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Abstract—An adaptive sliding mode fuzzy control approach 

is proposed for a two-dimensional overhead crane. System 
linearization transforms the two-dimensional system to two 
independent systems: X-direction transport system and 
Y-direction transport system. Both the two systems are with 
the same dynamic model and both include two subsystems: 
positioning subsystem and anti-swing subsystem. A sliding 
mode fuzzy control approach is proposed for both X-direction 
transport and Y-direction transport, and it combines SMC’s 
robustness and FLC’s independence of system model. 
According to the influences on system dynamic performance, 
both of the slope of sliding mode surface and the relationship 
between subsystems are automatically tuned by real time fuzzy 
inference respectively. The effectiveness of the proposed 
control is demonstrated by experiments with a 
two-dimensional prototype overhead crane. 

I. INTRODUCTION 

Overhead crane works as a robot in many places such as 
workshops and harbors to transport all kinds of massive 

goods. It is desired for the overhead crane to transport its 
payloads to the required position as fast and as accurately as 
possible without collision with other equipments. Moreover, 
the payload swing angle should be kept as small as possible. 

Many works have been done in controlling the overhead 
crane. Park [1] and Singhose [2] adopted input shaping 
control method. But the input shaping must be 
pre-calculated accurately according to the system model. 
These approaches lacked robustness to external disturbances 
and couldn’t damp residual swing well. Moreover, zero 
initial condition must be satisfied. Lee [3] and Giua [4] 
proposed feedback control methods. Besides needing 
accurate system model and onerous matrix computation, the 
above methods were greatly affected by system linearization 

and system parameters uncertainty.  
Fuzzy logic control (FLC) is independent of system 

model and has some robustness. Lee [5] used fuzzy logic 
only in anti-swing control and applied position servo control 
for positioning and swing damping. Hua [6] only studied 
anti-swing control with fuzzy logic and didn’t take 
positioning control into consideration. Nalley [7] adopted 
fuzzy logic to both positioning control and swing damping. 
However, because of the large number of fuzzy rules, it was 
difficult to set both rules and parameters of the controller 
only according to experiences. 

Sliding mode control (SMC) is a robust design 
methodology using a systematic scheme based on a sliding 
mode surface and Lyapunov stability theorem. The main 
advantage of SMC is that the system uncertainties and 
external disturbances can be handled under the invariance 
characteristics of system’s sliding mode state with 
guaranteed system stability. Er [8], Kakoub [9] and Hasanul 
[10] used the variable structure control (VSC) with sliding 
modes to control the overhead crane. In [8] and [9], the VSC 
was used to the positioning control and hoisting control, but 
another state feedback control scheme must be added for 
payload swing damping control. In [10], a reference model 
was defined to track, and the system model must be 
linearized. All the above VSC methods have difficulties in 
automatically tuning the relationship between positioning 
control and anti-swing control. 

This paper presents a practical solution to analyze and 
control the overhead crane. The payload swing and crane 
motion of two transport directions are considered. Now that 
SMC is capable of tackling non-linear system with 
parameter uncertainties and external disturbances, and fuzzy 
logic control is independent of system model, crane system 
model is built to analyze system control characteristics 
without taking external disturbances (such as winds) and 
system parameters varying (such as different goods) into 
consideration. A sliding mode fuzzy control algorithm is 
designed for both X-direction and Y-direction transports of 
the overhead crane. Combining SMC’s robustness and 
FLC’s independence of system model, the proposed control 
law can guarantee a swing-free transportation. 
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section 2, the dynamic model of 2-dimensional overhead 
crane is built, the linearized model is derived and a 
conclusion is obtained that two-dimensional overhead crane 
can be divided into two independent transport systems. In 
section 3, an adaptive fuzzy sliding mode control algorithm 
is proposed for both X-direction and Y-direction 
transportations. In section 4, the proposed algorithm is 
validated through experiments. Finally, in section 5, 
conclusions are drawn. 

 

Figure 1  Two-Dimension Overhead Crane 

II. DYNAMIC MODEL OF OVERHEAD CRANE 
In this section, the system description of two-dimensional 

overhead crane will be given and its dynamic model will be 
built. Then the model will be transformed by linearization 
and state feedback to a system that is composed of two 
transport systems with the same structure. In this way, the 
system control and its implementation are simplified. 

A. System Description  
Figure 1 shows the coordinate system [11] of a 

two-dimensional overhead crane and its payload.  XYZ is 
the inertial coordinate system, MX and MY respectively are 
the X-direction trolley mass and Y-direction trolley mass 
including the moment-of-inertia of the gear train and motors. 
θ  is the swing angle of the payload in XYZ space and it has 
two components θ  and .  and  are the swing 
angle projected on XZ plane and YZ plane respectively. 
Assume the dynamic model has the characteristic that the 
payload and the trolley are connected by a massless, rigid 
link. 

X Yθ Xθ Yθ

B. System Dynamics 
According to Lagrangian equation: 
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where, , K is system kinetic energy, U is system 
potential energy, q
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i is generalized coordinate (here is x, y, 
or θ ), and TXθ i is external force (here is fX or fY) (T3=T4=0). 

The motion equations of the overhead crane system can be 
obtained with respect to the generalized coordinates x, y,  
and θ . 
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where DX and DY respectively denote the viscous damping 
coefficients of the crane in the X and Y directions, fX and fY 
are the external forces on the overhead crane in the X and Y 
directions, respectively. 

C. System Model Analysi 
In industry, the maximum acceleration of the overhead 

crane is set smaller than the gravitational acceleration. For 
safety considerations, the rope length is usually kept 
constant when the overhead crane is in motion.  For small 
swing around the vertical equilibrium, XX θθ ≈sin , 

YY θθ ≈sin , 1cos ≈Xθ  and 1cos ≈Yθ . In addition, 

0sinsin ≈YX θθ , ,  and also hold 
for small swing. The nonlinear model can be simplified to 
the following linearized model: 
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In practice, the crane is normally driven by servo-motors. 
The servomotor has three control modes: position control, 
speed control and torque control. In order to simplify the 
system dynamic model, the speed control mode is used. 
Through the following state feedback transformations: 
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the system model can be described as 
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The linearized dynamic model consists of the X-direction 
transport dynamics and Y-direction transport dynamics. The 
X-direction dynamics and Y-direction dynamics are 
decouped and with the same structure. Therefore, the same 
control algorithm can be designed for both the X and Y 
direction transport systems. For this system model, the 
system control input is the acceleration of the overhead 
crane.  

Because the viscous damping and the masses of trolleys 
and payload maybe are not known and the above transform 
makes the model be independent of them, the system control 
is easily implemented in practice.  

III. CONTROL DESIGN 
In this section, an adaptive slide mode fuzzy controller 

will be designed for the two-dimensional overhead crane.  
Assume the desired state is generalized coordinates origin. 
Since the two-dimensional overhead crane can be decouped 
into two independent transport systems, a control algorithm 
will be designed for both of them. Only the X-direction 
transport system is considered below. 

A. Sliding mode fuzzy control (SMFC) 
Consider a second-order system of the form as follows: 
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where, X=(x1, x2) is state variable vector, f(X) and b(X) are 
continuous linear or nonlinear functions, u is the control 
input. A sliding mode function can be defined as 

112 xxs λ+=                                                   (12) 
Very similar to sliding mode control with boundary layer, 

the control input on the two sides of the sliding mode surface 
are opposite in sign and its magnitude is proportional to the 
distance between the state vector and the sliding mode 
surface. Therefore, the sliding mode fuzzy control is 
designed to: 

Ri:  IF s IS Fi THEN u IS Ui 

where Fi is the linguistic value of s in the ith-fuzzy rule, 
and Ui is the linguistic value of u in the ith-fuzzy rule. The 
fuzzification of the sliding mode function is illustrated in 
Fig.2 

B. Adaptive sliding mode fuzzy control (ASMFC) 
The X-direction transport systems can be represented as: 
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where, X=(x1, x2, x3, x4) is the state variable vector that 
include crane position, velocity, payload swing angle and 
angular velocity, f1(X), f1(X), b1(X) and b2(X) are continuous 
nonlinear functions, u is the control input. 

From (13), the X-direction transport system has two 
coupled subsystems: positioning subsystem and anti-swing 
subsystem. In order to decouple the system, two sliding 
mode functions are defined for the two subsystems: 

1121 xxs λ+=                                                              (14)  

3242 xxs λ+=                                                            (15) 
where 1λ and 2λ are positive real numbers. 

System performance is very sensitive to the slope 1λ (or 

2λ ) of the sliding mode function: when the value of 1λ  (or 

2λ ) becomes larger, the rise-time will become smaller, but 
at the same time, both overshoot and tuning-time will 
become larger, and vice versa. So a law is designed to adjust 
the slope 1λ (or 2λ ) of the sliding mode function in real 
time: when system state errors are large, a bigger slope of the 
sliding mode function is used in order to make the system 
state approach the sliding mode surface and equilibrium 
point. This is because the convergence speed on the sliding 
mode surface is high if a large 1λ (or 2λ ) is used. In 
mechanical systems, the value of 1λ (or 2λ ) is typically 
limited by three factors: the frequency of the lowest 
unmodelled structural mode, the largest unmodelled time 
delay, and the sampling rate. 

According to the mechanical system limitation, the slope 
of the sliding mode function is given for the lth subsystem 
(l=1 or 2) by 

ll
b
ll B λλλ ∆+=                                                    (16) 

where,  is the basic value of λb
lλ l, Bl  is the tuning scope of λl, 

and ∆λl is the tuning variable.  The value of ∆λl can be 
obtained according to the following fuzzy rules: 

Ri: IF |x2l-1| IS Al
i THEN ∆λl IS ∆λl

i 

where, Ri is the ith item of m rules, Al
i is a fuzzy set of input 

variable |x2l-1|, and ∆λl
i is a fuzzy set of output variable ∆λl. 

The output singleton fuzzy sets and the center-of-gravity 
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Figure 2   Fuzzification of sliding mode function in 
sliding mode fuzzy control 

  



  
  

 

defuzzification method are used: 
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The composite sliding mode function can be defined as 
)( 32411221 xxxxsss λλλλ +++=+=                      (18) 

where λ is a negative real number. Tuning the coefficient λ 
can adjust the function of the positioning subsystem and the 
anti-swing subsystem on the sliding mode function. When λ 
becomes smaller, the positioning subsystem is strengthened; 
and when λ becomes larger, the anti-swing subsystem is 
strengthened. So another fuzzy inference is designed: if 
system state is far from sliding mode surface s2=0, a larger 
value of λ is adopted, vice versa. As the tuning of the sliding 
mode function slope, let 

λλλ ∆+= Bb                                        (19) 
where,  is the basic value of λ, Bbλ   is the tuning scope of λ, 
and ∆λ is the tuning variable.  The value of ∆λ can be 
obtained according to the following fuzzy rules: 

Rj: IF |s2| IS F2
j THEN ∆λ IS ∆λj 

where, Rj is the jth item of n rules, F2
j is a fuzzy set of input 

variable |s2|, and ∆λj is a fuzzy set of output variable ∆λ. The 
output singleton fuzzy sets and the center-of-gravity 
defuzzification method are used: 
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where )( 2
2

sjF
µ  is the firing degree of the jth rule. 

Only in the anti-swing subsystem of the X-direction 
transport system, the slope of the sliding mode function is 
automatically adjusted by fuzzy inference system, which is 
called as adjustor 1. The relationship between the 
positioning subsystem and  anti-swing subsystem are 
automatically tuned by another fuzzy inference system, 
which is called as adjustor 2. For the X-direction transport 
system of the overhead crane, the composite sliding mode 
function s works as the input to the sliding mode fuzzy 
control. The fuzzy rules are: 

Rk: IF s IS Fk THEN uf IS Uk 

where, Rk is the kth item of p rules, Fk is a fuzzy set of input 
variable s, and Uk is a fuzzy set of output variable uf. The 
output singleton fuzzy sets and the center-of-gravity 
defuzzification are used: 
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where  is the firing degree of the jth rule and u)(skF
µ f is the 

output of the adaptive sliding mode fuzzy controller. 
Now consider the reaching condition of the sliding mode 

surface that is based on the flowing Lyapunov function: 

22sV =                                                                       (22) 
By taking the time derivative of equation (18) and 

substituting into equation (22), it is easy to obtain from 
equation (13) 
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Form equation (9), we can see: and )(1 Xb 2λ  is positive, 
and  is negative. When )(2 Xb λ is negative, the term in 
equation (23), b )()( 21 bX Xλ+ are always positive. 
Therefore, increasing the control input u will result in 
decreasing as the sliding mode function s is negative, and 
decreasing the control input u will result in decreasing as 
the sliding mode function s is positive.   

s&s
ss&

Remark 1: According to the system dynamic model that 
the X-direction transport system and Y-direction transport 
system are decoupled and with the same linearized model, 
the control algorithm is also applicable to Y-direction 
transport system. 

Remark 2: The proposed control design is independence 
of the linearized system model, i.e. the control algorithm is 
designed for nonlinear overhead crane system. The 
linearized model derived in section 2 is used to explain the 
two-dimensional overhead crane consisting of two 
approximately independent transport systems. 

Remark 3: When the initial payload angles are zeros, 
both X-direction and Y-direction transportations will arrive 
at the goal at the same time with the same adaptive sliding 
mode fuzzy controller. 

Remark 4: Now that the servomotors adopt speed control 
mode while the output of the controller is acceleration, 
actual input of the servomotors is: 

∫=
ct

t
f dtuu

0

                                                                   (24) 

where t0 and tc are initial time and current time separately. 
The control scheme is illustrated in figure 3. 

IV. EXPERIMENT RESULTS 
To confirm the effectiveness of the proposed control 

algorithm, some experiments have been performed with a 
two-dimensional prototype overhead crane illustrated in 
Figure 4. The prototype consists of two sets of components 
that include mechanical system, data sampling system, and 
control system. For the mechanical system, the trolleys are 
driven by AC servomotors, and the payload is connected to a 
cable that is attached to the underside of the trolley, where 
two precise angle sensors are installed to measure the swing 
angles of X-direction and Y-direction. The control algorithm 
is implemented on a Pentium III 800 MHz PC running under 
the Windows operating system. 

In the control algorithm, the adaptive tuning of the slope 
of the sliding mode function is only used for the anti-swing 
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subsystems. The parameters of the controller are as follows: 
λ1=0.5, =2.28, Bb

2λ 2=3, =-1, B=-4.6. The tunings of bλ

λ and 2λ  adopt the same fuzzy rules table, given in table 1. 
The sliding mode fuzzy rules are provided in table 2. 

λ1

d/dt
x1u Overhead

Crane 
  Adjustor 1   ASMFC Adjustor 2

Table 1  Rules table for tuning  λ and 2λ  x3

|e3| or |s2|          S            M            L 
λ2 or ∆λ           0           0.5            1 

  
 Table 2  Rules table of sliding mode fuzzy controller 

s         NB          NS        ZO       PS      PB 
uf         2.5        1.25         0        -1.25   -2.5 

 

λ2

λ
d/dt

Figure 3  Control Scheme 

Figure 5 and 6 show the experimental results of transport 
from position (-1.2, -0.6) to position (0, 0) with zero initial 
angles. Figure 7 shows the X-direction transport when the 
initial angle is not zero. In the above figures, velocity is 
0.2m/s each grid in Y-axis. Figure 8, 9 and 10 show the 
damping swing experiment results and the control is added 
from the 6th second. Figure 8 is angle phase plane and figure 
9 and 10 are angles time responses. From the experiment 
results, it is clear that the control law can make the 
X-direction and Y-direction transports arrive at goal at the 
same time when initial angle is zero, and the control law can 
damp swing angle at goal whether the initial angle is zero. 
Moreover, the control law can damp swing angle in short 
time while keeping position. 

Figure 4 Two-dimension Prototype Overhead Crane 
V. CONCLUSION 

In this paper, a two-dimensional overhead crane is 
transformed to two independent systems that are with the 
same dynamic model in order to simplify the controller 
design. An adaptive sliding mode fuzzy control approach 
has been designed for both X-direction transportation and 
Y-direction transportation, and its effectiveness has been 
demonstrated by experiments on a two-dimensional 
prototype overhead crane. The experiments have shown the 
proposed control law guarantees both accurate positioning 
control and prompt damping of payload swing. The stability 
and performance of the proposed control law are guaranteed 
in spite of large initial swing angle. 
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