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Abstract— In this paper, we consider convergence and stabil-
ity analysis for a class of bimodal piecewise linear systems. We
first discuss some properties of trajectories of bimodal piece-
wise linear systems and derive a necessary condition and a
sufficient condition for the stability. The conditions are given in
terms of the eigenvalue loci and the detectability of subsystems.
In addition, we provide two necessary and sufficient conditions
for the planar bimodal piecewise linear systems to be stable.
These two conditions are given in terms of eigenvalue loci
of subsystems and coefficients of characteristic polynomials,
respectively. Furthermore, we discuss a stabilizing controller
design based on the derived sufficient condition.

I. INTRODUCTION

Hybrid control has been paid much attention in the area
of control system design, because we have many practical
control applications which contain both continuous-time
dynamical systems and logical or switching elements. There
have been a lot of mathematical models proposed to repre-
sent behaviors of hybrid control systems. One of the typical
models is the piecewise linear system (PLS); The system
consists of some pairs of linear time-invariant dynamics and
a cell which is a piece of a partition of the state space, and
the state evolves along the dynamics corresponding to the
cell in which the state exists. The class of PLSs is one
of the fundamental classes of hybrid dynamical systems,
because the continuous dynamics is linear in each cell and
the discrete dynamics is the simplest one. Therefore, a study
on PLSs is important as a first step to establish hybrid
control theory.

In spite of recent progress in hybrid control theory, there
still remain fundamental issues to be clarified. The most
fundamental issue is stability. Recently, many results based
on Lyapunov functions have been obtained on stability of
several classes of hybrid dynamical systems (see [2], [3],
[8] and the references therein), where we need to show
the existence of a Lyapunov function which guarantees
the stability. On the other hand, no converse theorem1 has
been derived due to its hybrid nature. In other words,
no necessary and sufficient stability condition based on
Lyapunov functions has been derived for any class of hybrid
dynamical systems.
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1For smooth dynamical systems, there are theorems such that the given
conditions are necessary for stability. Such theorems are usually called
converse theorems [6].

In fact, we can not completely check the stability even
for the class of PLSs. In general, direct applications of
the Lyapunov methods to the class of PLSs lead to not
any necessary and sufficient conditions but only sufficient
conditions for the stability. In addition, we must restrict
the available class of Lyapunov functions within a class of
piecewise quadratic functions to give a systematic way of
finding the Lyapunov functions [9], [10]. This also causes
the conservativeness of the stability conditions. Therefore,
we need a new approach to get a less conservative stability
condition or hopefully to derive a necessary and sufficient
condition for the stability.

To this end, we here try to investigate the stability prob-
lem for bimodal PLSs (BPLSs) from a different perspective.
Instead of Lyapunov methods, we focus on eigenvalue loci
of subsystems to investigate the stability. We first discuss
several properties of trajectories of BPLSs. In particular, a
necessary condition and a sufficient condition for stability
are derived. The conditions are given in terms of the eigen-
value loci and the detectability of subsystems. Fortunately,
we can derive two necessary and sufficient conditions for
the planar BPLSs. The first one is characterized by the
eigenvalue loci of subsystems. The second one consists of
a condition for each subsystems and a coupling condition,
and they are given in terms of coefficients of characteristic
polynomials of subsystems.

This paper is organized as follows. Section II describes
basic setup for representing a class of BPLSs. Section III is
devoted to some preliminaries on analysis of eigenvalues.
In Sections IV and V, a necessary condition and a sufficient
condition for stability are derived, respectively. Section VI
is devoted to stability analysis of the planar BPLS. We give
a necessary and sufficient condition for the planar BPLS
to be stable in terms of eigenvalue loci of the subsystems.
Moreover, another stability condition is provided in terms
of coefficients of characteristic polynomials in Section VII.
In Section VIII, we propose a method of designing a sta-
bilizing controller based on the derived sufficient condition
for stability.

In this paper, we will use the following notation. Z ,
R, and R+ represent the set of integers, the set of real
numbers, and the set of positive real numbers, respectively.
The symbol Rn×m denotes the set of all n × m real
matrices. If xi > 0 and xj = 0 (j = 1, 2, . . . , i − 1) for
some i, we denote it by x � 0. Furthermore, if x = 0 or
x � 0, we denote it by x � 0. Also x ≺ 0 and x � 0 mean
that −x � 0 and −x � 0, respectively.



II. BIMODAL PIECEWISE LINEAR SYSTEM

We consider a class of bimodal piecewise linear systems
(BPLSs) represented by

ẋ =

{

A1x, if y ≥ 0,
A2x, if y ≤ 0,

(1)

y = Cx, (2)

where A1, A2 ∈ Rn×n, C ∈ R1×n, and C is not zero.
We here assume that the BPLS (1)–(2) is well-posed [4],

i.e. the BPLS has a unique solution for each initial state.
The solution from a given initial state x0 is denoted by
x(t, x0) where the initial time is always set 0. Furthermore,
the corresponding variable y is denoted by y(t, x0).

The origin is called stable if, for each ε > 0, there is
δ(ε) > 0 such that

‖x0‖ < δ(ε) ⇒ ‖x(t, x0)‖ < ε, ∀t ≥ 0 (3)

holds, that is, we use the term ’stable’ in the sense of Lya-
punov. The origin is called attractive if limt→∞ x(t, x0) =
0 for any initial state x0. The origin is called globally
asymptotically stable if it is stable and attractive.

Let us begin with investigation of existence of piecewise
quadratic Lyapunov functions with S-procedure [9], [10].

Proposition 1 ( [11]): Consider the BPLS (1)–(2). Then
there exists a quadratic Lyapunov function with S-procedure
for the system, only if both A1 and A2 are Hurwitz. /

Proposition 1 implies that no piecewise quadratic Lya-
punov functions exist for systems with unstable dynamics,
even if the origin is stable as illustrated in the following
example. In other words, the piecewise quadratic Lyapunov
method can not lead us to any necessary and sufficient
conditions. This motivates us to propose a new approach
for stability analysis which is different from the quadratic
Lyapunov method.

Example 1: Let us consider a BPLS with

A1 =

[

−1, 1
−1, 0

]

, A2 =

[

1, 3
−3, 1

]

,

C =
[

1, 0
]

.

Figure 1 shows a trajectory of the system. Clearly the
system is asymptotically stable, although ẋ = A2x is
unstable. /
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Fig. 1. Trajectory of Example 1.

III. PRELIMINARIES

In this section, we describe some properties which will
play important roles for stability analysis in the subsequent
sections.

For the sake of briefly, we omit the index i of Ai in the
equations (1)–(2), i.e., we consider the system of the form

ẋ = Ax, y = Cx, (4)

where A ∈ Rn×n, C ∈ R1×n and C is not zero. Let U be
the observability matrix of the pair (C, A), i.e.

U =
[

C> (CA)> . . . (CAn−1)>
]>

.

We first discuss the observability property. We assume
matrices A and C are expressed as

A =

[

A11 0
A21 A22

]

, C =
[

C1 0
]

, (5)

where the pair (C1, A11) is observable2 without loss of
generality [7]. We denote the size of A11 by m(≤ n), i.e.,
m denotes the observability index of the pair (C, A). In
addition, let [x>

1 , x>
2 ]> := x (x1 ∈ Rm, x2 ∈ Rn−m).

We next describe the property of eigenvalues of A11. Let
p denote the number of real and distinct eigenvalues of A11,
and let 2q denote the number of complex and distinct eigen-
values. There exists a unique linearly dependent eigenvector
associating with each distinct eigenvalue, because the pair
(C1, A11) is observable. Let λi (i = 1, . . . , p) be real and
distinct eigenvalues of A11. Furthermore, the multiplicity
of λi is denoted by σi. Then, there exist non-zero vectors
vij ∈ Rm (i = 1, . . . , p, j = 2, . . . , µi) for each λi such
that

(λiI − A11)vi1 = 0, (6)

(λiI − A11)vij = −vi(j−1), (7)

hold. Similarly, we denote complex and distinct eigenvalues
and its multiplicity by σi ± jωi (σi ∈ R, ωi ∈ R+) and
νi (i = 1, . . . , q), respectively. There exist non-zero vectors
rij ∈ Rm and gij ∈ Rm (i = 1, . . . , q, j = 2, . . . , νi) for
each σi ± jωi such that

{(σi ± jωi)I − A11}(ri1 ± jgi1) = 0, (8)

{(σi ± jωi)I − A11}(rij ± jgij)

= −(ri(j−1) ± jgi(j−1)), (9)

hold. Here, vij and wij := [rij , gij ] are called elements of
a basis of the generalized eigenspace. Note that

C1vi1 6= 0, (i = 1, . . . , p) (10)

C1wi1 6= 0, (i = 1, . . . , q) (11)

hold, because the pair (C1, A11) is observable.
Finally, we make the following assumption for the matrix

A11.

2If the pair (C, A) is observable, then A11 = A and C1 = C.



Assumption 1: We denote the complex eigenvalues of a
given square matrix by σi ± jωi (σi ∈ R, ωi ∈ R+, i =
1, . . . , q). Then σi 6= σj (i, j ∈ K, i 6= j) hold, where
K := {i ∈ {1, . . . , q} | σi ≥ 0}. /
Assumption 1 causes no practical restrictions, because it is
satisfied for almost all square matrices. Especially, all n×n
real matrices satisfy Assumption 1, when n ≤ 3.

IV. A NECESSARY CONDITION FOR ASYMPTOTIC

STABILITY

Let us begin with the following lemma in order to derive
a necessary condition for the asymptotic stability.

Lemma 1: Consider the system (4)–(5). Suppose that the
matrix A11 satisfies Assumption 1. Then the following
statements (a), (b) and (c) are equivalent.

(a) There exists an initial state x0 such that the
following two properties hold:

(a-i) ∀t ≥ 0, Ux(t, x0) � (�) 0,
(a-ii) limt→∞ x(t, x0) 6= 0.

(b) At least one of the following properties holds:
(b-i) The pair (C, A) is not detectable,
(b-ii) The matrix A has a non-negative real

eigenvalue.
(c) At least one of the following properties holds:

(c-i) The matrix A22 has an eigenvalue in the
closed right half complex plane.

(c-ii) The matrix A11 has a non-negative real
eigenvalue. /

Applying Lemma 1 to the system (1)–(2), we can see
that the origin is not asymptotically stable if either A1

or A2 has a non-negative real eigenvalue. Moreover, from
the condition (a-i), there exists an initial state such that
no events occur when the condition (b) holds. Conversely,
suppose that the condition (b) does not holds. Then, we see
that an event always takes place if the trajectory does not
converges to 0 as time goes to infinity.

Hence, we obtain the following theorem which provides
a necessary condition for asymptotic stability of the BPLS
(1)–(2).

Theorem 1: Consider the BPLS (1)–(2). Let assume that
Ai (i = 1, 2) and C have the forms

T−1
i AiTi =

[

Ai
11 0

Ai
21 Ai

22

]

, CTi =
[

Ci
1 0

]

,

with nonsingular matrices T1 and T2, where the pairs
(C1

1 , A1
11) and (C2

1 , A2
11) are observable. Suppose that the

two matrices A1
11 and A2

11 satisfy Assumption 1. Then the
origin is asymptotically stable, only if the following two
conditions hold:

(1-i) Neither A1
22 nor A2

22 has any eigenvalue in the
closed right half complex plane, that is, both pairs
(C, A1) and (C, A2) are detectable.

(1-ii) Neither A1
11 nor A2

11 has any non-negative real
eigenvalue. In other words, neither the pair
(C, A1) nor the pair (C, A2) has any non-negative
real observable mode. /

V. A SUFFICIENT CONDITION FOR ATTRACTIVENESS

We here give the following lemma which lead us to a
sufficient condition for stability of the BPLS (1)–(2).

Lemma 2: For the system (4)–(5), the following state-
ments (d) and (e) are equivalent.

(d) Two conditions

(d-i) ∀t ≥ 0, Ux(t, x0) � (resp. �) 0,
(d-ii) limt→∞ x(t, x0) = 0,

hold for any x0 satisfying

Cx0 = 0 and Ux0 � (resp. �) 0. (12)

(e) The pair (C, A) is detectable and at least one of
following two conditions holds:

(e-i) The observable index m is equal to 1 for
the pair (C, A).

(e-ii) The observable index m is equal to 2 and
all observable modes are negative real for
the pair (C, A). /

Lemma 2 means that any state starting from the switching
plane (12) tends to zero as the time goes to infinity with
no events. In other words, once the state reaches at the
switching plane (12), it converges to zero.

Applying Lemmas 1 and 2 to the BPLS (1)–(2), we obtain
the following theorem which provides a sufficient condition
for attractiveness.

Theorem 2: Suppose that the system (1)–(2) satisfies
the necessary condition of Theorem 1. Then the origin is
attractive, if the following two conditions hold for the pair
(C, A1) or (C, A2):

(2-i) The observable index is less than or equal to 2.
(2-ii) All the observable modes are negative real. /
Note that the sufficient condition does not imply that

both A1 and A2 are Hurwitz, while the piecewise quadratic
Lyapunov approach needs the stability of subsystems (see
Proposition 1).

VI. STABILITY ANALYSIS FOR THE PLANAR BIMODAL

PIECEWISE LINEAR SYSTEM

Our focus in this section is restricted to the planar system,
i.e. n = 2. Fortunately, we can obtain a necessary and
sufficient condition for this case.

We first investigate conditions corresponding to those of
Lemma 1 and Lemma 2 for the planar system.

Corollary 3: Consider the system (1)–(2) with n = 2.
The following two statements (a) and (b) are equivalent.
(a) There exists an initial state x0 such that the following
two conditions hold:

(a-i) ∀t ≥ 0, U1x(t, x0) � 0 (resp. U2x(t, x0) � 0),
(a-ii) limt→∞ x(t, x0) 6= 0.

(b) At least one of the eigenvalues of A1 (resp. A2) is
non-negative real. /

Corollary 4: Consider the system (1)–(2) with n = 2. If
all the eigenvalues of A1 (resp. A2) are negative real, then
(d-i) ∀t ≥ 0, U1x(t, x0) � 0 (resp. U2x(t, x0) � 0),
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Fig. 2. Stability condition for the eigenvalues of A1, where σ2 ± jω2

are the complex eigenvalues of A2

(d-ii) limt→∞ x(t, x0) = 0,
hold for any x0 satisfying

Cx0 = 0 and U1x0 � 0 (resp. U2x0 � 0). (13)
Using Corollaries 3 and 4, we obtain a necessary and

sufficient condition for stability of the planar BPLS.
Theorem 5: For the BPLS (1)–(2) with n = 2, the

following statements are true.
(i) Suppose that either A1 or A2 has a real eigenvalue. Then

the origin is globally asymptotically stable, if and only if
all the real eigenvalues of A1 and A2 are negative.
(ii) Suppose that A1 and A2 have complex eigenvalues
of the forms σ1 ± jω1 and σ2 ± jω2, respectively, where
σ1, σ2 ∈ R and ω1, ω2 ∈ R+. Then the origin is globally
asymptotically stable, if and only if

σ1

ω1
+

σ2

ω2
< 0 (14)

holds. /
Let us now investigate the conditions in Theorem 5. Let

A2 be given. If A2 has a non-negative real eigenvalue, then
the system is not asymptotically stable for any A1. If A2 has
complex eigenvalues of the form σ2± jω2, then the stability
condition for the eigenvalues of A1 is characterized by the
shaded portion in Figure 2. It is seen that the matrix A1

does not need to be Hurwitz, when σ2 < 0.
Note that Theorem 2 with n = 2 is equivalent to Theorem

5–(i). In other words, Theorem 2 is a generalization of
Theorem 5–(i).

Theorem 5 includes the stability tests for the two special
cases.

Corollary 6: For the BPLS (1)–(2) with n = 2, the
following statements are true.

(i) If both A1 and A2 are Hurwitz, then the origin is
globally asymptotically stable.
(ii) If neither A1 nor A2 is Hurwitz, then the origin is not
globally asymptotically stable. /

Remark 1: A version of Theorem 5 with continuity of
vector fields has been obtained in a recent, independent
work by Çamlıbel et al. [1]. They have derived the same
stability condition with Theorem 5 for a subclass of planar
BPLSs represented by

ẋ =

{

Ax if cx ≥ 0,
Ax − bcx if cx ≤ 0,

(15)

where A ∈ R2×2, b ∈ R2, and c ∈ R1×2. They have
investigated the stability for the class of planar bimodal
linear complementarity systems represented by

ẋ = Ax + bz, (16)

w = cx + z, (17)

z ≥ 0, w ≥ 0, zw = 0, (18)

which can be rewritten as (15). /

Example 2: Let us consider a planar BPLS with

A1 =

[

ζ, 1
−1, 0

]

, A2 =

[

1, 3
−3, 1

]

,

C =
[

1, 0
]

,

where ζ is a constant value. A2 has complex eigenvalues
1 ± j3. We here examine the relationship between stability
of the origin and the value of ζ.

(i) When ζ ≥ 2, A1 has a non-negative real eigenvalue.
Thus, the origin is not globally asymptotically stable from
Theorem 5–(i). Furthermore, from Corollary 3, there exists
a trajectory which does not tend to zero as t → ∞ as
illustrated in Figure 3–(i).

(ii) When ζ ≤ −2, all eigenvalues of A1 are negative
real. Thus, the origin is globally asymptotically stable from
Theorem 1–(i). In addition, from Corollary 4, all trajectories
tend to zero as t → ∞, once the state reaches at the
switching plane (13). See Figure 3–(ii).
(iii) When −2/

√
10 < ζ < 2, A1 has complex eigenvalues

which does not satisfy the condition (14). Therefore, the
origin is not globally asymptotically stable from Theorem
5–(ii) as shown in Figure 3–(iii).
(iv) When −2 < ζ < −2/

√
10, A1 has complex eigen-

values satisfying the condition (14). Therefore, the origin
is globally asymptotically stable from Theorem 5–(ii). See
Figure 3–(iv).

(v) When ζ = −2/
√

10, A1 has complex eigenvalues
satisfying

σ1

ω1
+

σ2

ω2
= 0. (19)

Thus, each trajectory is a closed orbit corresponding to the
given initial state as illustrated in Figure 3–(v). /

VII. A STABILITY TEST BASED ON COEFFICIENTS OF

CHARACTERISTIC POLYNOMIALS

In this section, another stability condition for the planar
BPLS is derived. The condition is characterized by coeffi-
cients of characteristic polynomials. Let

det(sI − Ai) = s2 + αis + βi, i = 1, 2

for Ai with n = 2. Then the following theorem provides
another necessary and sufficient condition for the stability.

Theorem 7: Consider the BPLS (1)–(2) with n = 2. The
origin is globally asymptotically stable, if and only if all
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Fig. 3. Trajectories of Example 2. (i) A1 has a non-negative real
eigenvalue. (ii) All eigenvalues of A1 are negative real. (iii) The condition
(14) is not satisfied. (iv) The condition (14) is satisfied. (v) The condition
(19) is satisfied.

the following inequalities hold;

βi > max(0,−|αi|αi

4
), i = 1, 2 (20)

|α1|α1

β1
+

|α2|α2

β2
> 0. (21)

Let us now investigate the conditions in Theorem 7. The
condition (20) is imposed on each subsystem. It is illustrated
as the shaded portion in Figure 4. Clearly, βi > 0 holds,
when the condition (20) holds. The inequality (20) implies
that Ai has no non-negative real eigenvalue. Roughly speak-
ing, the inequality (20) corresponds to Theorem 5 (i). On the
other hand, the condition (21) is a coupling condition of two
subsystems. The inequality (21) corresponds to Theorem 5
(ii). Let A2, i.e., α2 and β2 be given. Then, the shaded
portions of Figure 5 show the stability condition for A1.

VIII. STABILIZATION FOR BIMODAL PIECEWISE LINEAR

SYSTEMS

In this section, we are interested in the BPLS with control
inputs of the form

ẋ =

{

A1x + B1u1, if Cx ≥ 0,
A2x + B2u2, if Cx ≤ 0,

(22)

βi > max(0,−
αi|αi|

4
)

αi

0

0

βi

Fig. 4. The shaded portion corresponds to the region represented by the
inequality (20).
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β1 =
α2

1

4

0

α1

0

β1

α2 > 0

β1 = −α1|α1|
β2

α2|α2|

β1 =
α2

1

4

0

α1

α2 < 0

Fig. 5. Stability condition for α1 and β1. The shaded portions imply the
stability conditions.

where x ∈ Rn is the state, and u1 ∈ Rm1 and u2 ∈ Rm2

are the inputs. The objective here is to find feedback gains
K1 and K2 that stabilize the system (22). Especially, we
consider a controller design based on the stability condition
derived in Section V. To this end, we must make the
observability index of one of the pairs (C, Ai + BiKi),
i = 1, 2 less than or equal to two. The following proposition
provides a sufficient condition for the existence of such a
feedback gain.

Proposition 2: Consider the system (22).
(i) There exists a feedback gain Ki such that the triple

(C, Ai, Bi) satisfies the conditions of Lemma 2,
if the following conditions hold:

(i-1) min{ρ | CAρ−1
i Bi 6= 0} ≤ 2.

(i-2) The pair (Ai, Bi) is controllable.
(i-3) All invariant zeros3 of (C, Ai, Bi) are in

the open left half complex plane.
(ii) Suppose that Ki satisfies the conditions of (i). The

origin is attractive, if there exists a feedback gain
Kj (j 6= i) such that the closed loop system is
well-posed and the pair (C, Aj + BjKj) does not
satisfy the condition (b) of Lemma 1.

3A complex number s is called an invariant zero for the triple (C, A,B)
where A ∈ Rn×n , B ∈ Rn×m, C ∈ R`×n, if

rank

[

A − sI B
C 0

]

< n + min(`, m)

holds.
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Fig. 6. 3-tank system.

Example 3: Consider an illustrative example of 3-tank
system as shown in Figure 6, where xi is the water level
of tank i, i = 1, 2, 3, the input u is the volume of water
discharged into tank 1. The valve at tank 2 is open if x2 ≥
0, and it is closed if x2 ≤ 0 as illustrated in Figure 6.
For simplicity, all coefficients are normalized to 1. Then,
equations of motion of the system at a neighborhood of the
origin are given by

ẋ =

{

A1 + Bu, if Cx ≥ 0,
A2 + Bu, if Cx ≤ 0,

(23)

where

A1 =





−1 0 0
1 −1 0
0 1 −1



 , A2 =





−1 0 0
1 0 0
0 0 −1



 ,

B =





1
0
0



 , C =
[

0 1 0
]

.

Suppose that u = 0. Noting that the matrix A2 has a
non-negative real eigenvalue, we see that the origin is not
asymptotically stable. Figure 7 (i) shows trajectories of the
system (23) with u = 0.

Let us now design a controller for the origin to be
attractive. The triple of (C, A1, B) satisfies the condition
(ii) of Proposition 2; min{ρ | CAρ−1

1 B 6= 0} = 2, the pair
of (A1, B) is controllable, and the invariant zero is s = −1.
Indeed, the triple (C, A1, B1) satisfies the conditions of
Lemma 2 for K1 = [−1,−2, 0]. Also, we choose K2 =
[0,−2, 0]. Then, the closed system is attractive, because
the closed loop system is well-posed and the triple of
(C, A2+BK2) does not satisfy the condition (b) of Lemma
1. Figure 7 (i) shows trajectories of the system (23) with
K1 = [−1,−2, 0] and K2 = [0,−2, 0], where the initial
state is set [−1,−1, 1]>. In this case, an event takes place
at t = 1.85. /

IX. CONCLUSION

In this paper, we have investigated the stability problem
for a class of bimodal piecewise linear systems (BPLSs).
We have first discussed some properties of trajectories of
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Fig. 7. Trajectories of the tank system (23).

BPLSs and derived a necessary condition and a sufficient
condition for the stability. The conditions are given in terms
of the eigenvalue loci and the detectability of subsystems.
In addition, we have provided two necessary and suffi-
cient conditions for the planar BPLSs to be stable. These
two conditions are given in terms of eigenvalue loci of
subsystems and coefficients of characteristic polynomials,
respectively. Furthermore, we have discussed a stabilizing
controller design based on the derived sufficient condition
for BPLSs.

An extension to the multi-modal case appears in [5].
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