
 
 

 

  
Abstract – This paper presents an adaptive force-
balancing control (AFBC) scheme with actuator limits 
for a MEMS Z-axis gyroscope.  The purpose of the 
adaptive force-balancing control is to identify major 
fabrication imperfections so that they are properly 
compensated unlike the case of conventional force-
balancing controlled gyroscope.  The proposed AFBC 
scheme controls the vibratory modes of the proof mass 
while ensuring that the control input satisfies the 
magnitude constraints and the performance of the 
gyroscope is enhanced in the presence of fabrication 
uncertainties.  Consequently, commonly reported 
problems of MEMS gyroscope such as quadrature 
compensation, drive and sense axes frequency tuning 
are not needed and closed-loop identification of the 
angular rate is now possible without measuring the 
input/output phase difference.  The proposed scheme 
also compensates the cross-damping terms that cause 
the zero-rate output (ZRO).  Simulation results justify 
theoretical conclusions. 
 

I. INTRODUCTION 
 
Micro machined gyroscope, which is one of the micro 

machined inertial sensors, has engrossed a lot of attention 
during the past few years for several applications.  These 
are used for measuring rate or angle of rotation.  
Micromachining can contract the sensor size by orders of 
magnitude, reduce the fabrication cost significantly and 
allow the electronics to be integrated on the same silicon 
chip.  Most of the MEMS gyroscopes are vibratory rate 
gyroscopes that have structures fabricated on crystal silicon 
or a polysilicon.  The main mechanical component is a two 
degree-of-freedom vibrating structure, which is capable of 
oscillating in two directions in a plane.  It’s operating 
physics is based on the Coriolis effect.  When a gyroscope 
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is subjected to an angular velocity, the Coriolis effect 
transfers energy from one vibrating mode to another. The 
response of the second vibrating mode provides the 
information about the applied angular velocity [3]. 

Ideally in a conventional mode of operation of the 
gyroscope, the vibration modes are supposed to remain 
mechanically un-coupled, their natural frequencies should 
be matched and its output should only be sensitive to 
angular velocity.  However, fabrication imperfections and 
environment variations cause the frequency of oscillation 
mismatch between the vibrating modes and a coupling 
between them through-off diagonal terms in the damping 
and the stiffness matrices.  Thus, these imperfections abase 
the gyroscope performance and can cause false outputs 
unless a suitable AFBC scheme is used. 

Therefore, several AFBC schemes [3,8] are proposed to 
cancel the effect of off-diagonal terms in the stiffness 
matrix (referred to as quadrature error) and to enhance the 
dynamic range of gyroscope. They rely on the exact 
measurement of input/output phase difference while they 
are sensitive to fabrication imperfections which are 
modeled as cross-damping terms resulting in zero-rate 
output (ZRO).  Moreover, no magnitude constraints on the 
control input are asserted on the available adaptive force-
balancing control schemes [1-9] and hence the practical 
viability of such schemes remains uncertain. 

In this paper, a novel filtered error-based AFBC scheme 
for a MEMS Z-axis gyroscope is proposed.  This algorithm 
provides an accurate estimation of the angular rate without 
measuring input/output phase difference as well as it 
identifies and compensates the cross-damping terms, which 
produce ZRO.  Consequently, quadrature error 
compensation and drive and sense axis tuning is not 
required.  Moreover, physical limitations dictate that hard 
limits be imposed on the magnitude of the control input to 
avoid damage to or deterioration of the system. This 
nonlinearity, represented as input saturation [11], in turn 
mandates that any control design must accommodate this 
constraint without sacrificing the performance.  Since the 
available AFBC schemes [1-9] do not address the 
magnitude constraints, the proposed scheme is designed 
such that it can accommodate the actuator saturation 
effects.  Closed loop performance is proven using 
Lyapunov analysis and in the presence of such constraints 
on the input. 
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II. DYNAMICS OF MEMS GYROSCOPES 
 
A typical MEMS vibratory gyroscope configuration 

includes a proof mass suspended by a spring, an 
electrostatic actuation and sensing mechanisms for forcing 
an oscillatory motion and sensing the position and velocity 
of the proof mass respectively.  Assuming that the motion 
of the proof mass is constrained to be only along the x-y 
plane by taking the spring stiffness in the z-direction much 
larger than in the x and y directions, the measured angular 
rate is almost constant over a longer time interval, and 
linear accelerations are cancelled out, either as an offset 
from the output response or by applying counter-control 
forces, then the equations of motion of a gyroscope in 
simplified form is expressed as 

ymymxmkxdxm zxyxzy &&&& Ω+=ΩΩ+Ω+Ω−++ 2))(( 22
11 τ   

xmxmymkydym zyyxzx &&&& Ω+=ΩΩ+Ω+Ω−++ 2))(( 22
22 τ  (1) 

where x and y are the coordinates of the proof mass relative 
to the gyroscope frame, ,1k ,2k 1d and 2d are the damping 

and spring coefficients, ,xΩ yΩ and zΩ are the angular 

velocity components along each axis of the gyro frame and 

yx ττ ,  are the control forces.  As seen from the equation 

(1), the last two terms xm z &Ω2 and ym z &Ω2  are due to the 
Coriolis forces, which are in turn used to measure the 
angular rate zΩ .  Clearly in an ideal z-axis MEMS 
gyroscope, only the component of angular rate along the z-
axis zΩ causes a dynamic coupling between the x and y 
axes because of the absence of stiffness and damping terms 
and due to the assumption that 022 ≈ΩΩ≈Ω≈Ω yxyx .  In 

practice, however, fabrication imperfections always occur, 
and cause the dynamic coupling between the x and y axes 
through the asymmetric spring and damping terms.  These 
factors degrade the performance of MEMS gyroscopes.  
Thus taking into account the fabrication imperfections, the 
off-diagonal terms xdxy & , ydxy & , xk xy and ykxy are 

included in the dynamics (2.1) and (2.2) [14].  With the 
assumption 022 ≈ΩΩ≈Ω≈Ω yxyx , 1ddxx = , 2ddyy = , 

1kkxx = and 2kkyy = , the equations of the motion are 

now rewritten as  
ymykxkydxdxm zxxyxxxyxx &&&&& Ω+=++++ 2τ

xmykxkydxdym zyyyxyyyxy &&&&& Ω+=++++ 2τ  (2) 

The fabrication imperfections contribute mainly to the 
asymmetric spring and damping terms i.e. xyk and xyd . 

Therefore these terms are unknown, but can be assumed to 
be small.  Based on the reference mass m, length 0q  and 

natural resonant frequency 0w  the non-dimensionalisation 
of equation (2) can be expressed as follows 
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where xQ  and yQ are respectively the x and y axis quality 
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The equations of motion of a gyroscope can be non-

dimensionalized for the sake of numerical simulations.  
Non-dimensionalisation also provides unified mathematical 
formulations for a large variety of gyroscope designs.  In 
this work, the controllers will be designed based on the 
non-dimensional equations. 
 

III.   IDEAL GYROSCOPE BEHAVIOR 
 
In this section the need for a AFBC scheme is 

demonstrated by using the ideal behavior of a gyroscope.  
To understand the ideal gyroscope behavior, the response 
has to be studied by considering its dynamics given by 
   qqwq o &&& Ω−=+ 22                 (4) 
where  
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The dynamics in equation (4) represent a two degree-
of-freedom pure spring mass system, which is oscillating 
on a rotating frame with an angular rate ZΩ=Ω .  When no 
angular rate is present, depending on whether the initial 
displacement vector is parallel to the velocity vector or not, 
this ideal gyroscope will either oscillate along the straight 
line or along an ellipsoid trajectory respectively [7].  
Ellipticity of the gyroscope trajectory is undesirable 
because it directly affects the measurements.   

When the gyroscope is experiencing the rotation, line of 
oscillation precesses and causes transfer of energy between 
the two axes while conserving the total energy of the 
gyroscope.  Define the energy and the angular momentum 
of the gyroscope as  
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2
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=S   Note that the angular momentum is an 

appropriate measure of how much the motion of a 
gyroscope deviates from a straight-line motion, since P will 
be zero for a straight-line oscillation.  Taking the time 



 
 

 

derivative of energy and momentum, equations (5) and (6) 
can be written as  
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Thus, it is clear from the equation (8) that the Coriolis 

acceleration term causes precession, i.e., a change of 
momentum and there is no change in total energy.  It is also 
clear that in the absence of any angular rate, angular 
momentum is also conserved.   When ZΩ  is zero or if the 
displacement and the velocity vectors q and q&  are parallel, 
the oscillation will remain in a straight line.  Thus it is 
possible to measure the angular rate by generating a control 
action such that angular momentum is not changed even in 
the presence of angular rate.  However in non-ideal 
gyroscopes, due to the presence of damping terms and 
other fabrication imperfections, the total energy and the 
angular momentum is not conserved even when the angular 
rate is zero.  Thus to measure the angular rate accurately in 
any application using a non-ideal MEMS gyroscope, an 
AFBC scheme is necessary to ensure that the trajectory of 
the proof mass is in a straight-line in the x-y plane so that 
the total energy is held constant and angular momentum 
converges to zero. The reference trajectory, which is 
required, can be defined using an ideal gyroscope behavior.   
 

IV. CONTROL SCHEME DEVELOPMENT 
 
Next, we present the generation of a reference trajectory 

and an adaptive control scheme of achieving the force-
balancing action for a non-ideal gyroscope. 
 
A. Filtered error-based Adaptive Control 

Suppose a reference trajectory given in (11) is 
generated such that is satisfies the motion of an ideal 
gyroscope while it simultaneously keeps the angular 
momentum to zero, i.e. 

02
0 =+ dd qwq&& ,                          (9) 

,0== d
T
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where [ ]T
ddd yxq = .  One such reference trajectory is 

given by 
[ ]T

d twXtwXq )sin(sin)sin(cos 0000 αα= (11) 
whereα  the slope angle of the straight-line trajectory as is 
measured from the x-axis in the x-y plane.  Rewrite the 
non-dimensional gyroscope equation as 
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Now to design a force balancing scheme given the 
desired trajectory )(tqd

, the error e(t) is defined as  

)()()( tqtqte d −=                        (13) 
 
Assumption 1: The desired trajectory is assumed to be 
bounded such that

Bd qtq ≤)( . 

 
Define a filtered tracking error r (t) as  

    ,)( eetr λ+= &                  (14) 
where Tλλ = is a positive definite matrix selected by the 
designer.  Differentiating (14) and substituting (12) and 
(13) in (14) to get  

τλλ −Ω−+++++Ω= reqqDKqeqrI dd 2)()(2 &&&&&&  (15)                               
Equation (15) can be rewritten in terms of filtered tracking 
error as 

,)()( τλ −++= eqxfrI d &&&&          (16) 
where the  gyroscope dynamics after simplification can be 
written as  
    qDkqqxf && ++Ω= )(2)(             (17) 
The dynamics f(x) is further expressed as 
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where [ ] TqqqxW &&2)( =  is the regression vector 
of known functions and [ ]TDKΩ=φ is the vector of 
unknown parameters. An estimate of the nonlinear 
dynamics can be generated as 

φ̂)()(ˆ xWxf T=                     (19) 

 where the unknown parameter vector [ ]TDK ˆˆˆˆ Ω=φ .   
Then, a control law without any constraints is given by 

rkeqxf vd +++= )()(ˆ &&& λτ         (20) 

where vk is another design parameter matrix of appropriate 
dimension.  Substituting (19) and (20) in (16) yields 
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where φφφ ˆ~
−= , is the error in unknown parameters. In 

order to account for the magnitude constraints on the input, 
select vu −=∆ τ  or uv ∆+=τ  where v  is given by 

.)()(ˆ rkeqxfv vd +++= &&& λ     (22) 
 Now applying the magnitude constraints on the control 
input, we have 
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Equation (21) now results in 
uxWrkr T

v ∆++−= φ~)(& where u∆ is defined as a 

disturbance.  In order to combat disturbance, define ∆e&  as  



 
 

 

.ueke v ∆+−= ∆∆&                      (24) 
Now define         `                  

.∆−= ereu                         (25) 
Differentiating (25) and substituting (24) in (25) to get 
   ,~)()()( φxWtekte T
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 Recap the adaptive control scheme as     

,)(ˆ)( rkeqxW vd
T +++= &&& λφτ  

with the parameter update 

    .)(ˆ 1
u
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where 1−γ is a tuning parameter matrix selected diagonal 
with positive elements.  This adaptive controller 
manufactures and estimateφ̂  for the unknown parameter 
vector φ  by dynamic tuning using (27), thus the controller 
has its own dynamics.  It is important to note that the 
angular rate is one of the unknown parameters in the 
parameter vector, which is being estimated and therefore 
with the proposed adaptive scheme, there is no need to 
measure input/output phase difference.  The performance 
of the proposed AFBC scheme is described by the 
following theorem. 
 
B. Parameter Updates 
Theorem 1: (Adaptive controller with PE):  Suppose the 
desired trajectory )(tqd  is bounded as per Assumption 1 
and assume the linear-in-paramters assumption (18) holds 
and the unknown paramter vector φ  is a constant.  Then, 
using the control input (22) with magnitude constraints (23) 
and by using the adaptive parameter tuning given by (27), 
the error ue goes to zero asymptotically and the paramter 

estimates )(ˆ tφ  are bounded. With an additional PE 

condition, )(ˆ tφ  converges toφ  asymptotically. 
Proof: -Select a Lyapunov function candidate  
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2
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withγ  a symmetric positive definite weighting matrix.   
Differentiating (28) to get  

).~~( φγφ &&& T
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Hence substituting the error dynamics (26)  
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By selecting the parameter tuning law as u
T exW )(ˆ 1−= γφ&  

yields 
.uv

T
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In view of the definition ,ˆ~ φφφ −=  and the assumption 

that φ  is constant, the selection for φ&~ yields the tuning 
law, which is given by 
               .)(ˆ 1

u
T exW−= γφ&                  (32) 

Since V is positive definite and V& is negative semi definite, 

both ue  and φ~ are bounded according to Lyapunov’s 

theorem.  Boundedness of the parameter estimate φ̂  

follows from the fact that φ  is bounded.  To show ue  (t) 
goes to zero one must use Barbalat’s Lemma [10] to show 
that V& goes to zero with t.  Hence ue  vanishes as t 
becomes large. To accomplish this, differentiate to obtain  

 
).~)((2

2

φxWekke

ekeV
T

uvv
T

u

uv
T

u

+−−=

−= &&&
          (33) 

The right hand side is bounded and demonstrates the 
bounded ness of ue  andφ~ .  Therefore, V&& is bounded 

implying that V& is uniformly continuous and by Barbalat’s 
Lemma, V&  goes to zeros with t.  Therefore  ue  vanishes 
as t becomes large. 

Applying an additional PE condition, it can be shown 
that parameter error goes to zero so that φ̂  converges toφ  
[10].  So far we have been able to show the asymptotic 
convergence of ue  with the boundedness of φ~ ,φ̂  or the 
parameter convergence using the PE condition.  To show 
the boundedness of r and e , use the equation 

uxWrkr T
v ∆++−= φ~)(& and the following cases 

have to be considered. 
 
Case 1: maxτ≤v :-In the presence of PE condition, 

0=∆⇒= uvu . Then φ~)(xWrkr T
v +−=& .  Applying the 

PE condition rkr v−=⇒→ &0~φ is a linear system with 

stable matrix and hence 0→r as ∞→t .   
 
Case 2: 
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The filter tracking error dynamics can be written as 
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Replacing eer &&&& λ+= into (34)  

         

)))(()((

))(()(

))(()(

max

max

max

tvSgnxWq

qtvSgnxWqq

eqtvSgnxWee

T
d

T
d

d
T

τφ

τφ

λτφλ

+−=

++=−

+++=+

&&

&&&&&&

&&&&&&
      (35)



 
 

 

Expanding (35) and denoting 1yq =  and 2yq =&  to get                                          
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where K, D are positive constants.  Equation (36) is a 
stable linear system provided Ω> 2D  and driven by a 

bounded input ))((max tvSgnτ  .  Hence the states qq &,  are 
bounded and the tracking error r is bounded. ■ 
 
C. Parameter Updates without PE 
 For practical controls purposes the result of the theorem 
is good enough, since the tracking error r(t) is small.  
However, it is very difficult to verify or guarantee the PE 
condition.  Hence the following theorem relaxes the PE 
condition. 
Theorem 2:  (No PE condition requirement).Consider the 
hypothesis presented in Theorem 1, with the parameter 
updates provided by 

φκγγφ ˆ)(ˆ 11
uu

T eexW −− −=&              (37) 

with 0>= Tγγ  and 0>κ  a small design parameter, 

then the error ue and parameter estimation error, φ~  (or 

equivalently)φ̂ , are UUB. 
Proof:  Follow steps similar to Theorem 1. 
 

V.  SIMULATION  RESULTS 
 
A simulation study using the preliminary design data of 

the MIT- SOI MEMS gyroscope was conducted to evaluate 
the proposed scheme.  The data for certain parameters are 
given in Table 1.  For simulation purposes, we allowed 

%5± parameter variations for the spring and damping 
coefficients and assumed %1.0±  magnitude of nominal 
damping coefficients for their off-diagonal terms. Key 
parameters of the gyroscope are selected as: 

 
Table 1  

Z-AXIS GYROSCOPE AND AFBC PARAMETERS 

kgm 601 −=  sec/1 radz =Ω
 

sec/15.3140 radw =
 

mNkxx /2000=
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mNxdxx /sec)(102 6 −= −
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Fig. 1. Functional and rate estimation error. 

 

 
Fig 2. Control input with magnitude constraints. 

 
Desired Trajectory is given by, 

T
d twXtwXq ]cossinsincos[ 0000 αα= . The actual and 

desired error, is plotted in micro meters and the control 
inputs are in micro Newton meter. 

Figure 1 (a) shows that the function estimation error, 
f(x), converges to zero over time and the convergence 
happens within 1 second.  Similarly, angular rate estimation 
error converges to zero very quickly as shown in Figure 
1(b).  The trajectory tracking error converges to zero with 
magnitude constraints on the input is illustrated in Figure 2.  
As displayed in Figure 3, large transients in the control 
input are observed when magnitude constraints are not 
used.  Suitable limits will improve both transient and steady 
state tracking performance. 



 
 

 

 
Fig 3. Control input without magnitude constraints. 

 

 
Fig. 4. Angular  momentum over time. 

 
Since the angular momentum of the gyroscope held at 

zero, as illustrated in Figure 4, the proof mass of the 
gyroscope converges in a straight line motion as displayed 
in Figure 5. From these results, the proposed AFBC scheme 
offers a superior performance. 

 
VI. CONCLUSIONS 

 
 Past works on dynamic analysis of MEMS gyroscopes 
indicate that fabrication imperfections are a major limiting 
factor of the performance.  Conventional force balancing 
control schemes do not provide sufficient excitation and as 
a result, all major fabrication imperfections cannot be 
identified and compensated.  Furthermore magnitude 
constraints are not applied resulting in unwanted transients.  
Using the proposed AFBC schemes, additional richness of 
excitation is supplied to the gyroscope and thus quadrature 
compensation, drive and sense axis tuning, and closed-loop 
angular rate estimation is possible without ZRO.  
Simulation results using the MIT-SOI MEMS gyroscope 
data indicate the superior performance of the proposed 
scheme. 

 
 Fig. 5. Straight-line motion. 
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