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Abstract— This paper analyzes the stability of hierarchical
jump linear systems where the supervisor is driven by a
Markovian stochastic process and by the values of the su-
pervised jump linear system’s states. The stability framework
for this class of systems is developed over infinite and finite
time horizons. The framework is then used to derive sufficient
stability conditions for a specific class of hybrid jump linear
systems with performance supervision. New sufficient stochas-
tic stability conditions for discrete-time jump linear systems
are also presented.

I. I NTRODUCTION

A general modeling framework for embedded control
systems is a hybrid system representation that allows the
inclusion of analog and digital subsystems’ dynamics to-
gether with a model for the interfaces between them and
the inherent constraints on their states and independent vari-
ables. An appropriate representation with sufficient fidelity
is most important in the analysis and design of safety critical
systems such as reliable, fault-tolerant control systems that
can affect human lives. Other complex real-time systems
will also benefit from the higher fidelity representation.
A particular advantage of hybrid systems is that they can
directly represent hierarchical control systems, including
the dynamics of a decision making supervisor present in
most embedded control systems (cf. [2], [5], [8]). Figure 1
shows such a hierarchical embedded control system where
the low-level closed-loop dynamics are represented by a
jump linear system (JLS) that is switched by(θ(k),N l(k)),
namely the decisionsθ(k) of the supervisor and the states
of a stochastic processN l(k). The switching is used to
model, for example, the change in closed-loop dynamics
for different operating regions and the change in closed-
loop dynamics between normal and recovery operation
during an upset or critical failure. This model is useful for
studying the effects of the high-level supervisor on the low-
level control loop dynamics where the supervisor could be
implemented, for example, with a deterministic automaton
that depends on both the states of the JLS and a stochastic
processNh(k). The state dependency allows the supervisor
to command a control law switch or to select among a
set of fault-tolerant recovery techniques. In addition, the
supervisor can monitor and make decisions based on the
performance of the low-level control system. The stochastic
processNh(k) typically models the status of environmental
sensors that indicate the presence of harsh environmental
exogenous conditions (e.g. high intensity radiated fields or
lightning) or even the states of fault detectors of internal
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Fig. 1. Block diagram of a simplified hierarchical embedded control
system with a jump linear system.

events generated byN l(k). The inclusion of the stochastic
processes enhances the fidelity of hybrid system models by
taking into account stochastic uncertainty.

This paper sets up a framework for stability analysis
of a general class of discrete-time, hierarchical, embedded
control systems. A completely general analysis is com-
plicated since the decisions made by the supervisor are
state-dependent. The initial study presented in this paper
considers a particular class of systems, where the super-
visor only models the change in the jump linear system
parameters due to either an external event or degradation
of closed-loop performance. Using a worst case analysis,
sufficient stability conditions are developed for this system.
In addition, two associated concepts of finite-time stability
are also introduced and analyzed in this context.

The rest of the paper is organized as follows. Section
2 presents the stability framework for a general class of
hybrid jump linear systems, including new sufficient stabil-
ity conditions for switched systems. Section 3 introduces a
particular class of hybrid jump linear systems and presents
sufficient stability conditions. This section also analyzes the
stability of systems with a finite-time horizon defined by a
performance condition being met. The paper’s conclusions
are given in the final section.

II. STABILITY FRAMEWORK FOR A HYBRID JUMP

L INEAR SYSTEM

For qualitative and quantitative analysis, a particular
type of decision making supervisor will be considered as
shown in Fig. 2. The discrete-time sequence that drives
the supervised jump linear system is computed by a finite
state machine (FSM). The supervisor is driven by the
state of the JLS and a stochastic processN(k) that is
assumed to be a homogeneous, finite-state, discrete-time
Markov chain, taking on symbols from the setΣIN

=
{ηN1, ηN2, . . . , ηNlN }. The processν(k) is a function of
the JLS’sn-dimensional state vector. It is the output of a
memoryless analog amplitude to symbol (A/S) map defined
by ψ : IRn → ΣIν

, whereΣIν
= {ην1, ην2, . . . , ηνlν}. The

two processesN(k) andν(k) drive the FSM. The FSM’s
states,z(k), take on values inΣS = {e1, e2, . . . , els}.
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Fig. 2. A hybrid jump linear system.

The evolution of z(k) is given by the next state map
ζ : ΣIN

× ΣIν
× ΣS → ΣS of the form

z(k + 1) = ζ(N(k),ν(k),z(k))

= ζ(N(k), ψ(x(k)),z(k)). (1)

The output of the FSM,θ(k), is determined by an isomor-
phism ̟ : ΣS → ΣO that assigns an output symbol in
ΣO = {ξ1, ξ2, . . . , ξls} according to the following relation

θ(k) = ̟(z(k)). (2)

Specifically, the unique isomorphic mapping between the
finite state machine’s output and states is given byξj =
̟(ej), j = 1, . . . , ls. This output then drives the JLS with
state vectorx(k) ∈ IRn, according to

x(k + 1) = Aθ(k)x(k). (3)

The system in Fig. 2 is a special case of a hybrid system. It
will be referred to as a hybrid jump linear system (HJLS).
To better describe the jump linear nature of the closed-loop
system, let the symbols for the states of the FSM be the
elementary vectorsej =

[

0 ··· 0 1 0 ··· 0
]′

with a 1 in the
j-th position. A matrix representation of the next state map
ζ in (1) is then

z(k + 1) = S(N(k),ν(k))z(k), (4)

where each of theln · lν matricesS(ηN ,ην) ∈ IRls×ls ,
(ηN , ην) ∈ ΣIN

× ΣIν
, is a deterministic transition ma-

trix, i.e., a matrix where each column contains exactly a
single one andls − 1 zeros. The state of the hybrid jump
linear system is given by[x′(k),z′(k)]′, which yields the
following jump linear system representation of a HJLS

[

x(k + 1)
z(k + 1)

]

=

[

Aθ(k) 0
0 S(N(k),ν(k))

] [

x(k)
z(k)

]

. (5)

The state-dependence is made evident by noting that
in (5) Aθ(k) = A̟(z(k)) (by (2)) and S(N(k),ν(k)) =
S(N(k),ψ(x(k))) (by theA/S map definition). So a HJLS
is a jump linear system driven by the direct product of
three finite-state, stochastic processes, that is,̺(k) =
(θ(k),N(k),ν(k)). Note that ̺(k) is not necessarily a
Markovian process. Sinceθ(k) and z(k) are related via
an isomorphism, with a slight abuse of notation, the state
of a HJLS can be written asq(k) = [x′(k),θ(k)]′. Thus, a
HJLS can now be succinctly represented by

q(k + 1) = F̺(k)q(k), (6)

whereF̺(k) =
[

Aθ(k) 0

0 S(N(k),ν(k))

]

. It should be noted that
even though (6) has been made to look like a typical JLS,
new analysis tools are needed to study its behavior since
̺(k) depends onx(k) andq(0), and̺(k), in general, will
not be Markovian. The stability analysis of jump linear
systems as in (3), however, is well-known whenθ(k)
is Markovian (cf. [1], [3], [7]). Necessary and sufficient
stability conditions are also known whenθ(k) is the output
of a FSM driven by a Markovian input, and the FSM is not
dependent on the JLS states [4], [12].

From a control systems point of view it would be simpler
if the stability of the HJLS in (6) were a property of the
equilibrium pointxe = 0 of the JLS in (3), regardless of
the values of the FSM outputθ(k). In practice, however,
stability is a property of not only the equilibrium point of
the JLS but also of a subset of the states of the FSM. So,
it is important to study stability of a subset that includes
the equilibrium point of the JLS and all or some of the
states of the FSM. A formal framework to analyze stability
with respect to such a subset is given in the remainder
of this section. This framework will also make it easier
to analyze a sampled-data version of the JLS in Fig. 2,
consisting of a continuous-time plant interfaced via A/D
and D/A converters to a discrete-time jump linear controller.
The desired stability definitions will be adapted from [6],
generalizing some of the standard JLS stability definitions
to hybrid stochastic systems. These definitions need to be
given in terms of an appropriate metric overIRn ×ΣO. To
simplify the stability analysis, let the output symbols of the
FSM beΣO = {0, 1, . . . , ls − 1}.

Consider sample solutions of a HJLS generated by start-
ing at a common initial timek0 = 0 and a fixed initial
stateq0 = [x′(0), θ(0)]′ ∈ X , IRn×ΣO, whenN(k) has
initial distributionπ(0) and transition probability matrixΠ.
The only source of randomness in the HJLS is assumed
to be N(k), a sequence of random variables{N(k) ∈
ΣIN

, k ∈ Z
+} defined over the underlying probability space

(Ω,FN , PN ). At time k, the events are described by the
σ-field of thek random variables{N(0), . . . ,N(k − 1)}.
Since N(k) is a discrete-time process, the sequences in
the HJLS,θ(k), x(k), andν(k) will also be discrete-time
stochastic processes defined over the same sample space
and their probability measures can be computed in terms of
the probability measure forN(k).

For stability analysis, the stochastic process of interest
is the sequence of random variables{q(k) ∈ X, k ∈ Z

+}.
At each time instantk, these random variables map samples
ω ∈ Ω intoX. A useful metric space for the desired stability
analysis is(X, d), where the metricd : X → IR is defined
by

d

([

x
θ

]

,

[

x̂

θ̂

])

= ‖x− x̂‖ +
∣

∣

∣
θ − θ̂

∣

∣

∣
(7)

with x, x̂ ∈ IRn, θ, θ̂ ∈ Σ0, and‖ · ‖ and | · | denoting the
Euclidean norm inIRn and the absolute value, respectively.
The distance betweenq ∈ X and a setM ⊂ X is defined
in the usual manner asd(q,M) = inf{d(q,m) : m ∈M}.

Definition 2.1 (Stochastic Motion of a HJLS):Let
(X, d) be the metric space with metricd given in (7).



Consider a HJLS in (6) with initial timek0 = 0, a
fixed initial state q0 = [x′(0), θ(0)]′ ∈ X, and N(k)
having initial distributionπ(0) and transition probability
matrix Π. Then a stochastic process{φ(k, ω, q0, π(0)),
k ≥ k0 ∈ Z

+} is called astochastic motion if for each
ω ∈ Ω, φ(k, ω, q0, π(0)) is a sample solution of (6) and
φ(0, ω, q0, π(0)) = q0 for all ω ∈ Ω.

Definition 2.2 (Stochastic Dynamical System):Let S be
the collection of stochastic motions corresponding to the
fixed initial statesq0 ∈ X. This collection together with
the spaceZ+ for time values and the metric space(X, d)
is called astochastic dynamical systemrepresented by
{Z+,X, d,S}.

The following definitions and lemma provide the core
concepts for analyzing stability of hybrid jump linear sys-
tems. In the sequel,S denotes a set of stochastic motions
of a HJLS.

Definition 2.3 (Invariant Set of a HJLS):A setM ⊂ X
is said to be invariant with respect to S, or sim-
ply (S, M) is invariant , if q ∈ M implies that
P{d(φ(k, ω, q, π(0)),M) = 0, ∀k ∈ Z

+}=1.
Definition 2.4 (Equilibrium Point of a HJLS):A point

qe ∈ X is called anequilibrium point of S if (S, {qe})
is invariant.

Definition 2.5 (Lyapunov Mean Square Stability):Let
{Z+,X, d,S} be a stochastic dynamical system defined
for a HJLS. A setM ⊂ X is said to beLyapunov mean
square stablewhen k0 = 0 if for any ǫ > 0 there exists
δ = δ(ǫ, k0) > 0 such that

E{d2(φ(k, ω, q0, π(0)),M)} < ǫ, ∀k ∈ Z
+ (8)

for any stochastic motion inS wheneverd(q0,M) < δ.
The following lemma shows that stability of a particular set
M such that(S,M) is invariant leads to conditions only on
the equilibrium pointxe of the JLS.

Lemma 2.1:Let {Z+,X, d,S} be a stochastic dynamical
system defined for a HJLS. The setM , {[x′e, ξ]

′ ⊂
X|xe = 0 ∈ IRn, ξ ∈ ΣO} is Lyapunov mean square stable
whenk0 = 0 if for any ǫ > 0 there existsδ = δ(ǫ, k0) > 0
such that

E{‖x(k)‖2} = E{‖φ(k, ω, q0, π(0))‖2} < ǫ (9)

for any stochastic motion whenever‖x(0)‖ < δ.
By Lemma 2.1 Lyapunov mean square stability ofM =

{[

0
ξ

]

⊂ X| ξ ∈ ΣO
}

, an invariant set of the HJLS, is
equivalent to the Lyapunov mean square stability ofxe = 0,
an equilibrium of the JLS. So, without loss of generality,
consider the following stability definitions written in terms
of xe = 0 only.

Definition 2.6 (Second Moment Stability):Let
{Z+,X, d,S} be a stochastic dynamical system defined
for a HJLS. The equilibriumxe = 0 of the JLS or simply
the HJLS is said to be

• stochastically stableif

∞
∑

k=0

E{‖x(k)‖2} <∞, (10)

• mean square stableif

E{‖x(k)‖2} → 0 ask → ∞, (11)

• exponentially mean square stableif there exist con-
stants0 < λ < 1 andµ > 0 such that for allk ≥ 0
and initial statesx0 ∈ IRn

E{‖x(k)‖2} ≤ µλk‖x0‖
2, (12)

• second moment stableif the HJLS is simultaneously
stochastically, exponentially mean square, and mean
square stable and

• second moment unstable if the HJLS is simultane-
ously stochastically, exponentially mean square, and
mean square unstable.

The relations between these definitions are well-known. For
example, it is easy to see that stochastic and exponential
mean square stability imply mean square stability. Hence,
mean square instability implies that the HJLS is second
moment unstable. Also, notice that exponential stability
implies stochastic stability since

∑

∞

k=0E{‖x(k)‖2} ≤
∑

∞

k=0 µλ
k‖x0‖

2 < ∞. Hence, exponential mean square
stability implies that the equilibriumxe = 0 is second
moment stable. Finally, notice that when a HJLS represents
a Markovian jump linear system, it is stochastically, expo-
nentially or mean square stable if and only if it is second
moment stable [7].

The framework for stability analysis of a HJLS is now
formally established and it has been shown that a HJLS is
essentially a JLS as given in (6). A sufficient test for second
moment stability and instability is given next in terms of
the maximum and minimum singular values ofAξ, ξ ∈ ΣO.

Theorem 2.1:Let {Z+,X, d,S} be a stochastic dynami-
cal system defined for a HJLS. If̄σ(Aξ) < 1, ∀ξ ∈ ΣO then
the HJLS is second moment stable. If

¯
σ(Aξ) > 1, ∀ξ ∈ ΣO

then the HJLS is second moment unstable.
Proof : Consider the sample solutions of the JLS in (3)
that are embedded inS. Note that for every fixed initial
state x0 ∈ IRn, the sample solutions at timek yield
‖x(k)‖ = ‖Aθ(k−1)Aθ(k−2) . . . Aθ(0)x0‖. This expression
can be bounded using singular values as follows:

k−1
∏

i=0¯
σ(Aθ(i))‖x0‖ ≤ ‖x(k)‖ ≤

k−1
∏

i=0

σ̄(Aθ(i))‖x0‖ (13)

min
ξ∈ΣO

{
¯
σ(Aξ)}

k‖x0‖ ≤ ‖x(k)‖ ≤ max
ξ∈ΣO

{σ̄(Aξ)}
k‖x0‖.

Suppose that̄σ(Aξ) < 1 for all ξ ∈ ΣO and letµ = 1 and
λ = maxξ∈ΣO

{σ̄(Aξ)}
2 < 1 in (12). Thus,‖x(k)‖2 ≤

µλk‖x0‖
2 and E{‖x(k)‖2} ≤ µλk‖x0‖

2, showing that
the HJLS is exponentially mean square stable; hence, it is
second moment stable.
Now suppose that

¯
σ(Aξ) > 1 for all ξ ∈ ΣO.

Using the same reasoning as in part (a), it follows
that minξ∈ΣO

{
¯
σ(Aξ)}

2k‖x0‖
2 ≤ E{‖x(k)‖2}. Since

minξ∈ΣO
{
¯
σ(Aξ)}

2k‖x0‖
2 is a strictly increasing sequence,

E{‖x(k)‖2} → ∞ ask → ∞ and the result follows.

This theorem is a discrete-time generalization of Theorem
1 for switched systems in [11]. The stability of a particular
type of HJLS is analyzed in the next section.



III. STABILITY ANALYSIS OF A HJLS WITH

PERFORMANCESUPERVISION

In this section a specific class of hybrid jump linear
systems which makes decisions based on the performance
of the low-level jump linear system is defined, and sufficient
stability conditions are developed. This class, represented in
Fig. 2, consists of a particular discrete-time Markov chain
N(k), an A/S converter, and a finite state machine. The
performance of interest is a bound on the norm of the
state vectorx(k) for a sample path. A motivation for this
performance bound is, for example, a safety critical system
where the saturation of certain signals or a critical event is
detected by a threshold test on the state’s norm. If the events
are such that the low-level jump linear system is known to
become unstable, the role of the supervisor is to command
a switch to a fail-safe operation, if possible. The focus
here, however, is on the case where the supervisor does not
command such a fail-safe operation. The effect of the state-
dependent input when the performance boundary is reached
is simply to reflect the change of models for the low-
level jump linear system. Under these conditions, it is not
expected that the HJLS will perform satisfactorily once the
performance boundary is reached. This is formally shown in
Theorem 3.2, where this specific HJLS class is shown to be
second moment unstable. Despite the limited application of
this HJLS, this is a useful initial problem to analyze with the
stability framework developed in Section 2. Since stability
over an infinite-time horizon is not expected, it is useful to
consider the concept of stability over a finite-time horizon
as first proposed in [9] and used in, for example, [10],
[13]–[15]. Two such definitions and a sufficient stability
condition are given. All the sufficient stability and instability
conditions are given when theAξ, ξ ∈ ΣO satisfy specific
singular value conditions.

The stochastic processN(k) is assumed to be a two-
state, time-homogeneous, Markov chain with initial distri-
bution π(0) = [π0, π1] and transition probability matrix
Π = [πij ], i, j ∈ {0, 1}. For simplicity, let N(k) be
aperiodic with no absorbing states, that is, letπii ∈
(0, 1), i, j ∈ {0, 1}. This stochastic process could model
the output of a digital upset detector, where the upsets may
or may not manifest themselves as errors in the dynamical
system evolution. The analog to symbol converter is used
to detect whether a function of the sample solutions have
reached a performance boundary given by a scalarα ∈ IR.
This is implemented by a composition of a piece-wise linear
function and the Euclidean norm of the JLS states defined
by the mappingψ : IRn → ΣIν

whereΣIν
= {0, 1}. The

output of the mapping is given by

ν(k) = ψ(x(k)) =

{

1 : ‖x(k)‖ ≥ α > 0
0 : ‖x(k)‖ < α .

(14)

The role of the detector is to output a 1 when the perfor-
mance boundary is exceeded. IfN(k) = 1 or if ν(k) = 1
always results in the same failure mode of operation, the
change can be represented by the FSM in Fig. 3. The
arcs in the transition diagram are labeled with the values
of the direct product of the input processes(ν(k),N(k))
or simply by ηνηN where ην ∈ ΣIν

and ηN ∈ ΣIN
.

0 100

x1 or 10

   x1 or
10

00

Fig. 3. Transition diagram for a finite state machine representation of a
logical OR operation.

(An x in the transition diagram represents a don’t care
condition.) Let the outputs of the FSM be equal to its
states, so that the nodes in Fig. 3 correspond to the outputs
θ(k) ∈ ΣO = {0, 1}. The dynamical equation for the FSM
outputs can thus be written as follows

θ(k + 1) =

{

1 : ν(k) = 1
N(k) : ν(k) = 0

= N(k) + ν(k)(1 − N(k)). (15)

The proofs in this section rely on the following concept.
Definition 3.1: An auxiliary scalar Markovian jump

linear system(MJLS) for the HJLS in Figure 2 is any scalar
jump linear system driven by the same stochastic process
N(k) and represented by

x̃(k + 1) = ãN(k)x̃(k), (16)

wherex̃(0) = x̃0 and ã0, ã1 ∈ IR.
Notice that the sample solutions of (16) are of the form

x̃(k) = (ã1/ã0)
n(k)(ã0)

kx̃0 (17)

where n(k) ,
∑k−1
i=0 N(i), k ≥ 1 is the stochastic

process that counts the number of ones in the sequence
{N(0), . . . ,N(k− 1)}. This auxiliary system will be used
to prove the following results.

Theorem 3.1:Let {Z+,X, d,S} be a stochastic dynam-
ical system defined for a HJLS in (6) with initial state
q0 = [x′0, 0]′, x0 ∈ IRn, where‖x0‖ < α.

(a) If
¯
σ(A1)/

¯
σ(A0) > 1 then the HJLS is second

moment unstable whenever its auxiliary scalar MJLS
in (16) with ã0 =

¯
σ(A0), ã1 =

¯
σ(A1) and x̃0 =

¯
σ(A0)‖x0‖ is second moment unstable.

(b) If σ̄(A0)/σ̄(A1) > 1 then the HJLS is second
moment stable whenever its auxiliary scalar MJLS
in (16) with ã0 = σ̄(A0), ã1 = σ̄(A1) and x̃0 =
σ̄(A0)‖x0‖ is second moment stable.

Proof : Let m(k) ,
∑k−1
i=1 θ(i). Since θ(0) = 0, (13)

reduces to

‖x(k)‖ ≥ (
¯
σ(A1)/

¯
σ(A0))

m(k)

¯
σ(A0)

k‖x0‖ (18)

‖x(k)‖ ≤ (σ̄(A1)/σ̄(A0))
m(k)σ̄(A0)

k‖x0‖. (19)

To prove (a), assume
¯
σ(A1)/

¯
σ(A0) > 1 and let ã0 =

¯
σ(A0), ã1 =

¯
σ(A1), and x̃0 =

¯
σ(A0)‖x0‖ in (17). Thus,

x̃(k − 1) = (
¯
σ(A1)/

¯
σ(A0))

n(k−1)

¯
σ(A0)

k‖x0‖.

But m(k) ≥ n(k − 1) for k ≥ 1, sinceθ(k + 1) ≥ N(k)
by (15). Thus, it follows that

‖x(k)‖ ≥ x̃(k − 1), (20)



which implies thatE{‖x(k)‖2} ≥ E{x̃2(k − 1)}. Now,
if (16) is mean square unstable thenE{x̃2(k − 1)} → ∞
as k → ∞. ThereforeE{‖x(k)‖2} → ∞ as k → ∞ and
the HJLS is mean square unstable, making it also second
moment unstable.

A similar argument proves (b). Assumēσ(A0)/σ̄(A1) > 1
and letã0 = σ̄(A0), ã1 = σ̄(A1) and x̃0 = σ̄(A0)‖x0‖ in
(17). Then (19) reduces to

‖x(k)‖ ≤ x̃(k − 1),

which implies thatE{‖x(k)‖2} ≤ E{x̃2(k − 1)}. Now
observe that if the MJLS in (16) is second moment stable
thenE{x̃2(k−1)} ≤ µλk−1‖x0‖

2 for someµ > 0 and0 <
λ < 1. So it follows thatE{‖x(k)‖2} ≤ (µ/λ)λk‖x0‖

2.
Thus, the HJLS is exponentially mean square stable and
consequently it is also second moment stable.

The following lemmas are used to prove the next main
result. The ceil operator⌈y⌉ represents the smallest integer
greater than or equal toy for y ∈ IR.

Lemma 3.1:Consider the auxiliary scalar Markovian
jump linear system in (16) with0 < x̃0 < α, ã0 < 1,
ã1 > 1 and ã0ã1 > 1. Then the first sample time for
which x̃(k) may reach or exceedα is k = k∗, where

k∗ =

⌈

log (α/x̃0)

log(ã1)

⌉

≥ 1. (21)

The probability that the worst case sample solutions, that
is, those for whichN(k) is 1 for k > 0, reachα at k = k∗

is P{|x̃(k∗)| ≥ α} = π1(π11)
k∗−1 > 0. Furthermore, for

everyk < k∗, P{|x̃(k)| ≥ α} = 0.
Proof: First, assume without loss of generality thatπ1 > 0.
If π1 = 0 then analyze the system as if it were starting at
k = 1 with initial stateã0x0 < α andπ1 = π01 > 0, which
is not zero by assumption. Sincẽx0 < α, x̃(k) can reach
α only from below. Since the worst case sample solution is
of the form

max
ω∈Ω

{x̃(k)} = (ã1)
kx̃0, (22)

the first time at whichx̃(k) could reach or exceedα
is k = k∗. Setting (22) equal toα and solving for
k = k∗ gives equation (21). Now, observe from (17) that
|x(k∗)| ≥ α only if n(k∗) = k∗. Then, it follows that
P{|x(k∗)| ≥ α} = P{N(i) = 1, ∀i = 0, 1, . . . , k∗−1} =
π1(π11)

k∗−1 > 0. Clearly, for everyk < k∗, |x̃(k)| < α
andP{|x̃(k)| ≥ α} = 0.

The long term behavior of sample solutions for the
multidimensional generalization of the conditions in Lemma
3.1 is considered next.

Lemma 3.2:Let {Z+,X, d,S} be a stochastic dynamical
system defined for a HJLS in (6) with̄σ(A0) < 1,

¯
σ(A1) >

1 and
¯
σ(A0)

¯
σ(A1) > 1. If ‖x(k′)‖ ≥ α for somek′ ≥ 0

then there exists a finitek′′ ≥ k′ such that‖x(k + 1)‖ >
‖x(k)‖ > α for all k ≥ k′′.
Proof : Note that θ(k′ + 1) = 1, since by assumption
‖x(k′)‖ ≥ α. Thus, it follows from (3) that

‖x(k′ + 2)‖ = ‖A1Aθ(k′)x(k′)‖ ≥
¯
σ(A1Aθ(k′))‖x(k′)‖.

But
¯
σ(A1Aθ(k′)) ≥

¯
σ(A1)

¯
σ(Aθ(k′)), ¯

σ(Aθ(k′)) ≥
¯
σ(A0),

and
¯
σ(A0)

¯
σ(A1) > 1 (by assumption), so

‖x(k′ + 2)‖ ≥
¯
σ(A1)

¯
σ(A0)‖x(k′)‖ > ‖x(k′)‖. (23)

In the same way, it can be shown that‖x(k′ + 2m)‖ >
‖x(k′+2m−2)‖ for all m ≥ 1. Even though initially noth-
ing can be said about‖x(k′ +m)‖ whenm is odd, notice
that‖x(k′+2m)‖ is a strictly increasing subsequence. Thus,
there existsm′ ≥ 1 such that‖x(k′ +2m′)‖ > α/

¯
σ(A0) >

α andθ(k′ + 2m′ + 1) = 1. This in turn implies that

‖x(k′ + 2m′ + 1)‖ = ‖Aθ(k′+2m′)x(k′ + 2m′)‖

≥
¯
σ(Aθ(k′+2m′))‖x(k′ + 2m′)‖

≥
¯
σ(A0)‖x(k′ + 2m′)‖ > α.

Hence, fork ≥ k′′ = k′ + 2m′ + 1, θ(k) = 1 so ‖x(k +
1)‖ > ‖x(k)‖ > α and the result follows.

Theorem 3.2:Let {Z+,X, d,S} be a stochastic dynam-
ical system defined for a HJLS in (6) with initial state
q0 = [x′0, 0]′, x0 ∈ IRn, where ‖x0‖ < α and with
σ̄(A0) < 1,

¯
σ(A1) > 1 and

¯
σ(A0)

¯
σ(A1) > 1. Then the

HJLS is second moment unstable.
Proof: Let ã0 =

¯
σ(A0), ã1 =

¯
σ(A1) andx̃0 =

¯
σ(A0)‖x0‖

in (16) and observe that
¯
σ(A1)/

¯
σ(A0) > 1. This scalar

MJLS satisfies the conditions of Lemma 3.1, so there are
sample solutions for which at timek′−1 = k∗, |x̃(k′−1)| ≥
α, wherek∗ is the first time where sample solutions of the
scalar MJLS reach or exceedα. Now, by (20) every sample
solution that makes|x̃(k′ − 1)| ≥ α also makes‖x(k′ +
1)‖ ≥ α, which in turn implies, by Lemma 3.2, that those
sample solutions make‖x(k)‖ ≥ α for everyk ≥ k′′ and
a constantk′′ ≥ k′. Hence, the Markov inequality implies
that for all k ≥ k′′ > k∗,

E{‖x(k)‖2}
1

α2
≥ P{‖x(k)‖ ≥ α} ≥ P{x̃(k∗) ≥ α} > 0,

which in turn implies thatlimk→∞E{‖x(k)‖2} > 0 and
∑

∞

0 E{‖x(k)‖2} = ∞. Therefore, the HJLS is mean
square and second moment unstable.

Clearly, over an infinite time horizon a HJLS with the
conditions in Theorem 3.2 is mean square unstable since
there are sample solutions that are ultimately unbounded.
But if the HJLS were to operate only over finite time
horizons, then its sample solutions will be bounded and
may not exceed the performance boundary. The following
definition from [10] formalizes the concept of finite-time
stability.

Definition 3.2: Let I = {k0, k0 + 1, . . . , k0 + T} for
some nonnegative integersk0 and T . Then, the stochastic
dynamical system{I,X, d,S} defined for a HJLS in (6) is

(a) finite-time stable with respect to (α, β, k0, T )
when 0 < α ≤ β, if ‖x(k0)‖ < α implies that
‖x(k)‖ ≤ β for k ∈ I, and it is

(b) mean square finite-time stable with respect to
(α, β, k0, T ) when 0 < α ≤ β, if ‖x(k0)‖ < α
implies thatE{‖x(k)‖2} ≤ β2 for k ∈ I.
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In this definitionβ represents the performance boundary for
all the sample solutions of a HJLS. The next result follows
directly from Lemma 3.1.

Lemma 3.3:Let {I,X, d,S} be a stochastic dynamical
system defined for a HJLS in (6) with initial stateq0 =
[x′0, 0]′, x0 ∈ IRn, where‖x0‖ < α and with σ̄(A0) < 1,

¯
σ(A1) > 1 and

¯
σ(A0)

¯
σ(A1) > 1. The system is finite-

time and mean square finite-time stable with respect to
(α, β, 0, T ∗ − 1), where

T ∗ =

⌈

1 +
log(β/σ̄(A0)‖x0‖)

log(σ̄(A1))

⌉

.

Proof : First, observe that the maximum value that the right
hand side of (19) can take at timek is σ̄(A1)

k−1σ̄(A0)‖x0‖.
Sinceσ̄(A0)‖x0‖ < α, the smallest time at which the right
hand side (19) can reach or exceedβ is k = T ∗. Hence,
maxω∈Ω{‖x(k)‖} < β for all k ∈ I = {0, 1, . . . , T ∗ − 1}.
Also, notice thatE{‖x(k)‖2} ≤ maxω∈Ω{‖x(k)‖2} < β2

for all k ∈ I. These two facts directly prove that the HJLS
is finite-time and mean square finite-time stable with respect
to (α, β, 0, T ∗ − 1).

Notice that if β = α, Lemma 3.3 shows that the
performance boundary will not be reached for at leastT ∗+1
samples. Until this time, the output of the analog to signal
converter is zero and the finite state machine evolution
is simply described byθ(k) = N(k − 1) for k ≤ T ∗.
In addition, if the JLS has only one state, by Lemma
3.1, T ∗ + 1 represents the maximum time over which all
sample solutions behave as a Markovian jump linear system.
Lemma 3.3 also provides a method to estimate the system’s
worst case sample solution given a desired mission time.
An example is used to illustrate these concepts.

Example

The theory was exercised on a simple HJLS with param-
etersA0 = 0.9, A1 = 1.05, x0 = 1, α = 1.8, θ0 = 0,
π(0) =

[

0.54 0.46
]

, andΠ = [π′(0), π′(0)]′. Ten million
Monte Carlo runs of 100 samples each were performed. An
estimate ofE{|x(k)|2} from sample averages of|x(k)|2

is shown in Figure 4, which shows that the HJLS is mean
square unstable. This agrees with the results from Theorem
3.1. The mean square finite-time stability of this example,
with respect to(α, α, 0, T ∗−1), was also tested. By Lemma
3.3 T ∗ = 8, that is, the mean square response should be
below the performance boundaryE{|x(k)|2} < β2 until at
leastT ∗−1 = 7. Fig. 4 shows that this result is conservative
since the performance boundary is not reached untilk = 29.

IV. CONCLUSIONS

An initial study of hierarchical jump linear systems
where the switching is driven by feedback of the low-
level dynamical system states and a Markovian process
was presented. It was shown that the overall system has a
switched system representation called a hybrid jump linear
system. The mathematical framework to analyze stability
of these systems over infinite and finite time horizons
was presented and sufficient conditions for stability and
instability were presented for hybrid jump linear systems
that monitor the control performance. Future research to
reduce the conservativeness of the sufficient conditions and
to develop necessary and sufficient stability conditions is
ongoing.
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