices”, IEE Proceedings, Vol. 137,part G, pp 
360-366, 1990. 
7) H. Weiss, Q. Wang, and J. Speyer, “System 
Characterization of Positive Real Matrices”, 
IEEE Trans., Vol. AC-39,pp 540-544,1994. 
8) G. Gu, “Stabilizability Conditions of 
Multivariable Uncertain Systems via Output 

Feedback Control”, IEEE Trans., Vol. AC-35, pp 
925-927,1990. 
9) C. Byrnes, A. Isidori, and J. Willems, “ 
Passivity, Feedback Equivalence, and the Global 
Stabilization of Minimum Phase Nonlinear 
Systems”, IEEE Trans., Vol. AC-36, pp 1228-
1240, 1991. 
10) R. Horn and C. Johnson, Matrix Analysis, 
Cambridge University Press, 1990, Theo. 7.7.6 
p472. 
11) H. Khalil, Nonlinear Systems- 3 rd Edition , 
Prentice-Hall, 2002,Chapt 6 pp227-262. 
12) C. Huang, P. Ioannou, J. Maroulas, and M. 
Safonov, design of Strictly Positive Real systems 
using Constant Output feedback”, IEEE trans 
Automatic control, Vol. AC-44, pp 569-573, 
1999. 
13) G. Golub and C. Van Loan, Matrix 
Computations-3rd Edition, The Johns Hopkins 
University Press, 1996, Theo.7.1.6 pp 315-316. 
14) I. Barkana and H. Kaufman, “Global 
Stability and Performance of an Adaptive 
Control Algorithm”, Int. J. Control, Vol. 
46,1986,pp1491-1505. 
15) J. Wen and M. Balas,“Robust Adaptive 
Control in Hilbert Space”, J. Mathematical. 
Analysis and Applications, Vol 143,pp 1-
26,1989. 
 16) R. Fuentes and M. Balas, "Direct Adaptive 
Rejection of Persistent Disturbances", Journal of 
Mathematical Analysis and Applications, Vol 
251, pp 28-39,2000.  
17) G. Golub and C. Van Loan, Matrix 
Computations-3rd Edition, The Johns Hopkins 
University Press, 1996, Lemma 7.1.5, pp314-
315. 
18) T. Kailath, Linear Systems, Prentice-Hall, 
1980 pp448-449. 
19) T. Kato, Perturbation Theory for Linear 
operators, Springer, 1966. 
20) M. Larson and P. Kokotovic, “ On 
Passivation with Dynamic Output Feedback”, 
IEEE Trans, AC-46, pp 962-967, 2001. 
21) M. Balas and R. Fuentes, A Non-Orthogonal 
Projection Approach to Characterization of 
Almost Positive Real Systems with an 
Application to Adaptive Control, preprint. 
 
 
 


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeP18.3
	Page0: 1911
	Page1: 1912
	Page2: 1913
	Page3: 1914
	Page4: 1915
	Page5: 1916


