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Abstract— In the process of achieving good performance of
Compact Disc players it is important to handle surface defects
as well as possible. The first prerequisite for handling these
defects is to detect their beginnings and ends. Two servo loops
are formed to keep the optical pick-up focused on, and radially
tracked at the information track on the Compact Disc. The
pick-up feeds the controllers with sensor signals, and some
signals for defect detection. However, due to optical cross
couplings detection based on these signals can at times give
false or no detections. In this paper a method to estimate fault
residuals is designed in such a way that the cross couplings
are removed. This is done based on a model of the optical
system, from the physical focus and radial distances to the four
detector signals. Combining this model with a fault model,
enable us to solve an inverse function to find the distances as
it would have been if no faults had occurred. Two different
approaches are pursued in this paper. Both are based on the
Newton-Raphson method. Both methods solve the respective
inverse problems.

I. I NTRODUCTION

Even though Compact Discs (CD) have been on the mar-
ket in more than two decades, there are still performance
issues to improve. Many people has experienced that their
CD player, have problems playing discs with scratches,
finger prints etc.

The Optical Pick-up Unit (OPU), used to read the data
from the spiral shaped track, is controlled to be focused
and radially tracked on the data track. The job of the two
controllers is to keep the focus and radial distance equal
zero. The focus and radial distances are illustrated in Fig.
1. In the OPU some optics are used for generating four
detector signals, (two relating to each loop), the differences
of these pairs are used to approximate focus and radial
distances, the sum of these pairs give information of the
amount of the reflected energy received at the detectors in
the OPU. The actuators in both loops are linear electro-
magnetic actuators, see [1] and [2]. Sometimes CD players
have problems playing disc with surface defects. The reason
is that the sensor is not reliable during a defect. A way
to handle a defect is first to detect the defect as fast and
reliable as possible and then detected, adapt the controller
to handle the detected defect.

In many commercial CD players the sum signals are
used for detection, since a defect typically will cause these
sum signals to decrease remarkable. The sum signals are in
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Fig. 1. The focus erroref is the distance from the focus point of the laser
beam to the reflection layer of the disc, the radial error is the distance from
the centre of the laser beam to the centre of the track. The OPU emits the
laser beam towards the disc surface and computes indirect measurements
of ef and er based on the received reflected light. In addition the OPU
generates two residuals which can be used to detect surface defects as
scratches.

principle not correlated with disturbances in the system, see
[3], [4] and [5]. But due to the optical cross couplings in the
system, this is not entirely true in practice. A radial distance
changes the focus sum, and a focus distance changes the
radial sum. In [6] a physical model of the optical system
as with focus and radial distance as inputs, (ef ander), was
developed. This model also includes cross couplings from
focus distance to radial detector signals, and from radial
distance to focus detector signals. The output set of the
model is a set in which the detector signals will be in the
normal situation, where only disturbances occur.

Practical experiences have shown that it is preferable
to distinguish between disturbances which the controller
shall reject and faults which the controller shall not react
to. Disturbances are phenomena like mechanical shocks,
eccentricity of the disc etc. Faults are phenomena like
scratches and finger prints on the disc surface, see [4]. The
values of the four detector signals are caused by the two
distances and the fault. I.e. it makes good sense to describe
the fault by two parameters, i.e. focus and radial deviations
of the sampled detector values from the model caused by
the defect. These parameters are residuals which are well
suited for the detection of the defects.

Unfortunately it is not a simple job to find these distances
and residuals, since the only known information is the



model and the sampled detector values. The model maps
from (ef , er) ∈ R2 to a 2 dimensional subset of the four
detector signals inR4, The output set of the model is the set
of values which the detector signal can be in as a response
to ef and er. This means that the output set of the model
outputs is a surface inR4 with co-dimension 2. For the
control purposes it is much more interesting to solve the
inverse problem of this model since it would be helpful for
control and fault detection and accommodation purposes to
calculateef and er from the detector signals, and also use
ef and er to compute the fault parameters. Unfortunately,
where is no global solution of inverse of the mapping given
by model. The estimated distances and parameters found in
this paper are in [7] and [8] used for detection of defects,
and these show a clear potential of the residuals.

By using redundancy of detector signals and a simple
model of the possible faults in this paper, a local solution
based on Newton-Raphson’s method is described. This
local solution of the inverse problem can also be used for
solving inverse problems for other applications like this.
This description is followed by a proposal of two different
algorithms to locally solve the given inverse problems given
by the fault model. The first algorithm is based on a fault
model which is an orthogonal projection on the model’s
output set. The second one is based on a fault model
which is a scaling projection on the same output set. The
algorithms are subsequently tested by simulations, and the
results of these simulations are that the algorithm based
on the scaling projection is clearly the best handling the
inverse problem with a type of faults like the ones in the
CD player case.

II. T HE DISTURBANCE SET

The nominal controllers are designed to handle changes
in the sensor signals due to the disturbances inside the
Disturbances set. Surface defects such as scratches and
finger print can be viewed as deviations from this set. The
disturbance set inR4, can be defined in the following way:

1 DEFINITION (THE DISTURBANCE SET) The disturbance
setD ∈ R4 is defined as the set in which any samplesm

in R4 of the detector signals, will be if only disturbances
occur.

D can be modelled by some functions mapping fromef

ander to the four detector signals



D1

D2

S1

S2


 =




f1(ef , er)
f2(ef , er)
f3(ef , er)
f4(ef , er)


 . (1)

This model is found in [6]. These functions are based on
a first principle model of the optical system. Each of the
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Fig. 2. The two factorising functions off1(·), h1(ef) in the upper part,
andg1(ef) in the lower part.

four function fi(ef , er), i ∈ {1, 2, 3, 4}, can be simplified
to the following structure.

fi(ef , er) = hi(ef) · gi(er), (2)

hi(ef) ∈ R andgi(er) ∈ R. D1 andD2 are symmetric and
related to the focus loop andS1 andS2 are symmetric as
well and related to the radial loop. Due to the symmetry
not all the functions are plotted.h1(·) andg1(·) are plotted
in Fig. 2, andh3(·) and g3(·) are plotted in Fig. 3. From
these functions it is clear that the optical model does not
have a global inverse. Instead does the scope is to find a
method to compute the local inverse at given points based
on a given fault model.

The implementation of this model has a drawback. The
functions are not differentiable at all points, even though
the real system is. In the description of the distance
function it can be seen that differentiability is an important
requirement to the disturbance set model, see Section III.

As a consequence, a differentiable model is needed. This,
not at all point differentiable, model is instead approx-
imated by splines, and due to the properties of splines,
this splined-model is differentiable at all points. The spline
approximations are done by using cubic splines.

This disturbance set is particularly interesting in the case
of fault detections, since faults move the detector signals
outside this set, see [5]. A measure of the deviation from the
model to a given sample,sm caused by the fault would be a
signal well suited for detection of a fault. An example ofD1

andD2 wheresm, due to a defect is outsideD, represented
by f , is illustrated in Fig. 4. The controllers controlling
focus and radial distances are only trying to reject the
movement of the detector signals inside the disturbance set.
So even though that a sample’s deviation fromD is quite
interesting in case of detecting a fault, it does not explain
everything a fault causes. A fault does cause movements of
the detector signals which can be assumed as being inside
D but is not, [9]. It is as a consequence quite interesting
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Fig. 3. The two factorising functions off3(·), h3(ef) in the upper part,
andg3(ef) in the lower part.
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Fig. 4. The measured detector signal,sm, is due to a fault outside the
output set of the optical model,f(·), this is illustrated with the detector
signalsD1 andD2, which are the two focus detectors measured in [V].

to know an estimate of this fault caused movement inside

D. This means it is interesting to calculatex =
[
ef

er

]
as it

would have been if no faults had occurred. It is of equal
interest to compute some parameters describing the fault.
All these can be found by solving the inverse problem.
In the following two methods are described to solve the
inverse problems.

III. T WO METHODS FOR SOLVING THE INVERSE

PROBLEM

The solution of the inverse problem can be found based
on the use of the redundancy of the detector signals. These
signals can be modelled as:

sm = g(f(ef , er), ff , fr). (3)

Whereg(. . . , ff , fr) is a model of the fault. This means by
solving the inverse problem for findingef ander, gives the
fault parametersff andfr as well.

REMARK 1 In the given application there are some addi-
tional requirements to the solution of the inverse problem.
Due to low pass filtering nature of the OPU the following
limits are relevant:|ef [n] − ef [n + 1]| < γf and |er[n] −
er[n + 1]| < γr, wheren is any sample, andγf andγr are

f(xi)

∇f(xi)
n(xi) Cdif

sm

f(xi+1)

D1

D2

Fig. 5. Illustration of the principles of the orthogonal projection method.
The illustration shows an example of one iteration inR2, D1 and D2

the two focus detectors measured in [V]. The subscripti represents the
iteration number.f(xi) is the starting point,∇f(xi) is the gradient at
the starting point,n(xi) is the normal vector to the gradient,sm is the
sampled detector signals,f(xi+1) is the function value of iterationi+1,
Cdif is the error at iterationi + 1.

the maximum variations inef and er. This luckily solves
the non-uniqueness problem and makes it possible to find
the local solution to the inverse problem.

Based on the standard requirements to the CD player
servos, see [2], the maximum deviation of focus and radial
positions from sample to sample can be calculated to:γf =
γr ≈ 0.014µm.

In the following, descriptions are given of the two dif-
ferent approaches to solve the inverse problem and thereby
find the right candidate point, and use this to compute the
fault parameters.

The first approach is to model the faults as being
orthogonal toD, meaning that a normal distance function
can be used, this approach has its strong side in solving
the inverse problem in case of no defects. The second
approach is based on a fault model, which changes the
sensor signals in a direction towards the origin, which is
stronger in solving the inverse problem if a defect occurs.

A. The orthogonal projection method

The subject is to find the point,f(x) in D,wherex =[
ef er

]T
. The following is known, ifn(x) is defined as

the normal vector tof(x):

sm = k · n(x) + f(x), k ∈ R. (4)

Since f(·) is only local invertible, there are a number of
points in D for which (4) is true. Due to Remark 1, the
value ofx[n] would be close to the value ofx[n− 1], this
means that if an iterative algorithm is used for findingx[n],
x[n − 1] can be used as a starting value of the algorithm.
In the following an algorithm, based on Newton-Raphson’s
method, is described. One iteration of the algorithm used
on a problem inR2 is illustrated in Fig. 5.

1) The algorithm:In the following the iteration numbers
are indicated in variable subscripts withi, meaning theith
iteration. The most important part of this algorithm is the
projection of the vectors − f(x̃i) on the tangent plane at



the point(x̃i), wherex̃ is estimated value ofx. The tangent
plane is defined as:

y(xi+1) = f(xi) + ∇f(xi) · (xi+1 − xi). (5)

Now find an orthonormal basis of the gradient:

U = orth(∇f(xi)). (6)

Use this to form a transformation matrixP

P = U · U∗. (7)

This means

yi+1 = f(xi) + P · (s − f(xi)), (8)

P · (s − f(xi)) = Uξ, (9)

where

ξ = U∗ · (s − f(xi)). (10)

ξ is the ∆y in U coordinates. This gives, the iteration
increment∆x as

∆x = VΣ−1U∗ · (s − f(xi)), (11)

∇f(xi) = ŨΣṼ+ (12)

= Ũ
[
Σ 0

]
Ṽ∗. (13)

Where

U = Ũ(1 : 2, :). (14)

These equations result in

xi+1 = xi + ṼΣ−1U∗ · (s − f(xi)) ⇒ (15)

xi+1 = xi + ∇f(xi)+ · (s − f(xi)). (16)

The ∇f(x+
i denotes the pseudo inverse of∇f(xi. The

algorithm for estimating̃x is the following:

1) Find the gradient,∇(x̃i) to the point(x̃i, f(x̃i)).
2) Projects to this tangent plane, from this projection

x̃i+1 can be found.̃xi+1 = x̃i+∇f(x̃i)+ ·(s−f(x̃i)).
3) Compute a normal vector n(x) to the

point(x̃i+1, f(x̃i+1)).

4) Compute:ff =
[
rf

rr

]
=




∥∥∥∥D1 − D̃1

D2 − D̃2

∥∥∥∥∥∥∥∥S1 − S̃1

S2 − S̃2

∥∥∥∥


.

5) If |f(x) − s| < ε stop, else go to 1.ε is a small real
constant.

rf andrr are residuals, since they are 0 in case of no faults
and increase as the fault develops.

e1

f(xi)
∇f(xi)

sm
β · sm

f(xi+1)
∇f(xi) · ∆x + f(xi)

D1

D2

Fig. 6. Illustration of the principles of the scaling projection method. The
Illustration shows an example inR2, D1 andD2 the two focus detectors
measured in [V].f(xi) is the starting point for the iteration,∇f(xi) is
the gradient at the starting point,sm, β · s is vector through origin and
sm, ∇f(xi) · ∆x is the crossing between the gradient and the vector
through sm, this can be used to find∆x and xi+1 = xi + ∆x, and
f(xi+1) is the new function value. The algorithm stops with iterations
then norm(f(xi+1) − β · s) < ε, whereε is the stop parameter.

B. The scaling projection method

The orthogonal projection method is well suited for
solving the inverse problem in cases where the detector
signals are insideD, or the faults are orthogonal toD. The
orthogonal distance function is not well suited for finding
the right distance, since real faults for a CD player are
not modelled well as orthogonal deviations. The study of
the two focus detector signals of a compact disc surface
defects presented in [10] indicates that a scaling model of
the defects/faults is a much better model. This model can
also be argued based on some physical arguments. Given a
sample of detector signals inD, f(xi+1). The defect can be
modelled by a decrease of the received energy by a factor
0 < k < 1 at all four detectors. This means that the new
defective sample,sm is:

sm ≈ β · f(xi+1). (17)

Thus the pointsm will be on the line going through0 to
f(xi+1). The general structure of the algorithm to calculate
scaling distance function is the same as for the orthogonal
distance function, and is also based on the fact that focus
and radial distances cannot change much from sample to
sample. Only two of the steps in the algorithm are changed.
These are: the step calculatingxi+1 and the step containing
the stop criteria.

f(xi) + ∇f · ∆xi+1 ≈ β · sm ⇒ (18)

∇f · ∆xi+1 − β · sm ≈ −f(xi) ⇒ (19)
[∇f −sm

] ·
[
∆xi+1

β

]
≈ −f(xi) ⇒ (20)

[
∆xi+1

β

]
≈ − ([∇f −sm

])+ · f(xi).

(21)

The new stop criteria is the derivative of the model error:∥∥∥∥2 · (f(x) − β · sm)T

[ ∇f
−sm

]∥∥∥∥ < ε. (22)



β is not a residual since it is equal 1 in case of no faults
and goes towards 0 as the fault develops, instead a related
residual,α, is defined as:

α = 1 − 1
β

. (23)

Previously an algorithm, based on the scaling projection
and Newton-Raphson’s method, is described. One iteration
of algorithm used on a problem inR2 is illustrated in Fig.
6.

1) The algorithm:

1) Find the gradient,∇(x̃i) to the point(x̃i, f(x̃i)).
2) Compute:[

x̃i+1

β

]
=

[
x̃i

0

]
+

([∇f −sm
])+ · sm.

3) Compute:γ = ||sm − f(xi+1)||, rf andrr.
4) Jump to step 1 if:

ε <

∥∥∥∥2 · (f(x) − β · sm)T

[ ∇f
−sm

]∥∥∥∥, else stop.

This algorithm has in addition two outputs:γ and α,
and they might be useful for detection and classification of
faults.

IV. SIMULATION

In this section the two algorithms’ abilities to solve
the described inverse problem are tested by a number of
different simulations. The used input signals (ef ander) to
this simulation are two sine signals with a small difference
in the frequency so that the two input signals are not
fully correlated. The frequency and amplitude of these sine
signals are chosen in a way that the maximum variance
value from one sample to another is at least:0.014µm,
see Remark 1. The orthogonal projection method is tested
first. Starting with a simulation without any faults, see
Fig. 7. The signal with faults is constructed based on the
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Fig. 7. The four simulated detector signals without any faults.

model in (17), wherek[n] represents surface defects, and
the signal is illustrated in Fig. 8. Using the fault model
and the fault signal in Fig. 8, the simulation series of
samples with surface defects are computed and illustrated
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Fig. 8. Theα[n] series, which models the surface faults of a CD used
in these simulations.
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Fig. 9. Simulation of the four detector signals with surface faults.

in Fig. 9. The next step in the simulation is to apply the
signal from Fig. 9 to the algorithm with the orthogonal
projection. In Fig. 10 the series off(x̃) are illustrated.
From this figure it can be seen that this algorithm has a
problem achieving good estimates ofx at faulty samples.
The reason for this is that the faults are not orthogonal
to D. From this simulation it is clear that the orthogonal
projection method is not appropriate for the type of faults
described in this paper. One final simulation of this method
is performed, where the fault is almost orthogonal toD.
If the input time series ofx is 0 in every element, the
used fault model will be almost an orthogonal fault, but
not completely. However, since these faults were not
completely orthogonal they introduce a small distance in
the solution, which is correlated with the faults. This means
that even though the fault is almost orthogonal toD, it is
not enough for the orthogonal projection based algorithm
to give a good solution to the inverse problem. The next
simulation is of the scaling projection algorithm. In this
simulation the detector signals shown in Fig. 9 are fed to
the algorithm. The results are shown in Figs. 11. From this
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Fig. 10. Illustration of the four detector signals as they are if no fault
occurs, and the ones estimated by the use of the orthogonal projection
method.

plot it is clear that the scaling projection method is well
suited for solving this inverse problem with the given fault
model.

V. CONCLUSION

The simulations show that the orthogonal projection
method is well suited for solving the given inverse problem
if there are no faults or the faults are orthogonal to the set.
However, in cases of other types of faults it is possible to
achieve a better solution of the inverse problem by adjusting
the algorithm to the given fault structure. In the CD player
a good model of the faults would be the one described in
this paper. Solving the inverse problem with these types of
faults, the described scaling projection algorithm achieves
very good results as illustrated in the simulations. The
solution of this inverse problem gives estimates of: focus
and radial distances and the two pairs of fault parameters,
(ef , er, rf , rr, γ andα).
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