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Abstract—In this paper, three theorems regarding stability In this paper, three theorems regarding stability in
of switched stochastic systems are stated and proved. Lya- probability of switched stochastic systems are stated and
punov techniques are used to derive sufficient conditions for proved. We combine the formulation of [1] with the
stability in probability of the overall system and we dlstlngwsh L h f tochastic diff tial fi f
between the cases of a common Lyapunov function and yapunov _t eory for stochastic dilterential equations o
multiple Lyapunov functions. An application to distributed  [9] to obtain the aforementioned results. The motivation of
Air Traffic Management is discussed as a future goal. our work comes from the field of Decentralized Air Traffic
Management,the formulation of which is a system that
combines continuous, discrete and stochastic dynamics. A

In the past few years the introduction of randomnespreliminary discussion on this application is included in
in the hybrid system formalism has led to the concept adection IV.
stochastic hybrid and switched systems. Many models of
stochastic hybrid systems have been proposed (see [13] fiine rest of the paper is organized as follows: In section Il
an overview). The most important difference between thesge recall some definitions and results regarding Lyapunov
models lies in where to introduce the randomness. A firgtability of stochastic differential equations. In section ||
choice is to add a stochastic component to the deterministite system model is defined, three theorems that guarantee
continuous control law that governs each discrete stagtability in probability are presented and we make some
so that the dynamics at each mode are now describeeimarks on the aforementioned theorems. In section IV
by a stochastic differential equation. This approach wase discuss some examples. Section V summarizes the
adopted in [10], for example. Another choice is to replaceonclusions and indicates our current research.
the deterministic transitions between discrete states by I
stochastic ones, governed by some prescribed probabilistic
rule. This approach was adopted in [3]. More general We consider the followingtochastic system
models can be proposed by mixing the above approaches dX (t) = b(X(t))dt + G(X(t))de(t)
and keeping in mind the application in hand. In this paper, X(0) = Xo @)
we adopt the first approach.

I. INTRODUCTION

STOCHASTIC STABILITY IN LYAPUNOV’'S VEIN

where X(¢) a n-dimensional random  pro-
gess, b(X(t)),G(X(t)) a vector and a matrix valued
cond order random process respectively of appropriate
Imensions{(t) a standardh-dimensional Wiener process,
nd X, a second order random vector independent of
e o-algebraF (¢(7), = > t). We assume that the
ig:‘ocesses b(X(t)),G(X(t)) are non-anticipating, so

The extension of Lyapunov stability theory to deterministi
switched and hybrid systems has been studied in det
by many authors during the last past years (see [1],[1
and [4] for an overall review of the topic). A common
feature in the various Lyapunov-like theorems that wer
presented was that the decrease of the energy functi
at the switching instants-or at each time a subsystem ]
activated- is a sufficient condition for the stability of the
hybrid system. On the other hand, there exists a soli o
theory on stability in probability of stochastic dif‘ferentialt atvz e R
equations and the corresponding Lyapunov theorems (see/b(z1) — b(z2)| + |G(z1) — G(x2)| < Ki|zy — x2]
[2].[7]1.[9] and the references therein). It is therefore natural |b(z)| + |G(z)| < K2(1 + |z|)
and appealing to extend the Lyapunov-like theorems for
stochastic differential equations to the case of switched/e examine the stability of the trivial solutioki(¢) = 0 of
stochastic systems. equation (1), therefore we make the following assumption:
b(0) = 0,G(0) = 0.
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at the corresponding dt integrals are well defined.
e stochastic differential equation (1) admits a unique
lution X (¢) if there exist constantd(;, K > 0 such
andVv ¢t > 0, the following hold [11]:

)



Definition 1 [9]: The solutionX (¢) of equation (1) is said for each mode. Finally, there are only finite switches in

to be stable in probability for > 0 if for any s > 0 and finite time, i.e. the switched system does not exh#sho

e>0 behavior.

lim P{sup | X**(t) |> e} =0 3
t>s

x—0

A. Common Lyapunov Function

. We make the following assumptions for each subsystem:
Here, X**(t) denotes the sample path of the solution of; ; .

. . ) - .. ¢ = g = A L F -
equation (1) starting from a point at time s. Intuitively, E (0) =0,G%(0) =0, i € Q. A Common Lyapunov Func

L m . tion for the system (5) is a functiol’ : R"™ — R, twice
the def'”'“‘?f‘ implies that for a stable .StOChaS.t'C syste ontinuously differentiable everywhere except possibly at
the probability of escape from a spherical region aroun

. A e origin, that is positive definite, i.8/(x) > O0Vz # 0
the_grlgln should be small for a small deviation fromand V(0) = 0, and proper, i.elim ... V(z) = co such
equilibrium state.

that

Many Lyapunov-like sufficient conditions for the stability LV () = zn: (2 oV
in probability of equation (1) have been proposed in
literature. Here, we adopt the approach of Hasminskii Lo 921
[2],[7].[9] which is summarized in the following theorem: + 5 Z aék(w)az e <OVELYieQ (B)
7 k
Theorem 1 Let U C R™ be a domain which contains ‘ o
the origin, and assume that there exists a positive definitg@ Which af; = [GlGZ*]jW
functionV : U — R, twice continuously differentiable
everywhere except possibly at the origin, that satisfies fé¥uppose switchings occur at the time instants:
all z € U\ {0}: to,t1,..., to < t; < ... and that continuity in mean
" o1 921 square of the state is maintained at the switching instants,
LV(x) = bi(x)=— + = a;i(r)=——— < 4 I.€.
Vi) ; ( )8@- N 2 gz:l 3 )8@8%‘ " @ ;llii%E”x(ti +h) —z(t])|* =0,Vi @)
in whicha;; = [GG*];;, where * denotes the complex con-we have the following theorem:
jugate transformation. Then the trivial solution of equation

(1) is stable in probability. Theorem 2 If there is a Common Lyapunov Function
for the system (5) and all the previous assumptions hold,

) ] - ) ) then the system (5) is stable in probability according to
In this paper, we examine stability properties of switchedfinition Q).

stochastic systems of the form:
dX (t) = b{(X(t))dt + G X (t))dE(t)

Ill. SWITCHED STOCHASTIC SYSTEMS

Proof: For eacht; € {to,t1,...} Ito’s formula results

X(0) =g G in:
wherei € Q@ = { 1,..., N}, the set of indices of each mode V(t;) = V(tj_1) + /t” LV (z(s))ds +
of the switched system. For simplicity we considey to tio1
be a constant vector. A closed-loop stochastic controller has i "9y
been designed for each mode of the system, and we wish to + Z %Gildfz(s)
find suitable switching conditions which ensure some de- tiot =1 0 F

sired performance for the overall system. We cons&br-  \yhere 4 is the subsystem which is active in the interval
trary switching i.e. there are nguardsthat enforqe SWItCh- [t;_1,t;). The expectation of the second integral in this
ing between different modes, and the switching is statgquation is zero. Hence taking the expectation of both sides
independent, unlike most models of stochastic switched anghq ysing (6),(7) we hav&V (t;) < EV(tj_1) < ... <
hybrid systems found in literature [3],[8],[10]. Furthermore,EV(O) = V(). We make use of the fundamental remark

two different switching situations are encountered : (i) thergs 9] that the procesd (z) is a supermartingale. By the
are noreset mapsat each switching instant, and the stateypermartingale inequality we have

jumps to an arbitrary new value whenever a switch between

two different modes occurs and (i) continuity is preserved  p{ sup V(t) > ¢} < E[Ev(tj) + EV ™ (tj11)]

at each switching instant, i.e. the reset map is the identity t<t<tji1 €

operator in this“ce_xse. Case (i) is dealt \_/vith in Theorem\?/here V=(a) = max{—V(a),0} = 0 Va since V is
3.4 and case (i) in Theorem 2. In section 2.1 we makﬁositive definite. Hence the last inequality becomes
the assumption that a common Lyapunov function exists

as a measure for the energy of each subsystem, while P{ sup V()>el< EEV(t»)

in section 2.2 we consider different Lyapunov functions t<t<t;i, - T e ’
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Using the fact thaV (¢;) < EV(t;_1) < ... < EV(0) = EVi(x(13;)) > EV*(x(73;4)) Vi €N (9)
V(zo) we finally get . . . .
1 EV'(x(r5)) < BV*(x(r5°)) = V*(z0)  (10)

P{j‘;g V(t) ze} < gV(xO) Ve > 0. wherea, = = [G'G""]jx then the trivial solutionX (¢) = 0

B is stable in probability, according to definition (3) .
The properness o/ implies thatve; > 0de > 0 s.t.
V(z) = e whenevet|z|| > ;. The positive definiteness and pygof: By the supermartingale inequality we have
continuity of V imply thatVes > 036 > 0 s.t. 1V( 0) < &g
whenever||zo|| < 0. So the last equation is equivalentto  P{ sup Vi(t) >} < fEVi(ng)V@VEi >0
€i

Tl <t<7'2 i1

P{sup ||z(t)]| > e1} < eaVxg : |20l < 6. N
>0 (9),(10) imply that
Letting x( tend to zero we derive the desired respilt P{ s Vi) e} < ;EVZ(TS) <

B. Multiple Lyapunov Functions ™ <t<%+1

In this section, we present some extensions of the < fV”“(xo)Vi,V€i >0,VjeN
stability theorems for deterministic switched systems !
([1],[12]) to the stochastic case. Specifically, we preserito that
and prove two theorems that guarantee stability in i i
probability of the switched stochastic system with arbitraryP{tesll(lg‘i) Vit) > e} < V 0 (20) Vi, Ve; > 0,¥j € N
switches. The conditions imposed on these theorems are
somewhat stronger than those of the deterministic cadgick ¢ > 0 arbitrary. The properness df* implies that
however they have the advantage that the state of tijé there ares;(¢) > 0 such thatV’(t) > ¢; is implied by
system need not be continuous at the switching instant§z(?)[| > ¢ so that
Theorem 3 is more general than Theorem 4, but as in the 1 .
deterministic case, the first theorem requires knowledge of P{ sup [z(t)l| = e} < —V*(0)
the trajectory of the system. Theorem 4 on the other hand tel(S1) '
requires only local analysis where the switches occur arff 1 .
hence is more applicable. P{igg [z@)[| = e} < miaX{;Vlo (o)}

We make the following assumptions for eachThe positive definiteness and continuity of edéhimply
subsystem: (a)’(0) = 0,G*(0) =0,Vie @, (b)Vie Q, that for eache; > 0 there is ad(sy) > 0 such that
there exists a functio” : R™ — R, twice continuously max;{1V(z0)} < e is implied by ||lzo| < 4. Letting
differentiable everywhere except possibly at the origing, tend to zero we derive the desired resilt.

that is positive definite, i.eVi(z) > 0 Vo # 0 and

Vi(0) = 0,and proper, i.elim; . V(z) = co and (c) We now present a restricted version of the above
Vi e Qb and G" satisfy the existence and uniquenessheorem.

conditions (2). The state evolution is described by the

following switching sequencs = xo; (io,to), (41,%1),..., Theorem 4 Suppose that assumptions (a),(b),(c)
where (i;,t;) means that the state evolves accordingold for each subsystem. Lef denote the set of
to dX(t) = bY(X(t)dt + GY(X(t))dé(t) for all switching sequences related to the system. If

tj <t < tjii. DefineS | ¢ = 74, 7{,...the endpoints of VS € S,8 = =zo; (io,t0), (i1,t1),... and Vi € Q
the intervals in which thei*® subsystem is active, and the following conditions are satisfied:
I(S | i) = UjeN[TQJ,TQJH] the set of intervals in which

the i*" subsystem is active. LVi(z) =3 b}(x)‘?,‘;; +
n . = 21,i (11)
Theorem 2 Suppose that assumptions (a),(b),(c) hold 3 X o@k(x)% <0Vt e I(S))
for each subsystem. L& denote the set of all switching k=1
sequences related to the systemiv$fe S andVi € @ the EV““( (tjs1)) < EVii (x(t;-l,-l))vj e N (12)

following conditions are satisfied:
then the trivial solutionX (¢t) = 0 is stable in probability,

LVi( Z b ( 3‘/1 according to definition (3).

Proof:From the proof of Theorem 2 we have that

+ 2 Z aly (@ oV <ovtelI(S|i) (8) EVY(x(t) < EVY(x(ty) Vi,j € N,Vt € [tj,tj4].
Jk 1 855 Iy Hence, equation (12) yield&V"i (z(t)) < EV%(xz(t;))
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S EVS(x(t;)) < ... < EV(a(ty)) = V(x0)Vi,j € (5) are linear, i.e. for switched stochastic systems of the
N, vt. Similar to the proof of theorem 3 we have form:
, 1 ‘ ’ dX(t) = B'X (t)dt + G* X (t)d&(2) (14)
P{ sup V'(t)>¢e;} < —V"(x)Vi,Ve; >0,Vj € N o

teI(S]i) &i where B*,G'n x n matrices and¢(t) a standardl-
dimensional Wiener process. We shall make use of theorem
4. A common way to begin is to choose quadratic Lyapunov
C. Remarks on the Theorems functions for each subsystei(z) = 2T Piz where P a

The following remarks are in order. positive definite real symmetric matrix. (;n thehcase wEen

. L continuity in mean square is preserved at the switching

» Theorem 3 lacks in applicability compared to theo'ir]stants it is easy to see that from equations (11),(12) we

rems 24 mainly bgcause one has to know the glOb%erive the following sufficient conditions for the system
behavior of the trajectory, in order to check whetherlg)_
equations (9),(10) are satisfied or not. The stricte@ '

Theorem 4 is more applicable because it requires onlyr (P’iBi + (Bi)T P"') T+tr {a:T (Gi)T PiGim} <0 =
local knowledge of the trajectory whenever switchings B

and the rest of the proof is the samg.

take place. = P'B'+ (B)'P' + (GH'P'G' <0 Vi (15)
o The above theorems do not hold whenever the set of 4 4
modes( is infinite. The reason is that in this case a Pyttt — P < (OWjeN (16)

switch to a mode never before activated can always

be made, so that conditions of the theorems still holdVheretr (M) denotes the trace of thex n matrix M and
although the system is unstable. M < 0 denotes that the square matriX is negative semi-

« If the Lyapunov functions in the above theorems ardé€finite. Equation (16) is stricter than the corresponding
defined only in a sphere around the origin, then thgondition in [12]. This is because we haven't imposed
results have only local validity. conditions on subsets of the state space where switchings

« So far we haven't discussed asymptotic stability irpceur. If that were the case, then (16) could be rewritten in
probability, i.e. the case when the origin is stable ifhe form of a LML.

prgb(?t;ill]i;y ‘?g the following relation holds for any B. Application to Decentralized Air Traffic Management
S = 9
The motivation for this work has its origins in the domain

lim P{ lim X**(¢) = 0} =1 (13)  of decentralized motion planning. In previous work [5], we
_ ) . derived control laws for decentralized navigation of multiple
It is possible to strengthen the conditions of theozgenis in a closed-loop fashion. Each agent was assumed to
rems 2,3,4 in order to achieve asymptotic stability,, e perfect knowledge of the positions of the other agents
For example, if there are finite switches and theng the overall system model was purely deterministic.
last subsystem activated is asymptotically stable ifyoever this is not the case when one has to deal with
probability, then it is obvious that so is the wholeyjgyihyted air traffic management systems. Each aircraft
system. Furthermore, if there are infinite switchegan only have knowledge of an estimate of the current
and the energy strictly decreases at the switchingygitions of the other aircraft in a neighborhood of its
times(strict inequality at equations (9),(12)) then theenter of a certain radius, namely fistected zonig.1).
system can be proven to be asymptotically stable ifpe primary reason of uncertainty is the wind. Hence
probability. The proofs have the same structure of thg,o dynamics of such a system include both stochastic

corresponding theorems for one mode [9]. Since wenq giscrete dynamics(whenever a new aircraft enters the
deal with autonomous subsystems, we could also ”%‘?otected zone of another).

another result of Hasminskii who has shown thafif

in (5) satisfiesy” G (z)G(z)y > m(z)||y|> for all
x,y,||z|]| < r,for somer > 0,wherem(x) is positive
definite and bounded away from 0, then stochastic
stability implies stochastic asymptotic stability.

IV. EXAMPLES

A. Example:Linear Subsystems

A variety of results regarding stability of deterministic
switched linear systems can be found in literature. Sufficient
conditions have been derived in the form of Linear Matrix
Inequalities(LMI's) [12]. In this section we derive analo-
gous results for the case where the subsystems of system Fig. 1. Aircraft i and its protected zone of radiiis
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Our approach will be based on [6]. Whenever the protectashereq,; denotes the desired destinationiof

zone of aircrafti is empty the dynamics of the aircraft are

purely deterministic, namely a potential function drivinglt is obvious that the system (17) is of the form (5).
1 towards its destination. Whenever an aircraft enters thgence the satisfaction of one of the theorems 2,3 or 4 is
protected zone of aircraff the control law is switched in or- crucial for system (17) in order to achieve (asymptotic)
der to meet both specifications:destination convergence(D&ability in probability to the desired destination point.

and collision avoidance(CA). Hence the switching control
strategy is given by:

., DC if N(i)=0
=1 ponca it N(i)+0

V. CONCLUSIONS

In this paper we proved three theorems on stability of
switched stochastic systems. These theorems are extensions
of existing results of the past decade on stability of
deterministic switched systems. The motivation comes
from the field of distributed air traffic management where
the orotected zone afand d- is the separation minimum the dynamics encountered include discrete and stochastic
betvxF/)een two azircraft which cC;oIrrespondE; to tlhe racliil;s l;f thcomppnents. T_he theorems provgd_ in this work proviq ©

. . §ufficient conditions for the stability of the stochastic
protected zone. In this equatioPC denotes the control hvbri
: . L ybrid system.
imposed oni in order to meet the destination convergence
goal whereasDC A C'A denotes the control imposed
on ¢ in order to meet the destination convergence an
collision avoidance goals simultaneously whenever therg

17)

where ¢; the configuration of ¢, N(i)
{#j:llg: — ¢;]| < dc} is the number of aircraft in

%urrent research aims at improving the results presented
an application-wise fashion as well as producing
satisfactory statement and solution of the stochastic

are intruding aircraft ini’s neighborhood. The switching de
control strategy is shown in Figure 2.

centralized problem discussed in section IV.B.
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N(i)>0
DC and CA
(1]
(2]
(3]
N(i)=0
(4]
Fig. 2. Switching control strategy according to eq.(17).
[5]

It is our current goal to produce closed-loop decentralized
control laws for each mode of (17) in the spirit of
[5]. Each agent treats the movement of the other[6]
agents as a stochastic differential equation. For
example let the dynamics of aircraft be given by [7]
dg;(t) = bi(q(t))dt and the dynamics of an intruding g
aircraftj be given by:dg; (¢t) = b;(q(t))dt+ G, (q(t))d&(2),

where ¢(t) = [g:(t),q;(¢)]'. Then the relative ]
position of aircraft: with respect toj is given by:
dgij(t) = (bi(q(t)) — b;(q(t))dt — G;(q(t))de(t). A 110]

possible interpretation of the two performance objectives
(DC andCA) could then have the form:

DC:Designb;(g) so that [11]
P{Sup HQi - Qdi” > 6} < N(E) > O,VE >0 [12]

t>0
CA:Designb;(g) so that (23]

P{inf [lg;|| < de} < M, M suff. small
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