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Towards Stability Analysis of Jump Linear Systems

with State-Dependent and Stochastic Switching

Arturo Tejada, Oscar R. Goalez, and W. Steven Gray

Abstract— This paper analyzes the stability of hierarchical N,(k) |  Decision Making
jump linear systems where the supervisor is driven by a - Supervisor
Markovian stochastic process and by the values of the su-
pervised jump linear system’s states. The stability framework Stochastic[— ) ak)
for this class of systems is developed over infinite and finite Processes
time horizons. The framework is then used to derive sufficient Y
stability conditions for a specific class of hybrid jump linear _
systems with performance supervision. New sufficient stochas- N (k) |
tic stability conditions for discrete-time jump linear systems !
are also presented. Fig. 1. _BlOCk_ diagram of a simplified hierarchical embedded ticdn

system with a jump linear system.

Jump Linear System

I. INTRODUCTION ) . .
events generated b, (k). The inclusion of the stochastic

A general modeling framework for embedded controprocesses enhances the fidelity of hybrid system models by
systems is a hybrid system representation that allows thg«ing into account stochastic uncertainty.
inclusion of analog and digital subsystems’ dynamics to- Thjs paper sets up a framework for stability analysis
gether with a model for the interfaces between them angk 5 general class of discrete-time, hierarchical, embedde
the inherent constraints on their states and independént Vg gntrol systems. A completely general analysis is com-
ables. An appropriate representation with sufficient figleli plicated since the decisions made by the supervisor are
is most important in the analysis and design of safety alitic state-dependent. The initial study presented in this paper
systems such as re]iable, fault-tolerant control_systehas t considers a particular class of systems, where the super-
can affect human lives. Other complex real-time systemgsor only models the change in the jump linear system
will also benefit from the higher fidelity representation.parameters due to either an external event or degradation
A particular advantage of hybrid systems is that they cagf closed-loop performance. Using a worst case analysis,
directly represent hierarchical control systems, inalgdi gyfficient stability conditions are developed for this syst
the dynamics of a decision making supervisor present iy addition, two associated concepts of finite-time stapili
most embedded control systems (cf. [2], [5], [8]). Figure Jgre also introduced and analyzed in this context.
shows such a hierarchical embedded control system whereThe rest of the paper is organized as follows. Section
the low-level closed-loop dynamics are represented by & presents the stability framework for a general class of
jump linear system (JLS) that is switched t8(k), N:(k)),  hybrid jump linear systems, including new sufficient stabil
namely the decision8(k) of the supervisor and the statesity conditions for switched systems. Section 3 introduces a
of a stochastic procesd;(k). The switching is used to particular class of hybrid jump linear systems and presents
model, for example, the change in closed-loop dynamicsficient stability conditions. This section also analytee
for different operating regions and the change in closedsyapility of systems with a finite-time horizon defined by a

loop dynamics between normal and recovery operatigferformance condition being met. The paper's conclusions
during an upset or critical failure. This model is useful foryre given in the final section.

studying the effects of the high-level supervisor on the-low
level control loop dynamics where the supervisor could be |l. STABILITY FRAMEWORK FOR AHYBRID JUMP
implemented, for example, with a deterministic automaton LINEAR SYSTEM
that depends on both the states of the JLS and a stochasti¢or qualitative and quantitative analysis, a particular
processN ;, (k). The state dependency allows the supervisaipe of decision making supervisor will be considered as
to command a control law switch or to select among &hown in Fig. 2. The discrete-time sequence that drives
set of fault-tolerant recovery techniques. In additiore ththe supervised jump linear system is computed by a finite
supervisor can monitor and make decisions based on tegate machine (FSM). The supervisor is driven by the
performance of the low-level control system. The stockaststate of the JLS and a stochastic procé¥sk) that is
processN 1, (k) typically models the status of environmentalassumed to be a homogeneous, finite-state, discrete-time
sensors that indicate the presence of harsh environmentaarkov chain, taking on symbols from the sBy, =
exogenous conditions (e.g. high intensity radiated fields qny,nnoe, ..., 781y }- The procesw (k) is a function of
lightning) or even the states of fault detectors of internathe JLS’sn-dimensional state vector. It is the output of a

- _ ~ memoryless analog amplitude to symbdl/§S) map defined

. n —

e Sbors e afiated wit e Deparmen of Eecticaby 2 R — X, whereSy, = (., .t . The
folk, Virginia 23529-0246, USA. ateja00l@du. edu, WO processesV (k) andv (k) drive the FSM. The FSM's
{gonzal ez, gray}@s-ce. odu. edu states, z(k), take on values intg = {ej,ea,... e}
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upervisor A 0
N Sup — where Fy 1, i o) S<N“°>*”(’“>>J It shoulq be noteQ that
v(k) Finite State even though (6) has been made to look like a typical JLS,
’E‘—> Machine new analysis tools are needed to study its behavior since
) o(k) depends orx(k) andg(0), ando(k), in general, will
a(k) ak) not be Markqvian. The stability analysis of jump linear
y systems as in (3), however, is well-known whék)

is Markovian (cf. [1], [3], [7]). Necessary and sufficient
stability conditions are also known whétk) is the output
) — - of a FSM driven by a Markovian input, and the FSM is not
Fig. 2. A hybrid jump linear system. dependent on the JLS states [4], [12].
. . . From a control systems point of view it would be simpler
The evolution of z(k) is given by the next state map it the stability of the HILS in (6) were a property of the

Jump Linear System

(: Xy x ¥y, x g — Xg of the form equilibrium pointz, = 0 of the JLS in (3), regardless of
_ the values of the FSM outp(k). In practice, however,
zk+1) = (N(k),v(k), 2(k)) stability is a property of not only the equilibrium point of
C(N(k), v(x(k)), 2(K)). (1) the JLS but also of a subset of the states of the FSM. So,

it is important to study stability of a subset that includes
the equilibrium point of the JLS and all or some of the
states of the FSM. A formal framework to analyze stability
with respect to such a subset is given in the remainder
0(k) = w(z(k)). (2) of this section. This framework will also make it easier
to analyze a sampled-data version of the JLS in Fig. 2,
Specifically, the unique isomorphic mapping between theonsisting of a continuous-time plant interfaced via A/D
finite state machine’s output and states is given{by=  and D/A converters to a discrete-time jump linear controlle
w(e;), j=1,...,1. This output then drives the JLS with The desired stability definitions will be adapted from [6],
state vectoec(k) € IR", according to generalizing some of the standard JLS stability definitions
to hybrid stochastic systems. These definitions need to be
w(k+1) = Agry (k). @) given in terms of an appropriate metric oM8r* x . To

The system in Fig. 2 is a special case of a hybrid system. #TPIify the stability analysis, let the output symbols bét
will be referred to as a hybrid jump linear system (H.JLS)!:S'VI be_EO ={0,1,..., l% —1}.
To better describe the jump linear nature of the closed-logp CONsider sample solutions of a HILS generated by start-
system, let the symbols for the states of the FSM be tH89 &t & common |n|/t|al timeko = 0 and a fixed initial
elementary vectors;, = [0~ 010 0] with a1 in the St&€do = [2(0), 0(0))" € X = TR" x Xo, whenN (k) has
j-th position A matrix representation of the next state magnitial distribution(0) and transition probability matrii.
¢ in (1) is then he only source of randomness in the I_-|JLS is assumed
to be N(k), a sequence of random variablé¢&V (k) €
z(k+1) = SNy v 2(k), (4) X4,k € Z*} defined over the underlying probability space
(Q, Fn, Py). At time k, the events are described by the
where each of thd,, - I, matricesS,, ,, € R"*", o-field of the k random variable N (0),..., N (k —1)}.
(nv,mv) € Xry X 21, is a deterministic transition ma- Since N (k) is a discrete-time process, the sequences in
trix, i.e., a matrix where each column contains exactly the HILS,0(k), =(k), andv (k) will also be discrete-time
single one and; — 1 zeros. The state of the hybrid jump stochastic processes defined over the same sample space
linear system is given byx'(k), z'(k)]’, which yields the and their probability measures can be computed in terms of
following jump linear system representation of a HILS the probability measure falV (k).
For stability analysis, the stochastic process of interest
[w(k + 1)] — {Awk) 0 ] [x(k)} . (5) s the sequence of random variablggk) € X,k € Z"}.
zZ(k+1) 0 SNk |Z(F) At each time instank, these random variables map samples
The state-dependence is made evident by noting thet€ 2 i_ntc_)X. A useful metric space for the des_ired s_tability
in (5) Aok = Aw(ziry BY () and Sinryw) = analysis is(X, d), where the metriel : X — IR is defined
SNk, k)) (by the A/S map definition). So a HILS by X
is a jump linear system driven by the direct product of d <[ z } ’ { z D = ||z — 2| + ’9 _ @‘ (7)
three finite-state, stochastic processes, thatols) = o
(6(k), N(k),v(k)). Note thato(k) is not necessarily a . n oa A _
Markovian process. Sinc@(k) and z(k) are related via With z,& € R™, 0,0 € X, and| - || and| - | denoting the
an isomorphism, with a slight abuse of notation, the stafguclidean norm ifR" and the absolute value, respectively.
of a HILS can be written ag(k) = [z’ (k), 0(k))'. Thus, a The distance betweepe X and a setM C X is defined

The output of the FSM@(k), is determined by an isomor-
phismw : X5 — Yo that assigns an output symbol in
Yo ={&,&,...,&. } according to the following relation

HJLS can now be succinctly represented by in the usual manner af(q, M) = inf{d(q,m) : m € M}.
Definition 2.1 (Stochastic Motion of a HILS)et
q(k +1) = Fyyq(k), (6) (X,d) be the metric space with metri¢ given in (7).

1894



Consider a HJLS in (6) with initial timeky, = 0, a o Mmean square stablef
fixed initial stateqy = [2/(0),6(0)] € X, and N(k)

2

having initial distribution7(0) and transition probability Elz(k)[I} — 0 ask — oo, a1
matrix II. Then a stochastic processp(k,w, qo,7(0)), « exponentially mean square stabléf there exist con-
k > ko € Z*} is called astochastic motionif for each stantsO < A < 1 andx > 0 such that for allk > 0
w € Q, ¢(k,w,qo,7(0)) is a sample solution of (6) and and initial stateszg € R™
&(0,w, qo,7(0)) = qo for all w € Q. ) . )

Definition 2.2 (Stochastic Dynamical Systerhgt S be E{{le(k)[7} < pA*[lzoll”, 12)
the collection of stochastic motions corresponding to the | second moment stableif the HILS is simultaneously
fixed initial statesqo € X. This collection together with stochastically, exponentially mean square, and mean
the spaceZ™ for time values and the metric spat&, d) square stable and
is called astochastic dynamical systemrepresented by | second moment unstableif the HILS is simultane-
{z*,X,d,S}. ously stochastically, exponentially mean square, and

The following definitions and lemma provide the core  mean square unstable.

concepts for analyzing stability of hybrid jump linear sys-The relations between these definitions are well-known. For
tems. In the sequel§ denotes a set of stochastic motionsexample, it is easy to see that stochastic and exponential
of a HILS. mean square stability imply mean square stability. Hence,
Definition 2.3 (Invariant Set of a HILSA setM C X mean square instability implies that the HJLS is second
is said to beinvariant with respect to S, or sim- moment unstable. Also, notice that exponential stability
ply (8,M) is invariant, if ¢ < M implies that implies stochastic stability sinc& >, E{|lz(k)|?} <
P{d(¢(k,w,q,m(0)), M) =0, Vk € Z*}=1. S22 o AP [lzo|? < oo. Hence, exponential mean square
Definition 2.4 (Equilibrium Point of a HILS)A point  stability implies that the equilibriumz, = 0 is second
ge € X is called anequilibrium point of S if (S,{g.}) moment stable. Finally, notice that when a HJLS represents

is invariant. a Markovian jump linear system, it is stochastically, expo-
Definition 2.5 (Lyapunov Mean Square Stabilityjet nentially or mean square stable if and only if it is second

{Z*,X,d,S} be a stochastic dynamical system definegnoment stable [7].

for a HILS. A setM C X is said to beLyapunov mean The framework for stability analysis of a HILS is now

square stablewhenk, = 0 if for any € > 0 there exists formally established and it has been shown that a HILS is

0 = 6(e, ko) > 0 such that essentially a JLS as given in (6). A sufficient test for second

5 N moment stability and instability is given next in terms of
E{d*(¢(k,w, 0, 7(0)), M)} <€, VkeZ (8)  the maximum and minimum singular valuesaf, ¢ € Yo.
Theorem 2.1:Let {Z", X,d, S} be a stochastic dynami-
al system defined for a HILS.df(A¢) < 1, V€ € X then
he HILS is second moment stableglfd:) > 1, V¢ € ¥p
then the HILS is second moment unstable.
Proof : Consider the sample solutions of the JLS in (3)
system defined for a HILS. The saf 2 {[z! &' that are embedded i§. Note that for every fixed initial

a - ; e state z; € IR", the sample solutions at timé yield
X|z. =0€ R", £ € X} is Lyapunov mean square stableHm(k)‘| — | Ao(—1)Ap(e—2) - - - Ag(o)o|. This expression

whenk, = 0 if for any ¢ > 0 there exists) = 4(e, ko) > 0 can be bounded using singular values as follows:

for any stochastic motion i wheneverd(qo, M) < 6.
The following lemma shows that stability of a particular se
M such that(S, M) is invariant leads to conditions only on
the equilibrium pointz. of the JLS.

Lemma 2.1:Let {Z", X, d, S} be a stochastic dynamical

such that
— k—1
E{||z(k)|?} = E{||p(k,w, g0, TO)|*} < e (9) ljog(Aem)llrcoll <|z(k)] < [Ioc‘f(Aem)II:coll (13)
for any stochastic motion whenevgs(0)|| < 6. érélizn {o(Ae) ¥ ||zoll < |l (R)| < gIel%X{a'(Ag)}kHa?()H.
(@] o

By Lemma 2.1 Lyapunov mean square stabilityMdf=
{[2] € X| € € 2o}, an invariant set of the HILS, is Suppose thatr(A¢) < 1 for all £ € o and lety = 1 and
equivalent to the Lyapunov mean square stability.of= 0, A = maxees,{5(A4¢)}? < 1 in (12). Thus,||z(k)|? <
an equilibrium of the JLS. So, without loss of generalityu\*||zo|? and E{||z(k)|?>} < u\F|zo)|?, showing that
consider the following stability definitions written in tas  the HILS is exponentially mean square stable; hence, it is
of z. = 0 only. second moment stable.

Definition 2.6 (Second Moment Stability)et Now suppose thato(4¢) > 1 for all & € Xo.
{Z+,X,d,S} be a stochastic dynamical system definedsing the same reasoning as in part (a), it follows
for a HILS. The equilibriumz, = 0 of the JLS or simply that minges, {o(Ae)}? ||zl < E{||l=(k)||*}. Since
the HJILS is said to be minges, {o(A¢)}2¥||zo|/? is a strictly increasing sequence,

. stochastically stableif E{||z(k)||*} — oo ask — oo and the result follows.s

o ) This theorem is a discrete-time generalization of Theorem
ZE{Hm(k)H P < oo, (10) 1 for switched systems in [11]. The stability of a particular
k=0 type of HILS is analyzed in the next section.
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I1l. STABILITY ANALYSIS OF AHJLSWITH x1or 10
PERFORMANCESUPERVISION

In this section a specific class of hybrid jump linear oo xl or
systems which makes decisions based on the performance 10
of the low-level jump linear system is defined, and sufficient
stability conditions are developed. This class, represbint
Fig. 2, consists of a particular discrete-time Markov chain 00
N (k), an A/S converter, and a finite state machine. ThEig. 3. Transition diagram for a finite state machine repreegiem of a
performance of interest is a bound on the norm of th&9ical OR operation.
state vectorz(k) for a sample path. A motivation for this
performance bound is, for example, a safety critical syste
where the saturation of certain signals or a critical event
detected by a threshold test on the state’s norm. If the sve
are such that the low-level jump linear system is known t
become unstable, the role of the supervisor is to commarfd
a switch to a fail-safe operation, if possible. The focus 1 :vk)=1
here, however, is on the case where the supervisor does not o(k+1) = Nk) : v(k)=0
command such a fail-safe operation. The effect of the state- _ _
dependent input when the performance boundary is reached = N +v(k)(1 - N(E). (15)
is simply to reflect the change of models for the low- The proofs in this section rely on the following concept.
level jump linear system. Under these conditions, it is not Definition 3.1: An auxiliary scalar Markovian jump
expected that the HILS will perform satisfactorily once thdinear system(MJLS) for the HILS in Figure 2 is any scalar
performance boundary is reached. This is formally shown jjump linear system driven by the same stochastic process
Theorem 3.2, where this specific HILS class is shown to b& (k) and represented by
second moment unstable. Despite the limited application of - ~ -
this HJLS, this is a useful initial problem to analyze witle th 2(k+1) = Anw2(k), (16)
stability framework developed in Section 2. Since stapilit wherez(0) = #, and o, @; € IR.
over an infinite-time horizon is not expected, it is useful to Notice that the sample solutions of (16) are of the form
consider the concept of stability over a finite-time horizon ~ = (k) (A ks
as first proposed in [9] and used in, for example, [10], z(k) = (A1/Qo)™"(Qo)"To 17)
[13]-[15]. Two such definitions and a sufficient stability a k—1 . ; :
condition are given. All the sufficient stability and insiltp ‘F’)"rr(‘)ecfsg(tﬁ;t . Ol%ggoth]z %)L;mkb oo o e;hien stﬁ]zciaesc;fen .
conditions are given when thdg, & € Yo satisfy specific ) " N (k—1)}. This auxiliary system will be used
singular value qondltlons. . to prove the following results.

The stochastic procesd (k) is assumed to be a two- Theorem 3.1:Let {Z*, X, d, S} be a stochastic dynam-
state, time-homogeneous, Marko.v. chain With. initial d*.smical system c.je.fined for7 a’ I—iJLS in (6) with initial state
bution 7(0) = [m, ] and transition probability matrix g = [h,0]', 2o € R", where||zo| < a.

II = |ml], 4,5 1}. i ici .
[migl, i € 40,1}, For simplicity, let N'(k) be @ If o(A1)/ac(Ag) > 1 then the HJILS is second

aperiodic with no absorbing states, that is, tet < moment unstable whenever its auxiliary scalar MJLS
0,1), ¢,7 0,1}. This stochastic process could model X oS ~
( ! )7 b€ { ’ } P n (16) with Ay = Q'(A()), a, = Q'(Al) and To =

the output of a digital upset detector, where the upsets may .

or may not manifest themselves as errors in the dynamical 9(40)‘”0”7'3 second moment unstable. .

system evolution. The analog to symbol converter is used(b) If o(Ag)/a(A1) > 1 ther_l the H.‘]LS is second
to detect whether a function of the sample solutions have ~ Mmoment stable whenever its auxiliary scalar MJLS
reached a performance boundary given by a scalarIR. in (16) with o = (o), 1 = (A1) and iy =
This is implemented by a composition of a piece-wise linear 2 (<o) [[zo]l is iecogqlmome“t_ stable.

function and the Euclidean norm of the JLS states defindde0f: Let m(k) = >i, 6(:). Since6(0) = 0, (13)

by the mappingy : R" — ¥, whereX; = {0,1}. The reducesto

I(ﬁAn X in the transition diagram represents a don't care
Icondition.) Let the outputs of the FSM be equal to its

ates, so that the nodes in Fig. 3 correspond to the outputs
rg[(k:) € Yo = {0, 1}. The dynamical equation for the FSM
tputs can thus be written as follows

output of the mapping is given by (k)| > (g(Al)/g(Ao))m(k)g(Ag)k||x0|| (18)
v(k) = (k) = { oIz azt ae (k)] < (5(A1)/7(40)™ D5 (Ao) [lzol. (1)
To prove (a), assume(A;)/a(Ag) > 1 and letay =

mance boundary is exceeded.M(k) =1 or if v(k) =1

always results in the same failure mode of operation, the #(k—1) = (a(A1)/a(A0)™* Vg (Ao)*||zo|.-
change can be represented by the FSM in Fig. 3. T}E’utm(k) > n(k—1) for k > 1, since@(k + 1) > N (k)
arcs in the transition diagram are labeled with the valuegy (15) Thus. it follows that ' -

of the direct product of the input processggk), N (k)) ' '

or simply by n,ny wheren, € ¥; andny € Xp,. lz(k)|| > &(k — 1), (20)
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which |mp||eS thatE{”:D(k)”Q} > E{i2(k — 1)} Now, But C_T(AlAg(k/)) > Q'(Al)C_T(Ag(k/)), Q’(Ag(k/)) > Q'(Ao),
if (16) is mean square unstable théH{z2(k — 1)} — oo andco(Ag)a(A;) > 1 (by assumption), so

ask — oo. ThereforeE{||x(k)||?} — oo ask — oo and ) , ,

the HJLS is mean square unstable, making it also second [[Z(k" +2)[| = ¢(A1)a(Ao)[l (k)| > [[z(K)].  (23)

moment unstable. In the same way, it can be shown that(k’ + 2m)| >

le (k" +2m—2)|| for all m > 1. Even though initially noth-

A similar argument proves (b). AssunagAo)/o(A:) = 1 ing can be said aboutz (k' + m)|| whenm is odd, notice

and lety = 6(Ao), 1 = (A1) andZo = 5(Ag)||zol| in

that ||z (k’'+2m)|| is a strictly increasing subsequence. Thus,
(17). Then (19) reduces to there existsn’ > 1 such that|x (k' + 2m/)|| > a/o(Ap) >
lz (k)| < &(k—1), a and@(k' +2m’ + 1) = 1. This in turn implies that

which implies thatE{||=z(k)||’} < E{z*(k —1)}. Now |z (k' +2m’ + 1)

observe that if the MJLS in (16) is second moment stable

then E{2?(k—1)} < pu\F~1||x0||? for somey > 0 and0 <

A < 1. So it follows that E{|lx(k)||?} < (u/M)NF||zoll?.

Thus, the HILS is exponentially mean square stable and . , ,

consequently it is also second moment stakle. Hence, fork > k" = k' +2m' 41, 6(k) = 1 so [[a(k +
)|l > ||z(k)|| > « and the result followss

The following lemmas are used to prove the next main _ N i

result. The ceil operatdiy| represents the smallest integer 1heorem 3.2:Let {Z", X, d, S} be a stochastic dynam-

greater than or equal tg for y € R. ical system defined for a HILS in (6) with initial state

Lemma 3.1:Consider the auxiliary scalar Markoviando = [20,0]';z0 € IR", where [[zo|| < o and with

jump linear system in (16) wit) < ) < o, @y < 1, (Ao0) <1, 0(A) > 1 anda(Ag)a(4;) > 1. Then the
a; > 1 and QoQ; > 1. Then the first sample time for HILS is second moment unstable.

‘|A9(k’+2m’)w(k/ + 2m/)||
a(Agr+om) |2 (K +2m/)||
o(Ao)|lx (k" +2m")|| > a.

AVARLY,

which &(k) may reach or exceed is k = k*, where Proof. Let@qy = o(Ao), (1 = a(A:1) andzo = a(Ao)||zo||
in (16) and observe that(A;)/c(Ap) > 1. This scalar
«_ [log(a/io) | 1 1) MJLS satisfies the conditions of Lemma 3.1, so there are
| log(@y) | T sample solutions for which at timié —1 = k*, |z(k'—1)| >

g wherek* is the first time where sample solutions of the
scalar MJLS reach or exceed Now, by (20) every sample
solution that makesz (k' — 1)| > « also makes||z (k" +
1)|| > «, which in turn implies, by Lemma 3.2, that those
Proof: First, assume without loss of generality that> 0. sample SOIlf,t'ons,makm(k)H = o for everyk > k//. and

If 71 = 0 then analyze the system as if it were starting a constant” > ]f, ' He*nce, the Markov inequality implies
k = 1 with initial state@ozo < o andm; = w1 > 0, which that for allk > k" > &7,

is not zero by assumption. Sindg < «, (k) can reach
a only from below. Since the worst case sample solution i
of the form

The probability that the worst case sample solutions, th
is, those for whichiV (k) is 1 for k > 0, reacha atk = k*

is P{|&(k*)| > a} = m1(711)¥ ~* > 0. Furthermore, for
everyk < k*, P{|z(k)| > a} =0.

E{Ilw(/f)lf}% > P{llz(k)l| > o} = P{z(k") 2 a} >0,

max{#(k)} = (@,)" %o, (22) Which in turn implies thatlimy_. E{||z(k)||*} > 0 and
weR >0 E{||lz(k)||?} = oo. Therefore, the HILS is mean
the first time at whichz(k) could reach or exceedr square and second moment unstable.
is k = k*. Setting (22) equal too and solving for
k = k* gives equation (21). Now, observe from (17) that Clearly, over an infinite time horizon a HILS with the
lz(k*)| > o« only if n(k*) = k*. Then, it follows that conditions in Theorem 3.2 is mean square unstable since
P{lz(k*)| > a} = P{N(i) =1, Vi=0,1,...,k*—1} = there are sample solutions that are ultimately unbounded.
71 (m11)F 1 > 0. Clearly, for everyk < k*, |&(k)] < o But if the HILS were to operate only over finite time
and P{|z(k)| > a} =0. = horizons, then its sample solutions will be bounded and
may not exceed the performance boundary. The following
The long term behavior of sample solutions for thelefinition from [10] formalizes the concept of finite-time
multidimensional generalization of the conditions in Leanm stability.
3.1 is considered next. Definition 3.2: Let I = {ko,ko + 1,...,ko + T} for
Lemma 3.2:Let{Z™", X, d, S} be a stochastic dynamical some nonnegative integets and 7. Then, the stochastic
system defined for a HILS in (6) with(Ag) < 1, g(A4;) > dynamical system I, X,d, S} defined for a HILS in (6) is

L andg(Ag)a(Ar) > 1. If |le(K')| = o for somek’ >0 (a) finite-time stable with respect to (c, 3, ko, T)

then there exists a finitb;” > k' such that||z(k + 1)|| > when0 < o < 8, if ||z(k)| < « implies that
lz(k)|| > « for all k Z/k : _ _ |lx(k)|| < B for k€I, and itis

Proof : - Note thatd(k’ + 1) = 1, since by assumption () mean square finite-time stable with respect to
|lz(k")|| > a. Thus, it follows from (3) that (o, By ko, T) when0 < a < B, if ||lz(ko)|| <

H.’D(k/ + 2)” — ||A1A9(k’)m(k/)” > Q(AlAO(k’))”m(k,)” |mp||es thatE{||a:(k;)||2} < ﬂ2 for ke I.
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55 |~ Performance boundar ] An initial study of hierarchical jump linear systems
where the switching is driven by feedback of the low-
level dynamical system states and a Markovian process
was presented. It was shown that the overall system has a
switched system representation called a hybrid jump linear
system. The mathematical framework to analyze stability
, of these systems over infinite and finite time horizons
Sample Time *° was presented and sufficient conditions for stability and
Fig. 4. Plots oflog10 E{|x(k)|?} vs. time and the performance boundary instability were presented for hybrid jump linear systems
as computed by Monte Carlo simulation. that monitor the control performance. Future research to

reduce the conservativeness of the sufficient conditiods an

In this definition/3 represents the performance boundary fof, gevelop necessary and sufficient stability conditions is
all the sample solutions of a HILS. The next result f0”°W%ngoing.

directly from Lemma 3.1.
Lemma 3.3:Let {I, X,d,S} be a stochastic dynamical

system defined for a HILS in (6) with initial stalg =  This research was supported by the National Science Foun-
[20,0]', 20 € IR", where||zo|| < a and withg(Ap) < 1,  dation under grant CCR-0209094 and by the NASA Langley

o(A1) > 1 andg(Ao)o(A1) > 1. The system is finite- Research Center under grants NCC-1-392 and NCC-1-
time and mean square finite-time stable with respect 1©93026.

(a, 5,0, T* — 1), where
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