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Abstract— In this paper, an integrated fault-tolerant scheme
is presented with disturbance compensation. Fault-detection
and compensation are merged together to provide a robust
algorithm against model uncertainties. The GIMC control
architecture is used as a feedback configuration for the fault-
tolerant scheme. The synthesis procedure for the parameters
of the fault-tolerant scheme is carried out by using tools of
robust control theory. In order to increase the set of strongly
detectable faults, the disturbance information is feedforward
into the fault detection algorithm. A detection filter is designed
for fault isolation taking into account uncertainties in the
mathematical model. Finally, the fault compensation strategy
also incorporates the disturbance estimation to improve the
performance of the closed-loop systems after the fault is
detected. In order to illustrate these ideas, the speed regulation
of a dc motor is selected as a case study, and experimental
results are reported.

I. I NTRODUCTION

In many industrial applications, costly equipment is man-
aged and human operators are involved. In this conditions, it
is desirable to provide some safety degree into the process.
Thus, the human operator must receive an indication of
the possible faults into the process in order to take proper
action: continue or stop it. If the fault is not severe, it is
possible that the control system could be reconfigurated
or compensated to maintain the closed-loop performance.
Fault-tolerant control has emerged as a new necessity of the
industry, pursuing to provide certain safety degree into the
automated processes. For a fault-tolerant feedback configu-
ration, the first challenge is fault detection. Consequently, a
fault condition has to be detected by an algorithm capable
of distinguishing among possible disturbances, noise and
actual faults [3]. Thus, filters are designed such that the
effect of faults is maximized at the outputs while the effect
of disturbances is minimized. Besides fault detection, it is
also important to isolate the faults. In this way, the operator
can have some indication of location of the fault into the
system. Several approaches have been suggested: robust
detection and isolation based on eigenstructure assignment
[10], estimation based onH∞ optimization [4], detection
and isolation by frequency domain optimization [9], de-
tection based on model-based probabilistic approaches [5],
etc. Furthermore, the applications of fuzzy logic [1] and
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wavelet transforms [13] to fault detection have been recently
introduced.

One way of synthesizing fault-tolerant controllers is
by appealing toH∞ robust design techniques [3], [15].
However, these controllers tend to be very conservative in
the practice. Recently, inspired by the Youla parmeterization
used in robust control theory, a reconfigurable control struc-
ture for fault-tolerant control have been suggested in [2].
This scheme applies the GIMC (Generalized Internal Mode
Control) structure introduced in [14] to design a control
compensation signal after a fault is detected. On the other
hand, reconfigurable fault tolerant structures have also been
studied with different perspectives, as the model-matching
strategy used in [7] and [12], and adaptive compensation
[11].

The paper is structured as follows. Section 2 describes the
problem formulation. The theory about the fault detection
and compensation strategies are shown in Section 3. Section
4 gives a description of the case study: speed regulation of a
dc motor. Finally, Section 5 gives some concluding remarks.

II. PROBLEM FORMULATION

The problem addressed in this paper is formulated as fol-
lows. Consider an LTI systemP (s) affected by disturbances
d ∈ Rr and possible faultsf ∈ Rs (additive) described by

ẋ = Ax + Bu + F1f + E1d

y = Cx + Du + F2f + E2d (1)

where x ∈ Rn represents the vector of state,u ∈ Rm

the vector of input, andy ∈ Rp the the vector of output.
Thus, the matrixF1 ∈ Rn×s stands for the distribution
matrix of the actuator faults andF2 ∈ Rp×s for the sensor
faults. Assume that a nominal controllerK(s) stabilizes
the nominal plantP (s) and it provides a desired closed-
loop performance. Consequently, thecontrol objective is
presented as:design an integrated fault-tolerant scheme
such that it detects the occurrence of a fault in the closed-
loop system, and provides an appropriate compensation
signal q to the control system in order to maintain some
closed-loop performance. Two key assumptions are made
in the problem formulation:
• The fault is non-repetitive.
• The disturbance is known or partially known.

The faults addressed in the paper assume that the control
system suffers a severe deterioration in its dynamics after



the fault is triggered, and consequently the process will
have to stop in the case of no-compensation. Therefore,
it is considered that the faults are non-repetitive. Now, in
the reconfigurated control system, the performance after
the fault is compensated will be largely dependant on the
disturbance effect. In some cases, this information could
be estimated from the measurements or directly measured
(feedforward), in order to provide compensation. Thus, in
this work, it is assumed that the possible disturbances in
the feedback system are known or estimated.

The system responsey can be analysed in the transfer
matrix form:

Y (s) = Puy(s)U(s) + Pfy(s)F (s) + Pdy(s)D(s) (2)

wherePuy = C(sI − A)−1B + D (nominal plant),Pfy =
C(sI − A)−1F1 + F2, andPdy = C(sI − A)−1E1 + E2.
Assume that there exists knowledge about the model uncer-
tainties in the description of the nominal plant [15]. Two
possible scenarios can be seen: unstructured or structured
uncertainty.

• In the case that the uncertainty could be considered
unstructured, the real plant̂Puy is given by

P̂uy(s) = Puy(s) + W2(s)∆(s)W1(s) (3)

whereW1(s),W2(s) ∈ RH∞ are weighting functions
for the uncertainty, and∆ ∈ RH∞ with ‖∆‖∞ < 1.

• If the uncertainty can be derived from certain param-
eters of the model, where a range of variation can be
deduced, then a structured uncertainty is adopted. As
a consequence, the real plant can be represented by a
lower linear fractional transformation (LFT):

P̂uy(s) = Fl (P, ∆) = P22 + P21∆(I − P11∆)−1P12

(4)
where

P =
[

P11 P12

P21 P22

]
(5)

∆ = diag[δ1δ2 . . . δk] with δi ∈ (−1, 1), and k
represents the number of uncertain parameters. In this
case, the generalized plantP is derived by pulling out
the variation parametersδi from the nominal plant.
Note that for the nominal plantPuy = P22.

In this paper, the fault detection and compensation schemes
are model-based. Therefore, assume that the nominal plant
can be expressed by a left coprime factorization, i.e.Puy =
M̃−1Ñ whereÑ , M̃ ∈ RH∞. Then a residual signal can
be constructed by [3]:

R(s) = H(s)[−Ñ(s)U(s) + M̃(s)Y (s)] (6)

whereH ∈ RH∞ is known as detection filter. By substi-
tuting (2) and assuming model uncertainty, it is obtained
that

R(s) = H(s)[M̃(s)∆uy(s)U(s)+Ñd(s)D(s)+Ñf (s)F (s)]
(7)

where ∆uy = W2(s)∆(s)W1(s) for unstructured uncer-
tainty and∆uy = P21∆(I − P11∆)−1P12 for structured,
Puf = M̃−1Ñf , andPud = M̃−1Ñd with Ñd, Ñf ∈ RH∞.
As a consequence, the residual signal is affected by the
control signal, the perturbations and the faults. In order to
detect a fault, the following residual evaluation criteria can
be followed

‖r‖ = ‖r‖2,t,T =

√∫ t

t−T

r∗(τ)r(τ)dτ (8)

‖r‖ = ‖r‖∞ = sup
t
‖r‖2 (9)

where T is the window length or horizon of evaluation.
Hence to avoid a false alarm in the evaluation due to
perturbations or model uncertainties, a threshold value is
selected

Jth = sup
f=0,d,u

‖r‖ (10)

Define the set of strongly detectable faults

Υ = {f | inf
d,u
‖r‖ ≥ Jth} (11)

Consequently, the filterH(s) must be designed to maximize
the size ofΥ, i.e.

• H(s)M̃(s)∆uy(s) ≈ 0 andH(s)Ñd(s) ≈ 0,
• H(s)Ñf (s) 6= 0 and as large as possible in some sense.

Note that if fault isolation is also pursued then
H(s)Ñf (s) ≈ I.

III. FAULT-TOLERANT SCHEME

In this section, the integrated fault-tolerant strategy is
going to be described in detail.

A. Generalized Internal Model Control

The fault-tolerant architecture proposed in this work is
derived from robust control theory [15], where a new imple-
mentation of the Youla parameterization calledGeneralized
Internal Mode Control (GIMC)is used [2],[14]. In this
configuration, the nominal controllerK is represented by its
left coprime factorization, i.e.K = Ṽ −1Ũ such thatŨ , Ṽ ∈
RH∞. This new control structure looks to overcome the
classical conflict between performance and robustness in
the traditional feedback framework.

A new implementation of the GIMC architecture is
suggested in Figure 1. It is assumed that the disturbance
d is known or partially known. Therefore, this information
can be feedforward into the estimation process to cancel its
effect from the filtered errorfe. Note that the residual signal
proposed in the previous section, see (6), can be constructed
by taking the signalfe and process it through the detection
filter H(s), i.e. R(s) = −H(s)Fe(s). Now, once the fault
is detected, the compensation signalq is fed back into the
controller structure, whereq is also constructed from the
filtered errorfe but through the robustification controller
Q. Therefore, the signalq has to compensate the control
signal by the missing/erroneous information due to the fault.



ref
y

u

d f

-

P

q

[[ N   N]  -M ]-H

Q

f

r

~ ~

~ ~

residual
evaluation

e

~
d

û
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Fig. 1. Overall Fault-Tolerant Strategy.

Consequently, a integrated fault-tolerant scheme can be
achieved, as shown in Figure 1. As a result, the fault-tolerant
scheme presents two free parameters to be designed:

1) H(s): the fault detection filter that must diminish
the effect of the disturbances or uncertainty into the
residual signal, and maximize the effect of the faults.

2) Q(s): the robustification controller that must provide
robustness into the closed-loop system in order to
maintain acceptable performance against faults.

The design strategies for these two parameters are presented
next.

B. Fault Diagnosis

To design a robust detection filterH(s), the information
of the model uncertainties have to be incorporated. Since
the information of the disturbances is feedforward into
the estimation process, they are not consider during the
design stage of the detection filterH(s). However, the effect
of disturbances could be also incorporated in the design
framework. Assume that it is desired to isolate the faults,
i.e. r ≈ f , and define the estimation error for the faults
ef = r − f . Then, the performance objective of the filter
can be stated as:

min
H∈RH∞

‖Tef ν‖∞ ‖∆‖∞ < 1 (12)

according to the synthesis diagram in Figure 2, whereν =
[f u]T . Thus, the design problem can be tackled with tools
from robust control theory:µ-synthesis [15].

C. Fault Compensation

In the design of the fault compensation signalq, the
transfer matrixQ is chosen to maintain stability against
faults. Only one limitation on this transfer matrix is con-
sidered, according with the Youla parameterization, it has
to be stable, i.e.Q ∈ RH∞. The synthesis process is again
carried out through the philosophy of robust control. In
general, the sensor and actuator faults can be modeled in a
multiplicative form ỹ(s) = [I + ∆s]y(s), and ũ(s) = [I +
∆a]u(s) where∆s, ∆a ∈ RH∞ represent the sensor and

MN

H

P

∆
f

u y

f

e

e

f

~~

-

- r

w z

Fig. 2. Fault Detection Synthesis Diagram.

actuator perturbations due to the faults [2]. Consequently,
if these terms are appended to the nominal plantPuy, then
the faulted input-output mapping̃Puy can be represented as

P̃uy = Puy[I + ∆a] (actuator fault)

P̃uy = [I + ∆s]Puy (sensor fault) (13)

Thus the sensor or actuator faults can be modeled as output
or input model uncertainties respectively. As mentioned
before, we shall consider a basic robustness requirement in
this paper, i.e. the closed-loop stability. Hence our objective
is to designQ to maximize the failure tolerance in the
closed-loop system, i.e.

min
Q
‖Tzw‖∞ (14)

whereTzw is the closed-loop transfer function from signals
w to z. Two design scenarios can be presented according
with the stability of the nominal plantPuy(s) [2]:

1) Puy ∈ RH∞ ⇒ the optimal compensator is
given by Q = −ŨM̃−1, for any plant and type of
uncertainty description.

2) Puy /∈ RH∞ ⇒ a weightedH∞ approximation has
to be solved. For this purpose, the synthesis problem
can be put into an LFT framework, as seen in Figure
3. Hence,Q is chosen according to

γ = min
Q
‖Fl (G, Q) ‖∞ (15)

and internal stability is guaranteed if‖∆‖∞ < 1/γ.
If an output uncertainty (sensor fault) is considered
(i.e. P̃uy = [I + ∆s]Puy), the generalized plantG
will be given by

G =
[ −S̃PuyK S̃PuyṼ −1

−M̃ 0

]
(16)

whereS̃ = (I +PuyK)−1. Note that in this caseγ ≥
1 since this will represent that the maximum tolerable
uncertainty is always‖∆s‖∞ < 1. Otherwise, the
uncertainty could take the value∆s = −I (sensors
outage) and the closed-loop will become unstable.
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Remark 1: It is important to mention that if there is
some delay in the detection of the fault triggering, this
will affect the performance of the reconfigurated control
system. Furthermore, it is possible that the system could not
be stabilized if there is a significant delay in the detection
process. As it was seen experimentally, this delay is a factor
of the speed of response of the nominal controller. Hence,
if the controller has fast dynamics, the tolerable delay is
reduced.

IV. CASE STUDY: SPEEDREGULATION OF A DC MOTOR

To illustrate the mentioned fault-tolerant technique, the
application to a dc-motor speed drive is presented next [8].
The test-bed setup is shown in Figure 4, and it consists of a
1 HP dc-motor connected to a 3/4 HP permanent magnet dc-
motor. The later one acts as a generator in order to provide
a load to the shunt dc-motor. In this setup, the load torque
varies according with the angular frequency. The fault-
tolerant algorithm was implemented in a dSpace DS1103
system under the environment of MATLAB/Simulinkc©.
The algorithms were run under a sampling frequency of
10kHz. In the implementation, there are measurements of
electrical currents made by Hall-effect sensors, and angular
velocity by a tacogenerator of50V/1000 RPM and±5%
tolerance.

150 V DC

dc-dc chopper

output+ -

shunt DC  motor
permanent
magnet DC

motor

R   = 30L W

+
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rectifier
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D/A
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Fig. 4. Test-bed Setup.

TABLE I

DC MOTOR PARAMETERS.

Ra = 3.72Ω Armature Resistance
La = 7.83 mH Armature Inductance
B = 2.59× 10−4 N m/rad/s Friction Coefficient
J = 2.72× 10−3 kg m Inertia
Kb = 0.31 V/rad/s Electromagnetic Constant
Rf = 87.3Ω Field Resistance
Lf = 9.22 H Field Inductance
ω0 = 1500 rpm Nominal Velocity
Vr = 90 V Rated Armature Voltage
Imax = 10 A Maximum Armature Current

A. Model Description

The dc-motor is considered in the separated excitation
configuration. Thus, the field voltagevf is fixed to a
constant value and the armature voltageva is varied in
order to regulate the angular velocityω of the motor. Two
measurements are available for feedback purposes: armature
current ia and angular velocityω. Thus, the dc-motor is
modelled as a system with one-input (va) and two-outputs
(ia andω):[

i̇a
ω̇

]
=

[ −Ra
La

−Kb
La

Kb
J

−B
J

][
ia
ω

]
+

[
1

La

0

]
va+

[
0
− 1

J

]
Tl

(17)
where the parameters of the dc-motor were obtained through
a systematic experimental process [8], and they are shown
in Table I. In the motor description, the load torqueTl is
represented as a disturbance to the system, but this variable
cannot be measured on real-time in the experimental system.
Nevertheless, during the experiments, it is assumed to
behave as a constant or present a very slow variation. In
this way, its steady state value can be calculated from the
angular velocity and armature current measurements:

T l = Kbia −Bω (18)

The armature voltageva is controlled by dc-dc chop-
per working under a PWM scheme (switching frequency
50kHz), where the control parameter is the duty cycle.
The chopper was selected as control actuator due to its
fast response and linear dynamics. The construction of the
actuator was carried out in our lab, and it is designed such
that it is controlled by a voltage signalu in the interval
[0, 5V ]. This saturation in the control signalu did not
limited the performance of the system. The control actuator
(dc-dc chopper) was modeled as a first order system:

Ga(s) =
Va(s)
U(s)

= Ka
s + a

s + b
(19)

where the parameters of the model(Ka, a, b) were obtained
experimentally by applying the theory of algebraic iden-
tification [6]. In the test setup, the control input to the
actuatoru was specified by a square wave and the angular
velocity ω and armature currentia were recorded without
load considered. Note that it is not possible to record the
armature voltage signalva, since the chopper is working
at a fixed switching frequency of50kHz and the data



TABLE II

CONTROL ACTUATOR PARAMETERS.

Ka = 20.71 Actuator Gain
a = −6.66 zero location
b = 5.43 pole location

acquisition is sampling at10kHz. Therefore, the armature
voltage cannot be incorporated into the identification pro-
cess. Thus, one input and two output signals of the systems
are available to identify three parameters for the actuator.
Six different experiments were carried out and the average
value of the parametersKa, a andb are given in Table II. In
the overall, there exists some uncertainty in the description
of some of the parameters including motor and actuator.
Thus, forRa, La, J,Ka, a andb, they can be associated with
a parametric uncertainty description. As a consequence, a
structured uncertainty description can be arranged for the
open-loop system. This uncertainty description will be used
to design the fault detection filterH(s).

B. Design of Fault Tolerant Scheme

Note that with the parameters given to the nominal plant
(17) and actuator (19), the open-loop system is stable. Next,
the nominal controllerK is designed to guarantee good step
tracking capabilities. For this purpose, an LQG controller
[15] is synthesized where integral action is appended to the
controller since the original plant does not have any mode
at the origin. This will improve the tracking capabilities of
the closed-loop.

Using a structured uncertainty description for the plant,
the optimization problem formulated in (12) was carried
out to designH(s). Thus, according with the diagram of
Figure 2, the LFT is constructed to formulate the robust
performance filter problem usingµ-synthesis. TheD −K
iteration was run and the resulting filter of order21th was
reduced through balance truncation to9th. Finally, since
the nominal plant and actuator dynamics are stable, then
the compensation controller is selectedQ = −ŨM̃−1.

Once the residual signal (6) was constructed, the fault
was detected according to the criterion:

sup
t
‖r‖2 ≥ Jth (20)

where the threshold for detection is calculated by using
the size of the uncertainty and the maximum value of the
control signal

Jth = ‖H(s)M̃(s)∆uy(s)‖1‖u‖∞ (21)

C. Experimental Implementation

Next, the integrated fault-tolerant structure shown in
Figure 1 was implemented first in simulation by using
MATLAB/Simulink c©, and experimentally in the dSpace
1103 system. The disturbance estimationT l in (18) was
used to feedforward this information into the fault-tolerant
control. Two abrupt faults were considered for the sensors:

1) Case 1: the angular velocity sensorω is completely
disconnected (tacogenerator) from the system at a
given time,

2) Case 2: there is an outage of the armature currentia
sensor.

The failure cases were simulated by software in the dSpace
system and not directly in the hardware. In both scenarios,
the fault-tolerant system was able to compensate properly
the control signal for these faults. The angular velocity ref-
erence for both cases was set to1500 RPM. The experimen-
tal results for the tacogenerator fault are shown in Figure 5.
Note that for the angular velocity fault,the uncompensated
closed-loop system becomes unstable with just one feedback
measurement. Thus, it is observed that the nominal control
signalû starts to increase after the fault, since the controller
assumes that the angular velocity has dropped suddenly
its value to zero. However, the compensation signalq is
capable of cancelling this effect, and the actual control
signal u just decrease its value after the fault is active. It
is noticeable that the reference is not maintained, this is
due to the estimation of the torqueTl (disturbance) which
is an approximation of the real value. As a consequence,
the error in the estimation of the load torque affects the
tracking capabilities of the overall system. Therefore, if
this signal could be acquired by a direct measurement then
the compensation will be more accurate. This behavior was
seen during simulation. Now, in Figure 6, the experimental
testing for a change of reference after a fault scenario (Case
1) is illustrated. This plot shows that the system still is able
to follow a reference signal after the fault, but with a certain
error.

Remark 2:During the experimental testing, other types
of faults were investigated. Thus, a fault such that the sensor
reduced its gain by certain percentage was investigated.
In this case, the fault-tolerant scheme can successfully
detect and compensate that fault. Besides abrupt faults, an
incipient type of fault was also tested. Thus, the sensor
measurement was slowly decaying after the triggering time.
For this type fault, the main issue is fault detection, since
according to the decaying rate of the measurement, the
residual will take more or less time to overcome the de-
tection threshold. However, the fault-tolerant algorithm can
also compensate this fault, but there is some deterioration
of the performance due to the delay time in the detection
process. The implementation for this fault was only carried
out in simulation, since there was a risk of damaging the
dc-motor in the actual test-bed setup. Consequently, other
detection algorithms could be applied to improve the size
of the set of strongly detectable faultsΥ, for example based
on wavelet analysis and fuzzy logic .

V. CONCLUSIONS

An integrated fault-tolerant scheme was introduced. The
strategy relies on information of the process and possible
uncertainties. The GIMC control architecture is used as a
feedback configuration for the fault-tolerant scheme. The
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Fig. 5. Experimental Response with Angular Velocityω Fault.

synthesis procedures were obtained by using robust control
theory. The disturbances entering the system affect the
performance of the compensated control system. Thus,
this information is also fed back into the fault-tolerant
architecture to cancel their effect. The speed regulation
of a dc motor was selected as a case of study and the
experimental results show the effectiveness of the proposed
scheme.
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