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Abstract— This paper discusses the problem of designing  In [11], a fault tolerant control problem has been ad-
fault tolerant compensators that stabilize a given system both  dressed for systems, where specific sensors could potgntial
in the nominal situation, as well as in the situation where one fail such that the corresponding outputs were unavailable

of the sensors or one of the actuators has failed. It is shown for feedback. wh th tout dtob
that such compensators always exist, provided that the system or teedback, whereas other outputs were assumed (o be

is detectable from each output and that it is stabilizable. The available at all times.
proof of this result is constructive. A family of second order In [12, Sec. 5.5], the question of fault tolerant parallel

systems is described that requires fault tolerant compensators compensation has been discussed, i.e. whether it is pessibl
of arbitrarily high order. to design two compensators such that any of them alone
or both in parallel will internally stabilize the closed lmo
I. INTRODUCTION system.
The existence results given in [11], [12] mentioned above,

The interest for using fault tolerant controllers is in&€a -gn pe considered to be special cases of the main results of
ing. A number of theoretical results as well as applicatiogyis paper.

examples has now been described in the Iiterature, See €.0in this paper, we shall consider systems for which any
[11, [2], [3], [4], [3], [6], [7], [8], [9], [10] to mention sane  gensor (or in the dual case any actuator) might fail, and we
of the relevant references in this area. wish to determine for which systems such (passive) fault
The approaches to fault tolerant control can be divideghjerant compensators exist. The main results state teat th
into two main classesActive fault tolerant control and only precondition for the existence of solutions to thisltfau
passive fault tolerant control. In active fault tolerant control, tglerant control problem is just stabilizability from each

the idea is to introduce a fault detection and isolation kblocinput and detectability of the system from each output.
in the control system. Whenever a fault is detected and

isolated, a supervisory system takes action, and modifies I1. NOTATION

the structure and/or the parameters of the feedback control “m

system. In contrast, in the passive fault tolerant contpel a  1voughout the paperg #P*™ shall denote thﬁ set of
proach, a fixed compensator is designed, that will maintap,roper;n:eal-ratlonal functions taking values @™, and
(at least) stability if a fault occurs in the system. ® s 2P*™ shall denote the set of strictly proper, real-rational

. : . . i i il Pxm pxm
This paper will only discuss the passive fault toleranfunCtions taking values i ™. % s ;" shall denote the
control approach, also sometimes referred toraiable set of stable, proper, real-rational functions taking galin

. . ) ) ) pxm i . _ 5
control. This approach has mainly two motivations. FirstC" - 1€ notation{s € %, : B(s) = 0} will be used as
orthand for zeros d&(-) on the positive real line. The set

designing a fixed compensator can be made in much simpk ) N i
hardware and software, and might thus be admissible [A¢!udes the pointatinfinity if lirs.... B(s) = 0. For matrices
more applications. Second, classical reliability thedates ~»B:C: D of compatible dimensions, the expression

that the reliability of a system decreases rapidly with Al B

the complexity of the system. Hence, although an active G(s) = <T’T>

fault tolerant control system might in principle accomadat

specific faults very efficiently, the added complexity of thewill be used to denote the transfer functi@{s) = C(sl —
overall system by the fault detection system and the su#)~'B+D. Real-rational functions will be indicated by their

pervisory system itself, might in fact sometimes detet®mra dependency of a complex variabfe(as in G(s), K(s)),
plant reliability. although the dependency af will be suppressed in the
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notation (as inG, K), where no misunderstanding shouldwhere

be possible.
Gers?”™ Nex#P™ Megag™,
[1l. PROBLEM FORMULATION Meg#PP NeguP™
mx p mx p pxp
Consider a system of the form: Kexe ™", Ue R}[ﬁxm7 Ve Kﬂo;qx,;

Vert™ Uegul

X = AX 4+ Bu
y1 = Cix can be found from an observer based controller by the
y2 = Cxx 1) formulae:
: A+BF |B —L
Yp = CpX MY = F [T 0
NV C 0o |
wherexe ", uex™ yie®r,i=1....,pandA B,C,i= (3)
1...,p are matrices of compatible dimensions. Each of the v U A+LC | B L
p measurementsg;, i =1,...,p, is the output of a sensor, < KM ) = -F I 0
which can potentially fail. C 0 I

In this paper, we will determine whether it is possible here A.B,C are parameters for a (minimal) state space
to design a feedback compensator that is guaranteed w0 ' P b

o : : ) representation foB(s), i.e. matrices of smallest, compatible
stabilize a given system, in caagy sensor could potentially

i . . . dimensions such that
fail. To be more precise, we are looking for a dynamic

compensaton = K(s)y, K € & 2™ P, with the property, that AlB
each of the following feedback laws: G =(<T0

V1 F is an arbitrary stabilizing state feedback gain &nd an
Vo arbitrary stabilizing observer gain, i.E.andL are matrices
u=K@E| . |, of compatible dimensions such that béth- BF andA+LC
) have characteristic polynomials which are Hurwitz.
Yp The eight matrices defined by (3) satisfy the double
0 y1 Bezout identity:
K y2 K °
u=K(s) , u=K(s) ) <\7~ _p')(M U>
Yp Yp -N M N V
Y1 (MU Vv -U\_[1 0
Y2 AN V -N M N0 |
L u=K(9) ®)

We also remind the reader, thauait is an element of a
ring, which has an inverse in that ring. In particular, a unit
are internally stabilizing, i.e. that both the nominal gyst 1" the ring of stable proper rational functions, is simply a
as well as each of the systems resulting from one of th@ble proper function with a stable proper inverse.
sensors failing are all stabilized b(s). We will need the following result (see [14, Theorem 5.2,

It is obvious, that the answer to this question immediatelff2g€ 106] or [12, Corollary 6, Page 118]) on the strong
provides the answer to the corresponding dual questian: j gabilization problem, i.e. the problem of finding a stable
whether is is possible to design a compensator, that worREbilizing compensator:

in the nominal situation, but also if any of the actuators Lemma 1: Let A(s), B(s) be stable proper transfer func-
would fail. tions. Then there exists a stable proper transfer function

Q(s) such that the function
IV. PRELIMINARIES
A(s) +B(s)Q(s)
We remind the reader - see e.g. [13, Theorem 5.9, o _ _ _ .
Page 127] - that a doubly coprime factorization of a strictlyS & unit in the ring of stable proper rational functions, if

proper plant and a stabilizing compensator and only if
- ~ Az
G(s) = N(IMY(s) = ML) (s) (2)
K(s) =U(s)V1(s) =V -1(s)U(s) has constant sign for aflp € {S€ R : B(S) = 0}.
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V. MAIN RESULTS Thus, without loss of generality, we will assume that the

In this section we shall present our main results whicfiystem in consideration has the form

state that for systems with several outputs, it is always X = AX + Bu
possible to find a compensator, that both stabilizes the yi = Cix (8)
nominal situation, as well as the situation where any of yo = X

the sensors fails. In a similar fashion, it is shown, tha}hereB is a single column matrixC;, i = 1,2 are single
it is always possible to design a fault tolerant feedbac,y matrices,u,yi € % ,i = 1,2. Thus, it will be assumed

compensator for a system with several actuators. The onliat the transfer functions fromto each of the outputs are
precondition to these results, is in the first case that all.5iar.

unstable modes for the system are observable by each sens ' (G :
and in the second (dual) case, that all modes are contrellabl Define ¢ = G and let Ko(s) be an internally
by each actuator. stabilizing compensator for the system (8), which has the

Theorem 1: Consider a system given by a state spacBansfer functionG(s) = C(sl —A)~!B. Introduce a doubly
model of the form (1). Assume, that the pdiA B) is Ccoprime factorization of5(s) andKo(s), i.e. stable proper
stabilizable, and that each of the pai,A),i=1,...,p, functionsM,N,Vo,Uo:
is detectable. Then, there exists a dynamic compensator 1 N (s) 1
K(s) such that each of thp+1 control laws (2) internally G(s) =N(sM™*(s) = ( Na(s) ) M™(s)
stabilizes the system (1). B 5 . . 5

The proof will be constructive, and we shall give some  Ko(s) =V *(9)Uo(s) =V *(s) ( Uoa(s) Uo2(s) )
comments on practical computations in the sequel of theatisfying the Bezout identity
proof. ~ - ~ ~ ~

Proof: First, let us note that it suffices to prove the VoM —UoN = VoM —Uo1Ny —Up 2Nz = 1 ©
result in the case whema=1 andp=2. To see thain=1 This can always be done - explicit formulae are given by (3).
can be assumed without loss of generality, one can justNext, we note that replacing in (9) the triplet

consider the system (\70 Uos 002) by (\7 0, Uz)

X = A + Bu where

yi = GCix . .

y2 = Cox 4) y = \fo — Q2N — Q3N
: U = Uo1—QiN2— QM

Yo = Cpx Uy = Up2+QiNi— QM

whereB =Bv,ve £ ™1 e %, andv is any vector such also provides a solution to (9), as this simple calculation
that the pair(A,B) is also stabilizable. This is always STOWS: y

possible, see e.g. [15, Corollary 1.1, Page 43]. Thus, if VM —UiNi—UzN;

u= K(s)y is a fault tolerant feedback law for (4), then = (\70—Q2N1—Q3N2) M — (Uo,l—QlNz—QzM) Ny

i(:s)}i(f/)%(g a fault tolerant feedback law for (1) with -~ (00,2+Q1N1—Q3M) Ny
Next, if = VoM —Ug 1Ny —Ug2N>
K(s) = ( Ku(s) Ka(s)) e =1
Consequently, any transfer function of the form:

is a fault tolerant feedback compensator for this system: \771( ?j Uy ) Y

. 1 U

X = é%; + Bu ®) = (Vo— Q2N — QsN) ™ 5

=t x (U1 —QiN2— QM  Uoz+QiN1—QsM )

y2 = Cxx (10)
then whereQs, Q2, Q3 are all stable proper rational functions, is

K(s) = ( Ki(s) Ka(s) O 0 ) @) also a stabilizing compensator.

In the sequel, we shall demonstrate, tRat Q., Qs can
is a fault tolerant feedback compensator for the system ()e chosen such that—*( Uy U, ) stabilizes both the
Indeed, in the nominal situation or if one of the sensorgominal and the faulty systems.
corresponding toy;,i = 3,...,p fails, the control signal If the sensor corresponding to one of the outputs fails,
generated by (7) will be the same as the control signde controlletV—*( Uy U, ) has to stabilize a system of
generated by (5) in the nominal situationyifi = 1,2 fails, the form:
(7) will still generate the same control signal as (5) whigh i Go ( N1 (s) > o Go < 0 )
known to stabilize the shared dynamics of the two systems. o 0 U No(s)
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which means that stability is obtained if and only if thewhere (9) has been applied. This proves the existence of

compensator (10) satisfies the two equations:
(Vo — Q2N1 — Q3Nz) M
~ ~ N
— (U1 —QiN2—Q2M  Upz+QiN1 —QzM ) ( 01)
= VoM — Q2N:M — QsNoM
—Up,1N1 + Q1N2N1 + Q2MNg
= VoM —Ug 1N1 + Q1N2N; — Q3sNoM = ug

and
(Vo— QoNp — Q3N2) M
—(Uo1—QiN2— QM U2+ QiN1 — QsM ) (,\?2)
= VoM — U 2Nz — QiN1Nz — QoNiM = u

(11)

(12)

whereus, Uz are units in the ring of stable proper rational

functions.

Thus, the existence of a fault tolerant controller has = 1_V0(5)M(5)+U0,1(5)N1(5)—Ql(S)Nl(S)NZ(S)‘
now been shown to be inferred from the existence of 1 1

stable proper rational functior@;, Q,, Qs, such thatuz, up

become units. We will prove this existence by first choos-
ing Q1 appropriately. Subsequently, (11) and (12) will be
considered as equations Qg and Q. which are no longer
coupled, and show that each has an admissible solution.
To that end, first note that it is possible to determine a

stable proper functio;, such that:

~ 1
Ql(S) Nl(S)Nz(S) - UoAl(S) N]_(S) == (13)
s=z, 2
for all positive real zeros dfl, zp € {z€ R+ : M(2) =0},

sinceN1(zp)N2(zp) can not be zero foM(zp) = 0 due to
coprimeness oM andN; and of M andN,. To determine

an admissible functiorQs. To determineQs in practice,
one approach is first to find; that interpolates the con-
straints (14) and (15), and subsequently to deternige
as a solution to (11). Ifi; in addition is chosen to interpolate
all constraints arising from zeros d¥l and N, in the
right half plane (not just the positive half lineds can be
computed by:

Q= VoM —Up 1N1 + Q1NoN; — g
3= NoM

The proof of existence of an admissilile is completely

analogous to the proof of existence@f. The interpolation

constraints for (12) corresponding¥(z,) = 0 amounts to:

Vo(s)M(8) ~ Uo2(9Na(s) — Qu(sNa(s)N(s) | _

(16)

Zp

— ~Uoz(s)Na(s) ~ Qu(s)Na(S)Nz(S)|

s=7p

S=Zp
=1- 5=5 a7
where (9) and (13) has been exploited. Fa(zp) =0 we
obtain the constraints:
\70(S)M (S) — U‘o,z(S) Nz(S)

S$=Zp
= Vo(s)M(S) —Uo 2(S)N2(s) — Q1(S)N1(S)N2(s) ,
$=Zp
=1 (18)
from (9). Q2 can now be found as a solution to (12),

and the resultingu, will interpolate the conditions (17)
and (18). Again,Q, might be computed by first finding

Qi satisfying (13) in practice can be done by a standar? i.nterpolating all constraints arising from zeroshMfand

rational interpolation.

Now, for a fixed Qi, (11) can be recognized as a

strong stabilization problem in the variald®. It is known
from Lemma 1 that sucks exists if and only if

VoM —Ug 1N1 + QiN2Ny
%ij
has constant sign for every value of
Zp €{Z€ER1w : M(2) =0 or N(z)=0}
For M(zp) = 0 we obtain:

Vo(9M(9) —Uo1(N(5) + Qu(Na (SN (s)|

=2
= ~Ooa(9Ma(9)+QuINe(IN(S)] =5 (19
from (13). ForNa(zp) =0, we get:
Vo(9)M(s) —Uo1(s)N1(s) + Qu(S)Na(S)Na(S) ‘Hp
= Vlo(s)M(s) —Uga(s) Nl(s)]Hp —1 (15)

N; in the right half plane (not just (17) and (18)), and then
computingQ, as:

Q= VoM —Ug 2Ny — QiNiNp — Up
2 NyM
Thus, one possible fault tolerant compensator is:

K= (Vo—Q2N1 — QsNp)
x ((Uo1—QiN2— QoM Ugz+QiN1 — QzM )

(20)
which stabilizes the system given by (8) in the nominal
case, as well as in the case, where one of the two sensors
fail. ]

We again stress that every step in the proof is construc-
tive. A worked example based on a procedure based on this
proof can be found in [16].

A corresponding result for actuator failures follows triv-
ially from Theorem 1 by duality:

Theorem 2: Consider a system given by a state space
model of the form:

X = AX + Bup +
y = Cx

(19)

1
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wherexe ", ujeg,i=1....m ye P andA Bj,i= and

1...,m, C are matrices of compatible dimensions. Assume, Vo(1+€)+va(l+e) =1

that each of the pair¢A,B;),i =1,...,m, is stabilizable

and that the pai(C,A) is detectable. Then, there exists aFrom this last equation, we infer that eithes(1+¢) < 3
dynamic compensatdk(s) such that the nominal control or v3(1+ ¢€) < % Assume without loss of generality that

law: ! V2(14¢€) < 3. Thenv, is a unit such that
1
Uz 1
u=| . | =K@y v2(1) =1, yi=ve(lt+e) <5, and vp(w)=1
Um The constraint at infinity, means that we can asswmto

be of the form:

a4+

0 uy Vo (S) = 24
up 0 2(9) S+ Bas .+ Bn e4)
u= ’ u= ’ for somen, which leads to the conditions:
u u
m m ' 1+01+...4+0n=21+B1+...+Pn (25)
1
uz and
) u:
0 (1+e)"+(1+e)" tar+...+ap

n n—-1
internally stabilizes the system (21). =Y+ YA+ Bt 4B (26)
Proof: Follows by transposing the system and th%ubtracting (25) from (26) gives:
compensator. [
It is interesting to note that it might be necessary to resort (1+e)"—1+ ((1+e)" 1 -1)ay
to arbitrarily high controller orders even for a system af lo Foot (148 —Dang
order. As an example, consider fer> 0: e 1)+ (y(1+£)”‘1 1) B

Ge(s) = ( % ) (22) +. 4+ (Y=1)Bn

(s—(1+€))(s+1)

(27)

We remind the reader, that a necessary condition for (24)
with the following coprime factorization to be a unit is thatt; > 0, B > 0,i =1,...,n. Thus, all the
1 s—(1+¢) -1 terms on the left hand side of (27) are positive. This means,
Ge(s) =N(s)M(s) 1 = ( S ) (7> however, that (27) can only be true if

(s+1)?

for which the fault tolerant control problem is equivaleat t 1+e)">=>2
finding K(s) =V~ ( Uy U, ) such that ¥

s+1

~s (1tg) G5l _ (psd or, equivalently

\~/ ST (5+1)2 2z T W log2
veEde 0 =~ Uy = w (23 ogiie) for £—0;
v g s 0 - u

st1 (s+1)?

From (23) we obtain:
where uy, Uy, uz are all units in the ring of stable proper

functions. _ _ U vEde g, (:;11)2
Evaluating these equations sit=1 ats= o, we notice V2= == — g = o —
Uz \Yj _Ul s—1 U2 s—1
that st1 (s+1)? (s+1)?

(s— (14¢€))(s+1) — (s— 1)V 10,

(1) = (1) = Ua(1) - and () = () = () = (5= (14€)(s+1) — (5— )V 1U; — (s— 1V 10,

On the other hand, we also have ) ) ) )
Since the order of the left hand side of this equation tends

ur(1+€) =ux(1+¢€)+uz(l+e) to infinity ase tends to zero, clearly also the order either
of V-1U; or of V-1U, has to tend to infinity.

Thus, the order of the resulting controller can be required
to be of arbitrarily high order even for this family of second
Vo(1) =v3(l) =1, wvp(o) =vz(0) =1 order systems.

Let us define the unite; = uy/u; andvs = uz/u;. Then we
have:
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