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Abstract

In this paper, we develop an adaptive approach for compen-
sating uncertain failures of morphing actuators used for flight
control of morphing aircraft. Morphing actuators are spe-
cial actuators that operate at only two states: “on” and “off”,
and are used in a large quantity. Failures of such actuators
are characterized by some actuators being stuck at one state
and unable to be changed by applied control inputs. We
present a novel failure model for such actuators, by consid-
ering the failure percentage as an uncertain parameter, and
derive a piecewise-linear characteristic to describe such fail-
ures. We develop an adaptive inverse of such characteristic
to compensate for the uncertain actuator failures. Updated
from a parameter projection adaptive law and combined with
a state feedback control law, such an adaptive inverse compen-
sation scheme is able to ensure desired closed-loop stability
and tracking properties in the presence of uncertain actuator
failures. An application of this compensation scheme to the
control of an ICE aircraft model with morphing actuators is
studied and simulation results are presented to illustrate the
effectiveness of the actuator failure compensation design.

1 Introduction

Morphing aircraft are novel concept air vehicles that can
achieve high performance under different flight conditions
and environment via virtual geometry change. Such geometry
change is realized by the new shape change actuators (effec-
tors) which replace the conventional actuators such as ailerons
or rudders. Some special features of the shape change actua-
tors are that they operate only at two states: “on” and “off”,
represented by their normalized value: 1 and 0, and that they
are used in large numbers to fulfill certain actuation function.

The features of morphing actuators make the morphing
aircraft control problems, including the actuator failure com-
pensation problem, quite different from the control problems
for conventional aircraft. There have been some design meth-
ods to deal with actuator failures, such as the multiple models,
switching and tuning designs [3], [5], adaptive designs [1],
[2], [4], fault diagnosis method [10], and robust fault accom-
modation [6]. However, such designs may not be applicable

to the actuator failure problem of morphing aircraft. For ac-
tuator failures that may occur to morphing aircraft, new mod-
els are needed to describe the failures, and new compensa-
tion schemes are needed to handle such failures. In [9], we
addressed the morphing actuator failure model and its adap-
tive compensation for the case wherein the morphing actua-
tors only fail at the “off” (that is, the 0 value) state. In this
paper, we address the more general case in which the actua-
tors may fail at both the “on” and “off” states. While failures
at the “off” state produce no additional force and moment, the
failures at the “on” state do. Therefore, new actuator failure
compensation schemes, for both the nominal case with known
failure parameters and the adaptive case with unknown failure
parameters, are needed. It is the goal of this paper to present
such an adaptive actuator failure compensation scheme for
morphing aircraft flight control. To derive such an adap-
tive control scheme, new solutions to some key issues such
as morphing actuator failure modeling, failure compensation
parametrization, implementation error analysis, and adaptive
control algorithm are presented in detail.

2 Problem Formulation

Morphing Aircraft and Actuators. Morphing aircraft use
small shape-change effectors (called morphing actuators in
this paper) in large numbers to fulfill the flight control task
without flap. The morphing aircraft model used in this pa-
per is the representative Innovative Control Effector (ICE) air-
craft [8], whose wing span is depicted in Figure 1. The effec-
tor suite under study includes four arrays on each wing: the
upper-surface leading-edge (ULE) array, the upper-surface
trailing-edge (UTE) array , the upper surface wingtip (UTip)
array, and the lower-surface trailing-edge (LTE) array.

The aircraft control system turns the shape change effec-
tors “on” or “off”, in normalized numerical values, either 1
or 0, to generate the needed control signal. More effectors
are turned on to produce larger force as needed. For the con-
trol of lateral-directional dynamics, a negative control input is
implemented by turning on the actuators on the other wing.

A nonlinear model of the ICE morphing aircraft describ-
ing both the longitudinal and lateral-directional dynamics was
developed in [8]. In this paper, we only consider the linearized



Figure 1: Shape-change actuator arrays of the ICE aircraft [8].

lateral-directional dynamics, which is described by a linear
time-invariant plant

ẋ(t) = Ax(t)+Bu(t) (2.1)

where x(t) = [v, p,r,φ]T (t) ∈ R4, and u(t) ∈ R4 represents the
control input from the four morphing actuators arrays de-
scribed above, and

B = [b1,b2,b3,b4], bi ∈ R4 (2.2)

with each bi denoting the actuation vector for one actuator ar-
ray. The state variables are: v (velocity along the y-axis of the
body coordinate system), p (roll rate), r (yaw rate), and φ(roll
angle). The actuation signal biui is to be approximated by a
sum of actuation signals generated by a set of actuation vec-
tors associated with a set of morphing actuators. We should
note that although we only consider 4 states and 4 inputs, the
results presented in this paper can be generalized to plants of
any dimensions of states and inputs.

Nominal Feedback Control. The first problem of morphing
aircraft control is how a nominal control signal for each actua-
tion array is given. By assuming that the pair (A,B) is known,
and x(t) is available, we use the nominal control law

u(t) = ud(t) = K1x(t)+K2rd(t) (2.3)

where K1 ∈ R4×4 is a state feedback gain matrix, K2 ∈ R4×nr

and rd(t) ∈ Rnr , nr ≤ 4, is a reference input vector signal,
which leads to the closed-loop system

ẋ(t) = Ax(t)+Bu0(t) = (A+BK1)x(t)+BK2rd(t)
= Amx(t)+Bmrd(t). (2.4)

All eigenvalue of Am are in the open left-half complex plane.
The aircraft model under study is controllable and the nominal
control law (2.3) can achieve arbitrary pole placement.

Control Signal Implementation. Let v(t) = [v1(t),v2(t),
v3(t),v4(t)]T be an applied control signal vector to be im-
plemented. There are different schemes to implement v(t).
We consider the same control signal implementation scheme
as that in [9]: let vi(t) be the ith component of v(t), then (i)
positive vi(t) is implemented by the morphing actuators in ar-
ray i on the right wing and negative vi(t) is implemented by
those on the left; and (ii) actuators are activated in the order
of increasing j, that is, the first ni actuators from one end of
the actuator array i is activated to approximate vi(t), with the
number ni being determined by the magnitude of vi(t).

Assume that there are totally 2Ni actuators in array i, Ni on
each wing (left and right), and for bli j and bri j, i = 1,2,3,4,
j = 1,2, . . . ,Ni, the regional actuation vectors of the morphing
actuators on the left and right wings,

bli j = αli jbi, bri j = αri jbi (2.5)

for some constants αli j < 0, αri j > 0, i = 1,2,3,4, j =
1,2, . . . ,Ni. Due to the fact that the morphing actuators on
left and right wings are symmetrically distributed and their
effects on the lateral-directional motion are opposite, we have

bli j = −bri j, αli j = −αri j, j = 1,2, . . . ,Ni. (2.6)

Then, the control law implementation scheme is

vi(t) ≈
{

∑ni
j=1 αri j if vi(t) ≥ 0

∑ni
j=1 αli j if vi(t) < 0

(2.7)

where ni ≤ Ni is the number of activated actuators.
Introducing the indicator function of an event X as

χ[X ] =
{

1 if X is true
0 otherwise

(2.8)

and defining

αi j(t) = χ[vi(t) ≥ 0]αri j +χ[vi(t) < 0]αli j (2.9)

we can express (2.7) as

vi(t) ≈
ni

∑
j=1

αi j(t). (2.10)

For the considered control problem, we make the follow-
ing basic assumption:

(A1) There are enough actuators with enough
density to implement a desired control signal v(t)
for meeting desired stability and tracking perfor-
mance requirements.

An actuation error inevitably occurs when the nominal
feedback control signal is implemented by the morphing ac-
tuators. As in [9], we refer to this error as the implementation
error. From (2.10), the implementation error for array i is

e1i(t) =

(
ni

∑
j=1

αi j(t)− vi(t)

)
bi (2.11)

which gives

‖e1i(t)‖2 ≤ |
ni

∑
j=1

αi j(t)− vi(t)|‖bi‖2. (2.12)

Following the analysis procedure in [9], we have

|
ni

∑
j=1

αi j(t)− vi(t)| ≤ δ1i (2.13)



for some constant 0 < δ1i < max{|αi j(t)|} (that is, 0 < δ1i <
max{|αli j|} = max{|αri j|}) and independent of vi(t). Hence,

‖e1i(t)‖2 ≤ δ1i‖bi‖2
�
= ε1i (2.14)

and the total implementation error

e1(t) =

(
4

∑
i=1

(
ni

∑
j=1

αi j(t)

)
bi

)
−Bv(t) =

4

∑
i=1

e1i(t) (2.15)

is bounded as

‖e1(t)‖2 ≤
4

∑
i=1

‖e1i(t)‖2 ≤
4

∑
i=1

ε1i
�
= ε1 (2.16)

for some constant ε1 > 0 independent of v(t).

Actuator Failures. Actuator failures, which may happen dur-
ing system operation, introduce large actuation error to the
control system and make the nominal control signal v(t) =
ud(t) designed from (2.3) unable to achieve the desired per-
formance requirements and must be redesigned.

In this paper, we consider the adaptive actuator failure
compensation problem for the case when actuators may fail
at either 1 or 0, that is, when an actuator fails, it is either “on”
or “off”. Although there may be different actuator failure pat-
terns in different situations, we consider only the failure pat-
tern that the failed actuators are uniformly distributed such
that the actuator failures can be modeled in terms of failure
percentage. This is an actuator failure model of practical sig-
nificance. Since in each array, the actuators are of the same
type, they should have the same possibility of failure, due to
the large number of actuators, the distribution of failed actua-
tors among the total Ni of them appears to be uniform.

Letting αli and αri be the failure percentage parameters
for failures at 0 on the left and right wings, and βli and βri for
failures at 1, respectively, and defining

mri = 1−αri −βri, mli = 1−αli −βli (2.17)

where mri and mli represent the percentage of functioning ac-
tuators on the right wing and left wing respectively, then the
actuator failures can be approximately modeled as

mi ≈ mai =
{

mrini +βriNi +βliNi if vi(t) ≥ 0
mlini +βliNi +βriNi if vi(t) < 0

(2.18)

where mi is the number of actually activated actuators, and ni

is the desired number of actuators to be activated to implement
an applied control input vi(t).

Unlike the case studied in [9], where 0≤mi ≤ ni, the num-
ber mi from (2.18) may be larger than ni, or less than 0, be-
cause the actuators failed at 1 in the same wing but outside
the chosen ni give an additional number of activated actua-
tors, and those on the other wing give a negative number of
activated actuators in the sense of control effect. A negative
mi means that more actuators on the opposite wing are actu-
ally activated than those on the desired one, and the sign of
the actual control signal is also different from that of vi(t).

It is also important to note that (2.18) is only an approxi-
mation of the actuator failure model. One simple but obvious
reason is that, in general, the right hand of (2.18) is not an in-
teger but mi should always be an integer. We may also wonder
how small the error given in (2.18) is so that a failure pattern
can be classified as uniformly distributed. Therefore, here we
give a more accurate definition of the uniformly distributed
actuator failures: the failed actuator are so distributed such
that (i) for the number of activated actuators,

|mi −mai| ≤ ki (2.19)

for some chosen constant ki > 0 independent of ni, and (ii) for
the actual control input,

|ui(t)−wi(t)| ≤ δ2i (2.20)

for some chosen constant δ2i independent of ni and vi, with
ui(t) be the actual control input produced by the mi activated
actuators, and

wi(t) =
{

mri ∑ni
j=1 αi j(t)+m0i if vi(t) ≥ 0

mli ∑ni
j=1 αi j(t)+m0i if vi(t) < 0

(2.21)

where
m0i = βriαi −βliαi (2.22)

and αi be the total positive control input that array i can pro-
duce by activating all actuators on the right wing, that is,

αi =
Ni

∑
j=1

αri j = −
Ni

∑
j=1

αli j. (2.23)

From (2.20), the actuation error caused by the modeling
error for array i is

e2(t) =
4

∑
i=1

e2i(t)
�
=

4

∑
i=1

bi(ui(t)−wi(t)) (2.24)

which is bounded by a constant ε2:

‖e2(t)‖2 ≤
4

∑
i=1

‖bi‖2δ2i
�
= ε2. (2.25)

We can express the actuator failure model in terms of the
values of signals with a piecewise-linear nonlinearity N(·):

ui(t) ≈ N(vi(t)) =
{

mrivi(t)+m0i if vi(t) ≥ 0
mlivi(t)+m0i if vi(t) < 0

(2.26)

where vi(t) is the designed (applied) control input, and ui(t)
is the actual control input to the morphing aircraft plant (2.1).
This failure model is approximately depicted in Figure 2.

The total actuation error of the model (2.26) is

e3i(t) = bi(ui(t)−N(vi(t)))
= bi(ui(t)−wi(t)+wi(t)−N(vi(t)))

=
{

e2i(t)+mrie1i(t) if vi(t) ≥ 0
e2i(t)+mlie1i(t) if vi(t) < 0.

(2.27)



Figure 2: Morphing actuator failure characteristic.

The control objective is to design a control signal v(t)
based on the nominal control signal ud(t) for the actuator ar-
rays, such that despite the actuator failures, the nominal con-
trol signal is appropriately implemented and the desired state
tracking is achieved with only small tracking error.

Inverse Design for Failure Compensation. The morphing
actuator failure model (2.26) is similar to a piecewise-linear
characteristic, with different gains in different signal regions.

In our control scheme, an adaptive inverse N̂I(·) is to be
used to cancel the nonlinearity N(·), that is, vi(t) = N̂I(udi(t)),
where udi(t) is the desired control input from the nominal
feedback control (2.3). If the failure percentage parameters
are known, the ideal inverse NI(·) for N(·) is designed as

v∗i (t) = NI(udi(t)) =

{
udi(t)−m0i

mri
if udi(t) ≥ m0i

udi(t)−m0i
mli

if udi(t) < m0i.
(2.28)

Such an inverse signal v∗i (t), when applied to the actuator ar-
rays, activates appropriate numbers of actuators such that the
actual control signal generated by the morphing actuators is
the desired control signal udi within sufficient accuracy.

3 Adaptive Control Scheme

In this section, we develop an adaptive control scheme and
feedback control when the failure percentage parameters are
unknown, to achieve closed-loop stability and tracking.

Adaptive Inverse Design. When failure percentage parame-
ters are unknown, we use the adaptive inverse

vi(t) = N̂I(udi(t)) =

{
udi(t)−m̂0i(t)

m̂ri(t)
if udi(t) ≥ m̂0i(t)

udi(t)−m̂0i(t)
m̂li(t)

if udi(t) < m̂0i(t)
(3.1)

where m̂ri(t), m̂0i(t), and m̂li(t) are the online estimates of the
failure percentage parameters mri, m0i, and mli, and

ud(t) = [ud1(t),ud2(t),ud3(t),ud4(t)]T = K1x(t)+K2rd(t)
(3.2)

is the desired control signal from the feedback control law
(2.3). Since mri > 0 and mli > 0, we can always use parameter

Figure 3: Inverse failure compensation characteristic.

projection to ensure m̂ri(t) > 0, and m̂li(t) > 0. Therefore,
udi(t)≥ m̂0i(t) is equivalent to vi(t)≥ 0 and udi(t) < m̂0i(t) is
equivalent to vi(t) < 0.

Since the estimates rather than the true values of failure
percentage parameters are used in the adaptive design, the
actual control signal implemented by the morphing actuators
is different from the control signal udi(t) designed from the
nominal feedback control law (2.3).

To parameterize the adaptive inverse and the associated
control error, we introduce the indicator functions

χr(t) = χ[0 < vi(t)], χl(t) = χ[vi(t) < 0] (3.3)

and the parameter vectors θ∗i , θi(t) and the related regressor
vector ωi(t):

θ∗i = [mri,m0i,mli]T (3.4)

θi(t) = [m̂ri(t), m̂0i(t), m̂li(t)]T (3.5)

ωi(t) = [viχr(t),1,viχl(t)]T . (3.6)

Then we have

N(vi(t)) = θ∗T
i ωi(t), udi(t) = θT

i (t)ωi(t). (3.7)

With the adaptive inverse (3.1), the control error is

ui(t)−udi(t) = ui(t)−N(vi(t))− (θi(t)−θ∗i )
T ωi(t). (3.8)

Error Equation. From (2.1), (2.4) and (3.8), we have the
closed-loop system as

ẋ(t) = Amx(t)+Bmrd(t)+ e3(t)−
4

∑
i=1

bi(θi(t)−θ∗i )
T ωi(t)

(3.9)
where e3(t) = ∑4

i=1 e3i(t). From (2.16), (2.25), and (2.27), we
see that e3(t) is bounded as

‖e3(t)‖2 ≤ ε2 + max
i=1,...,4

{mri,mli}ε1
�
= ε3. (3.10)

It is clear that ε3 is also independent of ni and vi.
Introducing the reference model system

ẋm(t) = Amxm(t)+Bmrd(t) (3.11)



where Am = A+BK1 and Bm = BK2, and defining the tracking
error e(t) = x(t)− xm(t), from (3.9) and (3.11), we have

ė(t) = Ame(t)−
4

∑
i=1

bi(θi(t)−θ∗i )
T ωi(t)+ e3(t). (3.12)

Based on this tracking error equation, we can design the adap-
tive laws for updating the parameters θi(t), i = 1,2,3,4, for
the adaptive inverse compensation scheme (3.1).

Robust Adaptive Laws. Given the physical meaning of mri,
mli, and m0i, we have

m0
ri ≤ mri ≤ 1, m0

li ≤ mli ≤ 1, −m0
0i ≤ m0i ≤ m0

0i (3.13)

for some constant m0
ri > 0, m0

li > 0, m0
0i > 0, where m0

ri and m0
li

are the lower bounds of percentage of functioning actuators in
array i on the right wing and left wing respectively, and m0i ≥
|βri −βli|αi is the upper bound of control input produced by
the actuators failed at 1. We assume that the bounds m0

ri,
m0

li, and m0
0i are known and such knowledge is used in adap-

tive laws with parameter projection to guarantee the bound-
edness of parameter estimates θi(t) = [m̂ri(t),m̂0i(t),m̂li(t)]T ,
i = 1,2,3,4. We choose such adaptive laws as:

˙̂mri(t) = hri(t)+ fri(t) (3.14)
˙̂m0i(t) = h0i(t)+ f0i(t) (3.15)
˙̂mli(t) = hli(t)+ fli(t) (3.16)

where

hri(t) = γrivi(t)χr(t)eT (t)Pbi, γri > 0 (3.17)

hli(t) = γlivi(t)χl(t)eT (t)Pbi, γli > 0 (3.18)

h0i(t) = γ0ie
T (t)Pbi, γ0i > 0 (3.19)

with P = PT > 0 such that PAm + AT
mP = −Q for a chosen

Q = QT > 0, and

fri(t) =


−hri(t) if m̂ri(t) ≥1 and hri(t) > 0, or

if m̂ri(t) ≤ m0
ri and hri(t) < 0

0 otherwise
(3.20)

f0i(t) =

 −h0i(t) if m̂0i(t) ≥ m0
0i and h0i(t) > 0, or

if m̂0i(t) ≤−m0
0i and h0i(t) < 0

0 otherwise
(3.21)

fli(t) =


−hli(t) if m̂li(t) ≥1 and hli(t) > 0, or

if m̂li(t) ≤ m0
li and hli(t) < 0

0 otherwise
(3.22)

With m̂ri(0) ∈ [m0
ri,1], it can be verified that, for i = 1,2,3,4,

this adaptive scheme ensures that m0
ri ≤ m̂ri(t) ≤ 1, and

(m̂ri(t)−mri) fri(t) ≤ 0. (3.23)

Similar properties can be established for m̂li(t) and m̂0i(t).
To give a compact form of adaptive laws, letting

fi(t) = [ fri(t), f0i(t), fli(t)]T , Γi = diag{γri,γ0i,γli} (3.24)

we can express (3.14)–(3.16) as

θ̇i(t) = Γiωie
T (t)Pbi + fi(t). (3.25)

Performance Analysis. Considering the positive definite
function

V = eT Pe+
4

∑
i=1

(θi −θ∗i )
T Γ−1

i (θi −θ∗i ) (3.26)

we have its time derivative as

V̇ = 2eT Pė+2
4

∑
i=1

(θi −θ∗i )
T Γ−1

i θ̇i

≤ −eT Qe+2eT Pe3

≤ −1
2

λmin‖e‖2
2 +2

‖P‖2
2ε2

3

λmin
(3.27)

where λmin is the minimum eigenvalue of Q. Together with
the boundedness of the parameter estimates (which is guaran-
teed by parameter projection), (3.27) implies that e(t) and all
other closed-loop signals are bounded. The expression (3.27)
indicates that the system tracking performance may be im-
proved by proper choices of the design and implementation
parameters αlr j and αri j, i = 1,2,3,4, j = 1,2, . . . ,Ni, which
determine ε3: the smaller αlr j and αri j are, the smaller ε3 is.

4 Application to a Morphing Aircraft

We now apply the adaptive actuator failure compensation
scheme to the lateral dynamic model of the ICE aircraft [8]
to study its effectiveness. The linearized ICE aircraft lateral-
directional dynamics matrices [7] are

A =


−0.0134 48.5474 −632.3724 32.0756
−0.0199 −0.1209 0.1628 0
−0.0024 −0.0526 −0.0252 0

0 1 0.0768 0



B =


0 0 0 0

−0.0431 0.0476 −0.0401 −0.0308
−0.0076 −0.0023 −0.0022 0.0297

0 0 0 0

 .(4.1)

The plant is open-loop unstable.
We choose the gain matrices K1 and K2 to place the

closed-loop poles at s = [−1.7678 ± 1.7668 j, −2.2502,
−7.2498]T and make Bm = [0 1 0 0]T . The lateral dynamics
is stabilized and the damping and settling time are improved.

The desired reference state vector xm is generated by

ẋm(t) = Amxm(t)+Bmrd(t) (4.2)

rd(t) =
{

0.7 if 10i ≤ t < 10i+5, i = 0,1,2, . . .
−0.7 otherwise.

(4.3)

The system response without actuator failure compensa-
tion is shown in Figure 4, and the system response with adap-
tive failure compensation is shown in Figure 5. By comparing
the simulation results, we see that the performance of sys-
tem with adaptive actuator failure compensation is much bet-
ter than that without failure compensation.
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Figure 4: System response without failure compensation.
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Figure 5: System response with failure compensation.

5 Concluding Remarks

In the paper, we presented an adaptive actuator failure com-
pensation control scheme for state tracking for a morphing
aircraft model with unknown morphing actuator failures. A
novel practical morphing actuator failure model is formulated.
A complete compensation design for both the “on” and “off”
failures was given. An adaptive inverse was used to gen-
erate compensation control signals applied to the morphing
actuator arrays such that the desired nominal control signal
can be implemented correctly by the morphing actuator ar-
rays. Adaptive laws updating the parameter estimates were
derived to ensure that the adaptive actuator failure compensa-
tion scheme achieves the desired system performance: closed-
loop signal boundedness and (approximate) asymptotic track-
ing. Simulation results for adaptive compensation of morph-
ing actuator failures of a linearized lateral dynamic ICE air-
craft model verified the desired performance of the developed
adaptive morphing actuator failure compensation design.
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