Proceeding of the 2004 American Control Conference WeP17.2
Boston, Massachusetts June 30 - July 2, 2004

Stable multi-model switching control
of a class of nonlinear systems

Elisa Franco, Simona Sacone, and Thomas Parisini

Abstract— The objective of the paper is the design of a discrete—time plant controlled by a setRéceding-Horizon
stabilizing switching control scheme for a class of nonlinear regulators are considered. The proposed hybrid control
systems. Such systems are relevant to nonlinear plants rep- scheme is made up by the juxtaposition of two control

resented by means of a finite set of nonlinear discrete—time | Is. The first trol level ists in the definiti f
models. A finite set of receding—horizon control laws is defined evels. e first control level consists In the aehinition o

for each of the nonlinear discrete—time models representing the @ finite set of receding-horizon regulators for the system
plant. A rigorous stability analysis is carried out yielding the- under concern. The second control level is a discrete—

oretical constraint_s_ to be sat@sfied _by the switching strategies event supervisor that, depending on the system operating

to guarantee stability properties. Simulation results on a case - qngitions and on possible occurred external events, @soos

study of practical relevance are also presented showing the . .

effectiveness of the multi-model switching control scheme. the best _C.oerI action to bg app"‘?‘_’ to the plant.. Moreover,

Keywords: Multi-model Control, Receding—Horizon Control, Hy- the ,S_tab'“ty ar?d asymptotic SFab'“ty of the origin as an

brid Control equilibrium point of the considered systems have been
established by introducing suitable rules to be adopted in

[. INTRODUCTION switching time instants.

The development of a control scheme for hybrid non- The present paper is a major generalization of [7] and
linear systems is the objective of the present paper. Mad]. The same control scheme is here adopted, but a very
researchers have been engaged in the modelling and cong@inificant innovative aspect is introduced: the class of
of hybrid systems; in [1] a general framework for hybridswitched systems here considered presents the possibility
modelling and control is defined and a review of result®f switching not only between different controllers, bigal
and bibliographical references is provided. Survey papekgtween different system models. Moreover, the possibilit
mainly relevant to the stability analysis of hybrid dynaatic Of adopting approximated receding—horizon regulators in
systems are [2], [3] and [4]. As regards the development ¢face of optimal ones at the first control level is also taken
hybrid control schemes, some approaches adopting differdAto account in the present work.
control methodologies have been investigated up to now;
examples can be found in [5], [6], and [7].

The hybrid plants considered in this work fall into the
class of switched systems.e., systems consisting of a
com_bination of fi_nitely many dynamic systems; indeeq these Tip1 = filwe,ug), t=0,1,... 1)
hybrid plants will be referred to as hybrid or switched
systems making no difference between the two terms ([g]y*herez; € R™ andw, € R™ are the state and the control
The dynamic behaviour of switched systems is characteY®Ctors, respectively, and the sefsandU belong to class
ized by the fact that, in specific time instants denoted a8 = Ur=1Zr 21 C RY, where Z; is a compact set
switching time instantshe system operating conditions orcontammg the origin as an mtgrnal point. A finite number
requirements make it necessary to change the system mo@gidynamic sub—models described bfy: R™ x R™ —
and/or the control action to be applied to the system itsel®"> ¢ = L,..., N, with f; < C'R™ x R™, R"], and

The stability analysis of switched systems has beefi(0,0) = 0, is defined. Moreover, denote witl the
thoroughly investigated by many authors, starting from thglass of such sub-models (i.efi € 7 = {f1,... fn}).
works [2] and [3]. Some approaches can be found in thgurthermore, assume the control actionto be gene.rated
literature dealing with switched systems in which the syste Py means of a state—feedback control law belonging to a
model is unique, but many regulators are available for thgnite class of control functions, that is
system. T_his is the case addressed, for example, in [_7] and wy =~ () where ~¥ € ;2 {yil, . ABMi
[9], in which switched systems composed of a nonlinear

where I'; denotes a given class of control functions
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Il. THE HYBRID CONTROL SCHEME

Let us consider a nonlinear discrete-time dynamic system
described by



is in general governed by a suitable supervision systeoptimal control law

which, in the present paper, will not be addressed (the RH® R

: : ; 9= yRHG () € U;
interested reader is referred to [9]). Even if we assume Uy v 't i
that the switching events are controlled by a supervisor,

RHY. . .
, Where u, * is the first vector of the control sequence
the problem of asynchronous events’ occurrence must be g H. . - .
K . that minimizes the finite horizon (FH)

considered. A detailed explanation of this problem can bt >« %y Nii—1
found in [7], [9]: here only the definition of the time spaceS0St function:
T £ (T, \) will be recalled, which is necessary to the well- T2y (@ w4y nia 1, NV, a9, PY) =
posedness of this framework. fENiT 1 3)
(T, \) = {(kﬂ') €Zt xR 1 k= [T]} - X:t R (@, ur) + a7 ||zey v | pis
in which the distance\ is defined as: for the stater, € X°.
Voty = (ki 7)), tg = (ko 72) A1, t2) = |71 — 7o The above problem can be solvexh-line or off-ling,
according to the system requirements: this topic is dismliss
In [9], the following result is stated and proved. in previous works such as [7], [9], [10].
Lemma 2.1:The metric spac€T, \) is a time space in  If the FH cost functions (3) are suitably chosen, the
the sense of definition 3.1 in [2] control laws to be applied to the active pajf;, v*/) have

The definition of the time spacg allows the embedding some very important stabilizing properties. Theorem 3.1 in
of the proposed hybrid system into general hybrid systeni30], which is quoted by [11], details the assumptions on the
defined onR*. This allows us to consider, from now on, adynamic system and on the cost paramefgts, P, ",

generic switching time instaritas belonging tdR*. which are necessary to obtain the following properties:
It is now necessary to introduce the conceptsefitch- 1) The RH control law asymptotically stabilizes the
ing sequenceto collect information about the switching origin, which is an equilibrium point of the resulting

instants, but also about the sub—models and regulatorswhic  closed-loop system.
are involved in the switching process. Following [9], this 2) There exists a positive scalag’ € R* such that the

sequence is indexed by an initial statgand is defined as: setX;;(N¥,a%, Pi) € Z, with
Eé {J;Oa(7;07j03t0)a-~-a(in>jn7tn)} (2) Xij(Nij7(lij,Pij) £
V(ik, jetr) € (I x J; x RY), k€N {m c Xi- JFHfj(x7Nij7aij7Pij) < pij}

where the meaning of the three-tuplé, jx,tx) is the _ ) . . .
following: the integersi; and j, respectively denote the IS an invariant set and a domain of attraction for the
"active” sub—modelf;, and control law~®J7% which are ongin.

active between the "switching-on” time instant and the For further deepening about this subject we address the

"switching-off” time instant¢;_; (the reader is addressedreader to [11], [12]. As regards our purposes, the most
to [9] for more details). important results of this theorem stand in the stabilizing

A further step consists in identifying the switching timesProPerty of RH regulators and the possibility of finding

at which a specific paiff;,v*/) is switched on and off: some invariant sets that are domains of attract_pn for the
origin, for each sub—model regulated by a specific control
= = {téj,t?, Gt ., k€ N} action . It has to be remarked here that any other kind of
4 control functions, guaranteeing stability in some stagcsp

Note that=! is made of time-instants whose indexes argegions, could be successfully applied to each subsystem.
alternatively even and odd positive integers. The eveRor the sake of simplicity, from now on the optimal control
indexes identify switching on time instants for the painaws ~%*% will be denoted simply as’/.
(fi,¥), while the odd ones correspond to the switchin®Remark 1 The choice to apply RH regulators to the
off of the same pair. Another sequence that will be usefdystem is motivated also by the fact that Lyapunov functions
in the stability analysis with reference to a generic difict can be directly and immediately obtained from the RH
increasing sequence of timék is theeven sequencE(Il)  algorithm, without requiring any further effort. In fact,
(3], [2]), defined as the sequence of timeslinwith even  thanks to Theorem 3.1 in [10], inside the compact sets

indexes. X,;;(NY a% P) we are provided of a Lyapunov function
The control scheme here proposed makes use wfhich is given by:
Receding-Horizon (RH) regulators. A detailed statement of o

. PP

the RH control problem referred to system (1) can be found Vig(we) = T (@, N, a7, PY)

in [10]. For the sake of clarity we recall the basic problenwhere ¢/ > &%, and N/,a”, P have to be always

to be solved for each paitf;, v*/), which is: determined according to the above quoted Theorem. Then
Problem 1: For anyi € I and anyj € J;, find the RH if the state belongs to anyone of these invariant sets, we are
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automatically provided of a suitable Lyapunov function. pair (,75),7 € I,j € J;, which is active fort = ¢ remains

active fort > t¢.
1. STABILITY ANALYSIS Constraint 3.2: —Weak Consider a switching time ,
in which the following transition occurs:
The objective of this section is to show that it is possible ot wo

to guarantee stability under some assumptions about the (fs:7™) — (fusr™)

transitions of the hybrid trajectory, making use of theThe functionV,, satisfies the constraint :

Lyapunov stability theory. In [3] stability of nonlinearpn o N

controlled switched systems is proved with the aid of a (u,v) € Z7%(2r) = {(u,v) € T (a7) :

particular kind of Lyapunov functions, known as Lyapunov- Vit(wr) = Vi (27) > =0V}

like fu_n(_:t_lons, Whoge def|n|t|9n |s_recallefj as follows: Moreover, if for any instant we have that; € 3, while
Definition 3.1: Given a strictly increasing sequence of

. _ . . ; ; xi_, € W, then no switching is allowed far> ¢, and the
times Z, a functionV is a Lyapunov-like function forf;

. , . ’ air (1,3),7 € 1,7 € J;, which is active fort = ¢ remains
and a trajectoryz(-) over Z iff V is monotonically non- pair (i, j). J e

. ) = active fort > ¢.
increasing on the even sequent¢s). These two conditions represent some rules that, if re-

By following the same reasoning lines as in [7] and [9]gpected, guarantee stability of the system. To prove iabil
suitable constraints to be fulfilled in switching time iN#¥&. it is first of all necessary to state the following lemma
will be defined to guarantee the stability of the overallynose proof is not reported here for the sake of brevity
control scheme. The switching rules are based on SOM@e interested reader can find the proof in [10])
definitions that still have to be given, so let us introduceé | emma 3.1:Assume that Theorem 3.1 in [10] is true and
the set Constraint 3.1 or Constraint 3.2 is fulfilled for any trajergt

IT () 2 {(i,§) € (I, J;) : 24 € Xy} x(-) of the hybrid system (.1), determmeq by the switching
sequences’ under the action of the optimal control laws
that characterizes the subset of indekeg) such that the ~ii | for any pair (i, j) with ¢ € I,j € J;. Then, for each
corresponding seft;; contains the current state,. Then, trajectoryz(-) determined by the switching sequence, the
let us define an open sV, which must contain the origin fynctions
and satisfyW c ﬂf\ilX,», VielI andW C N&;,, Vi€ Vij & JFHfj(xt,Nij,aij7Pij)
1,Vj e J, as: ) _ _
N are Lyapunov-like functions fof; and the trajectoryr;.
W= A{a, € Xy [loe]| <€} Remark 2 The application of switching constraints is

The parametet is a design parameter, and can be chose#seful from a practical point of view: let us suppose that
arbitrarily small according to the available set of modeld1® @ Priori computation of the value of each Lyapunov

and control functions. This set must be defined in order f§!NCtion Vij(w¢), V (i, j), is possible, for any admissible
give a correct definition of the following quantities: state belonging to the correspondmg |nvgr|§lj;. Then,
from the knowledge or estimation 6¥;;, V (4, j), we have

OVij(e) 2 Vij(2e) — Vi (filwe, v (24)]), an immediate criterion to decide if the switching from a

Vo, € X \{W}, Vi € I,Vj € J;, certain pair to another is possible when the system is in a
SV, L min 6Vi(w), Viel,VjelJ, _certz_iln stater, and in an arbitrary SW|t_ch|ng ms_tant._We_

z €Xi\{W} implicitly assume that there always exists a pair which is
I;?élowed to be switched on, guaranteeing stability. Namely
the worst case, if a certain subsystem is active and no
itch is allowed, stability is anyhow guaranteed keeping
the present subsystem as the active one for future instants,
until a switch on another pair is allowed .

Let us now consider the application of the above proposed
switching rules. Using Lemma 3.1, it is possible to prove
the following stability result for the overall hybrid cootr
scheme under the application of the optimal control laws
(Fss v — (fur, v™) +¥. Again the proof can be found in [10].

Theorem 3.1:Assume that Theorem 3.1 in [10] holds
trueV(s, j) € (1, J;). Moreover assume that Constraint 3.1

The reason why these definitions involve the existence of t
setW, is that the origin of the state space we are considerirl
must be excluded, afV;; would always result equal to.

We will now introduce some constraints in whigh will
denote the closure of sév.

Constraint 3.1: —Strong Consider a switching time
at which a pair(fs,v**) is switched off and a new pair
(fu,¥™") is switched on:

The functionV,,, satisfies the constraint :

(u,v) € zy(xT) 2 {(u,v) € TJ (x,) : or 3.2 is fulfilled, for any hybrid trajectory,(-) determined
i i by the switching sequence. Then, the equilibriunxz; = 0
Vs T) Vuv T 2 5‘/5 . H
t(7) (@r) il o of the hybrid control system (1) is stable.
Moreover, if for any instant we have thatr; € W, while The origin is, then, a stable equilibrium point for the

xi_, € W, then no switching is allowed far> ¢, and the considered class of systems under the action of the proposed
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control scheme. More important, it is possible to show that Problem 2: Find the maximum approximation erre¥,
it is also asymptotically stable by applying the stronger Vi € I, Vj € J;, that can be tolerated in order to fulfil the
constraint 3.1. Some preliminary definitions and resulés arcondition:
now gddressed -to Fietall the anglyss of asymptotic Stﬁb”llt Vi (22) — Vij (file, ARHis (3,)]) > 0
Definition 3.2: Given the hybrid system (1) and a generic

j . e VY, € X”
jvzqugﬁfi’ for the corresponding Lyapunov functidf; ¢ o 1 qefine for the approximated case the quantity:
DVij(z,,) 2 - Vij(z ) = Vij(z,)] Vij(xe) £ Vig(ae) = Vig (fillwe, 3715 (1))
VAN T WA, Vo, € Xy, Vi€ I,V5 € J;

2k
Remark 3 = Assume Theorem 3.1 holds true. The,. .an nrove (as reported in [10]) the following lemma,
Lyapunov-like functionsV;,;, Vi € I, V5 € J;, determined
. Y ! that solves Problem 2.
according to assumptiofii) of Theorem 3.1 in [10], are

AN ) ; Lemma 4.1:If Theorem 3.1 in [10] holds true for any
limited inside the corresponding s&t; by K-functions as (i, /), then for any indexes pair there exist:

follows: -
_ e ¢ € RT that solves Problem 2 for the RH control

d)ij(”zti'j H) < ‘/ij(xt'ij) < d);S(HItW ”) Vi € Bﬂij (4) scheme;

= Az [ < Vil ) < A5z « an approximated control la#’*#i; solving Problem 1
whereB, = {z; € R" : ||z;|| < o}. Moreover, it is impor- Such that:
t_an_t to .show that .the fL{nCUOlD‘/tij(xthI;) just Qeflned is Vi (1) = Vig(as) — Vig(filze, 3785 (4)]) > 0,
limited in every point of its domain. This constitutes a sort Vo, € X
of proof that the derivative of;; calculated on the even |t the above Lemma is satisfied, we can take advantage
sequence is limited. of the cost functions calculated with the approximated RH

Lemma 3.2:Assume that Theorem 3.1 holds true, andegylators, that still can be considered Lyapunov funstion
that the Strong Constraint 3.1 is fulfilled; then for any seinside the invariant setst;;. Under this assumption it

quence=; of our hybrid system (1), in which the Lyapunov-js possible to impose analogous switching rules to the
like function V;; is switched on, we can find B-function  gyitching sequence that affects our system, as it has been

¢;; such that the following inequality is verified: done in the optimal case. It is to be stressed here that the
DVij(wys) < =dij([z ), Ve € Bg,, SWIt]cc:rlllngtLgles, which a?a:]lln aret qltjlte restrictive, are enor
Finally, the ‘following thedfem shows the asymptoticuSeful In this approximated contest. _
stability of system (1). For the sake of brevity, we will propose just the Strong

Theorem 3.2:Assume that Theorem 3.1 in [10] and Condition suitably redefined, but always based on defini-
Theorem 3.1 hold true with the Strong Constraint 3.110NS given in Section 3. _ o _
for system (1) controlled through the optimal RH control Constraint 4.1:Be = a generic switching instant, in
laws 4. If for any trajectory z,.;, Vi € I,Vj € J; Whichthere is the transition:
conditions (4) and Lemma 3:2 are vahq, then the origin is (0, 7°1) — (fur 7™
an asymptotically stable equilibrium point for system (1). . . _

The proofs of the above lemma and theorem can be fouyée assume that functiof,,, fulfills the following con-
in [10]. straint:

3 . .
IV. APPROXIMATED RH REGULATORS (u,v) € ZJ(x7) = {(u,v) € TT (2-) :

It is straightforward to see that the approximation of RH Vit (@7) = Vi (@7) = 0V }
regulators is an important issue. Let us define, for each sulvhere 6V, is the same quantity that was determined in
rpodelz’ € I, a class of approximate RH control functionsCondition 3.1 in the optimal case.
Iy = {4, j € J;} that can be used in place of optimal Moreover, if for any instant we have thatz; € W,

ones. The approximation technique to be adopted will not bghile z;_; ¢ W, then no switching is allowed far >
taken into consideration here, but the interested reader cand the pair(i, j),7 € I,j € J;, which is active fort =

find more details in [7], where a neural network is tuned temains active fot > ¢.
this aim. In this section a bound on the approximation error |f switching rules are imposed to the system, then it
will be sought, that allows us to consider the already defineghn be easily shown that the Lyapunov functions we are
cost functions still as Lyapunov functions for our systemysing are also Lyapunov-like functions. This further step
even if approximated regulators are applied instead of the here omitted, being analogous to the optimal case one.
optimal ones. From now on this case will be referred to agloreover stability and asymptotic stability can also be
the approximated one, while the case in which the optimahown, provided that we are still given the suitable Lya-
regulators are applied will be addressed as the optimal ongunov functions, and thus also this part is skipped in this
The following problem has to be solved: contest. The fundamental result of this section is that if
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the bound on the approximation error is satisfied, all thef reagent temperature changes discontinuously, therayste
framework that allowed to prove stability is still valid, thi model changes. Being under the assumption of a perfectly

no difference with respect to the optimal case. stirred reactor, we tested the behaviour of the CSTR with
input feed temperature abrupt changes.
V. NUMERICAL RESULTS In a few words, this temperature switches among three

First of all, it is worth noting that the simulation resultsdifferent values 290K, 300K and 310K , and simultane-
presented in this section are illustrative, in that we trpusly there is a change in the control action. The control
to show the effectiveness of the proposed multi-modédws are supposed to change for the change in the param-
switching control scheme without an attempt to verify in &€ters of the cost function to be minimized at every current
strict and complete way the theoretical results. In pakiicu Statex;, according to the receding horizon algorithm. Thus
some more relaxed conditions on the Lyapunov functioriiree pairs(fi,v1), (f2,72) and(fs,v3) are defined, that
have been imposed. we will from now on simply address as system2, 3

An ideal Continuous Stirred Tank Reactor (CSTR), is théespectively. We have to remark that for different feed
system to be controlled. Let us refer to the scheme depicté@mperatures, not only the model changes, but also the
in Figure 1. A single irreversible exothermic reaction fromgquilibrium point of the considered system slightly varies
Ato B is carried out, assuming constant liquid volume; thérom a practical point of view we preferred to consider

regulation aim is to keep the reaction degree and the inn#te same equilibrium point for the three subsystems, but it
temperature of the tank constant. has to be noticed that actually this kind of switched system

does not fully match the assumptions we made about the
common equilibrium point for every pairf;, v*).
The cost function has the following form:

JFH(ztvut,t+N7'JflaN]7Pf 7P]7RJ) -

t+ N -1
Z (x} Pz, + uf R7u,) + ItT+NU P;jxt+N’if+
&A r=t (5)
. . t+N -1
Z;é)f;}j_ANT +10000 * Z (up—1 — UT)T * (Up—1 — up)
r=t

As already mentioned, the proposed switching rule is
based on the value of the Lyapunov function associated

The first—principle model equations, which are a compo\évk']tgssr\]/esr\yvi tsc F;}?ﬁ'flgepi'gngt tehveeg i:'g?g?fgr?ftoanzzrllgogly
nent balance of reactant A, and an energy balance, are: g sequencs

ordered repeated transition from systénmo 2 and finally

Fig. 1. Stirred tank reactor

a ¢ B system3. The switching is allowed only if the Lyapunov
= + K(T)(Cao — &) : : o o
dt function of the system to be activated satisfies the defmitio
ar - Ty =T TK(T)(C.o — &) — Q of Lyapunov like function, namely if it is monotonically
- + ( )( a0 E) A . . .
dt 0 0 nonincreasing on its even sequence. Figures from 2 to 4 are

where the controlled variables are the reaction degraed relevant to simulations which have been obtained¥or 9

the temperature of the tarik; the control variables are the and begun from a different initial point. Stabilization is
feed and coolant flow, q.. The interested reader can findobtained, the different applied controllers are all stainig

a detailed explanation of the system and all of the involvednd the switching rule is always respected with no violation
data in [10]. of the expected transition order.

Under suitable working assumptions, it turns out imme-
diately that the system model undergoes to abrupt changes
caused by changes of the reactant feed temperdtyre A hybrid control scheme for nonlinear discrete-time
controlled by a supervisor that can decide the switchingwitched systems has been described in the paper. The
instants. The kind of control action as well can be changegroposed control scheme is composed of a continuous level
by the supervision system. Three equilibrium points arand a discrete—event supervisor. At the continuous level,
admissible for this kind of reactor, two of them stabfe = which represents the core of the present paper , a finite
0.091, T, = 304.95K), (&, = 0.897, T, = 418.95K) set of nonlinear discrete-time models represents the rayste
and one unstabld¢, = 0.319, . = 337.96 K). The dynamics in different operating conditions. For each ohsuc
aim of the control action is to keep the reactor in itanodels a set of receding-horizon regulators is defined at
unstable operating point. This goal can be easily obtaindtis level. Then, the plant at the continuous control level
applying a RH control, if all the parameters and data ofs viewed as a switched system presenting the possibility
the system are assumed to be constant, but if the feeflswitching between different system models and different
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controllers. The stability properties of the resulting toh
scheme are discussed and proved in the paper.

Future research directions are: definition of less resteict
conditions to be adopted in switching time instants, still
guaranteeing good stability properties; analysis of syste
where not all the state variables are measurable.
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