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Abstract—A friction and output backlash compensator is 

designed for systems by the fuzzy logic (FL) and the neural 
network (NN). The classification property of FL system and 
the function approximation ability of the NN make them the 
natural candidate for the rejection of errors induced by the 
friction and output backlash. The tuning algorithms are given 
for the fuzzy logic parameters and the NN weights, so that the 
friction and output backlash compensation scheme becomes 
adaptive, guaranteeing small tracking errors and bounded 
parameter estimates. Formal nonlinear stability proofs are 
given to show that the tracking error is small. The NN friction 
and FL output backlash compensator is simulated on a system 
to show its efficacy.  

I. INTRODUCTION 
ERY accurate control is required in mechanical devices 
such as xy  positioning tables [1], overhead crane 

mechanisms [2], robot manipulators [3], etc. Actuator and 
sensor in control systems often have nonsmooth nonlinear 
characteristics such as deadzone, backlash, and friction. 
Some common examples are mechanical connections, 
hydraulic servo-values and electric servo-motors, magnetic 
suspensions and bearings, and some biomedical systems. 
These nonlinear characteristics have been studied in many 
classical and modern control textbooks. One important 
result is the describing function approach for analyzing the 
stability of a closed loop system with such nonlinearities 
which can be used to design linear control schemes with 
certain robustness properties despite the presence of such 
nonlinearities. However, a linear controller alone cannot 
cancel the nonlinearity effects to achieve desired system 
tracking performance. The search for new approaches for 
control of systems with nonsmooth nonlinearities is of major 
practical interest. Because deadzone, backlash, and friction 
characteristics are usually poorly known and may vary with 

time, a desirable controller should be able to adaptively 
cancel them so that the system performance can be 
improved. 
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Recently, an adaptive inverse approach has been 
developed for solving such a control problem. The 
development of such an approach was initiated in [4] for 
adaptive control for systems with unknown deadzones at the 
input of a known and smooth dynamics with full state 
measurement. Following this adaptive control of systems 
with a nonsmooth nonlinearity at the input or output of a 
linear dynamics has lead to solutions to problems with input 
deadzone, input backlash, output deadzone, and output 
backlash [5]. Fuzzy logic compensation of systems with 
input deadzone [6], input backlash, and output backlash  are 
proposed. The NN compensation of systems with friction [7] 
and backlash [8] is proposed. In these problems there is only 
one nonlinear block in cascade with a linear block as the 
plant to be controlled. 

In this paper we present the NN friction and FL output 
backlash compensation of systems. The NN and FL function 
approximation properties, and ability of fuzzy logic systems 
to discriminate information based on regions of the input 
variables, makes them an ideal candidate for compensation 
of non-analytic actuator nonlinearities [9]. A design 
procedure is given that results in a PD tracking loop with an 
adaptive fuzzy logic system using dynamic inversion for 
output backlash and an adaptive NN friction compensation 
in feed forward loop. We investigate the performance of the 
fuzzy friction and output backlash compensator in a system 
through the computer simulations. 

II. NN FRICTION AND FL OUTPUT BACKLASH COMPENSATION 
 
An NN friction compensator is designed for friction 
nonlinearity. Relevant features of the NN include their 
ability to model arbitrary differential nonlinear functions, 
and their intrinsic on-line adaptation and learning 
capabilities.  Also, a FL compensator is designed for the 
output backlash nonlinearity. It is shown that the fuzzy logic 
approach includes and subsumes approaches based on 
switching logic and indicator functions [5]. This brings these 
references very close to fuzzy logic work in [10], and 
potentially allows for more exotic compensation schemes 
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for actuator non- linearities using more complex decision (e. 
g. membership) functions.  
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2.1 Friction and output backlash nonlinearity 
 
The friction and output backlash of systems is shown in Fig. 
1. Friction models have been extensively discussed in the 
literature [11]. Nevertheless, there is considerable 
disagreement on the proper model structure. In the Coulomb 
friction model there is a constant friction torque opposing 
the motion when velocity is zero. For zero velocity the 
striction will oppose all motions as long as the torques are 
smaller in magnitude than the striction torque.  The friction, 
in general, can be written as  
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with constants 0>iα , . In practical control 
systems the width of the friction is unknown, so that 
compensation is difficult.  
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The backlash characteristic  with input )(⋅B z  and 
output  :  is described by two parallel straight 
lines, upward and downword sides of , connected with 
horizontal line segments. Mathematically, the backlash is 
modeled as  
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One can see that backlash is a first order velocity driven 
dynamic system, with inputs z  and z& , and state y . It 
contains its own dynamics, therefore its compensation 
requires the design of the dynamic compensator.  Whenever 
the motion  changes its direction, the motion  is 
delayed from motion of . A graphical inverse of the 
backlash characteristic is shown in Fig. 2, which contains 
vertical jumps. 
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2.2 NN friction and FL output backlash compensator 
 
A rigorous framework for NN applications in friction 
compensation and FL output backlash compensation are 
described.   

A three layer NN in Fig. 3 has a network output given by 
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with notation )(⋅σ , the activation function, , the 
interconnection weights from first to second layer, , the 
interconnection weights from second to third layer, , the 
nunber of neurons in the first layer, and , the number of 
neurons in second layer.   and  are threshold offsets.   
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Fig. 1. Friction and output backlash of systems. 
 
 
 
 
 
 
 
 
 
Fig. 2 Backlash inverse. 
 
 
 
 
 
 
 
 
 
Fig. 3. Neural network. 
 
The NN equation may be conveiently expressed in a vector  
format by defining , 

, 
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  A general function, , can be modeled by an NN as:  f

)()()( xxVWxf TT εσ +=                            (5) 
where W  and V  are constant ideal weight of the current 
weight W  and V  so that ˆ ˆ ε  is bounded by a known contant 

Nε , and ε  is reconstruction error due to the NN structure. 
For notational convenience, define the matrix of all the 
weights as  
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For practical situations, we assume that the ideal parameters 
are bounded by known positive values so that MWW <|||| , 

MVV <|||| , or MZZ <||||  with known, where MZ |||| ⋅  is a 
norm. Define the parameter deviation or the parameter 
estimation error as:  
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and the second layer output error for a given x  as: 

)ˆ()(ˆ~ xVxV TT σσσσσ −=−= .                      (8) 
The Taylor series expansion of the second layer output for a 
given x  may be written as:  
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with zzdz
zdz ˆ|)()ˆ( =≡

σσ& , and , sum of higher order 

terms. Denoting , we have   
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  Now, define NN functional estimate of (5) by:  
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with ,  the current estimated values of the ideal 
weights ,  as provided by the training algorithm 
subsequently to be disscussed. 
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In our control problem the backlash parameters are 
unknown and the internal signal is not available for 
measurement. The control objective is to design a feedback 
control for the system which stabilizes the closed loop 
system and makes the plant output  track a given 
bounded reference signal . The mapping BI(.) : 

, defines a backlash inverse 
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for any τ>t .  Because of the dynamic nature of backlash, 
the backlash inverse is defined with the initialization 

)()))((( ττ dd yyBIB = . 
To offset the deleterious effects of backlash, we 

introduce the idea of the fuzzy backlash inverse scheme. A 
fuzzy inverse backlash compensator using dynamic 
inversion would be discontinuous and depend on the region 
within which  occurs.  It would be naturally described 
using the rules 
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If (  is positive ) then ( )   dy& ++= byz dd
ˆ

If (  is zero ) then ( )                       (13) dy& 0b̂yz dd +=

        If ( is negative) then ( )                           dy& −+= byz dd
ˆ

where  is an estimate of the backlash width 

parameter vector . 
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To make this intuitive notion mathematically precise 

for analysis define the membership function’s 
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One may write the fuzzy inverse compensator as  

Fdd zyz +=                                        (15) 
where  is given by the rule base  Fz

           If ( )( dd yXy && +∈ ) then ( ) += bzF
ˆ

If ( )(0 dd yXy && ∈ ) then ( )                   (16) 0b̂zF =

If ( )( dd yXy && −∈ ) then ( ).                           −= bzF
ˆ

The output of the fuzzy logic system with this rule base is 
given by  
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The estimates , ,  are, respectively, the control 
representive value of , , and . 
This may be written (note

+b̂ 0b̂ −b̂
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where the fuzzy logic basis function vector given by  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−

+

)(
)(
)(

)( 0

d

d

d

d

yX
yX
yX

yX
&

&

&

&                                   (19) 

is easily computed given any value of .  It should be 
noted that the membership functions (18) are the indicator 
functions and  is similar to the regressor [5]. 
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The fuzzy backlash inverse compensator may be 
expressed as follows 
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where b is estimated backlash width. ˆ
Since  is not available, we choose its estimate to be : )(tz
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where the fuzzy basis function vector given by  
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is easily computed given any value of . y&

III. ADAPTIVE NN FRICTION AND FL BACKLASH 
COMPENSATION OF SYSTEMS 

 
In this section we will show how to provide the NN 

friction and FL output backlash compensation for friction 
and backlash in systems. The proposed control structure is 
shown in Fig. 4.  

The dynamics of systems can be written as  
  ,             (23) TTTzBzJ dfv =+++& )]([ tzBy =



 
 

 

where  is the system output, J  is the mass,  is the 
damping,  is the friction, is the bounded unknown 
disturbance, and T is the system input. It is assumed that 
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fT dT

ddT τ<|| , with dτ , a known positive constant.  
Given the reference signal , the tracking error is 

expressed by . Differentiating the tracking error 
and using (23), the dynamics of the system may be written in 
terms of the tracking error as:  

dz
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dv TxfTeBeJ ++−−= )(&                       (24) 
where the nonlinear plant function is defined as: 

fdvd TzBzJxf ++= &)( .                                   (25)   
Vector x  contains all the time signals needed to compute 

,and may be defined for instance as 

. It is noted that the function  
contains all the potentially unknown functions, except for , 

 appearing in (25) - these latter terms cancel out in the 
stability proof.  
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We assume that the desired trajectory is bounded in the 
sense, for instance, that  
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where  is a known constant. dY
For each time t ,  is bounded by  )(tx
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for computable positive constants .  ic
   A robust compensation scheme for unknown terms in 

 is provided by selecting the tracking controller )(xf

                                      (28)  veKxfT f −+= )(ˆ

with , an estimate for the nonlinear terms ,  a 
robustifying term, and .  
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Select a control input torque using (11) and (28) as:  
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Using (5) and (29), the closed loop error dynamics (24) 
become: 
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Fig. 4. NN friction and FL output backlash compensation. 
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Adding and subtracting  yields: σ̂TW
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Adding and subtracting again σ~ˆ TW  yields: 
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Using the Taylor series approximation for σ~ , the closed 
loop error system becomes 
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(33) 
where the disturbance δ  is 

)()~(~ˆ~
d

TTTT TxVOWxVW +++= εσδ & .           (34) 
It is important to note that the NN reconstruction error ε , 
the plant disturbance , and the higher order terms in the 
taylor series expansion of  all have exactly the same 
influence as disturbance in the error system.  
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The higher order terms in the Taylor series are bounded 
by   
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where  are computable positive constants.  The 
disturbance term (34) is bounded according to  

ic

||||~||||~|||||| 210 eZCZCC FF ++≤δ           (36) 
with  computable known positive constants. iC
  For the NN training algorithm to improve the tracking 
performance of the closed loop system it is required to 
demonstrate that the tracking error, e  is suitably small, a 
bound on the tracking error is derived by the following 
theorem. 

The next theorem provides an algorithm for tuning the 
NN friction compensator. 
Theorem 1: Given the system (23), select the tracking 
control (29) and choose the robustifying signal  

    eZZKtv MFz )||~(||)( +−=                         (37) 
and gain  

2CK z >                                     (38) 
with  the known constant in (36). Let NN weight tuning 
be provided by  
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with any constant 01 >η , 02 >η  and scalar design 
parameter . Then the tracking error e  evolves with a 
practical bounds given specially by the right hand sides of 
(A6), provided that 

0>k
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Proof : See Appendix. 

Given the fuzzy inverse compensator with rule base 
(16), the throughput of the compensator plus output 
backlash is given by  
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where the fuzzy inverse estimation error is given by 

bbb ˆ~
−= and the modeling mismatch term oδ  is bounded 

so that oMo δδ <||  for some scalar oMδ .  
We choose the fuzzy logic system tuning algorithm for 

the estimated backlash inverse 

||ˆ)(ˆ ebkeyXb od −= &
&                             (42)  

where the scalar  and 0>ok zze d −= .  The second term 
in (42) is a term of the Narendra’s e mod, which is used in 
adaptive control to provide robustness to disturbances.   

System tuning algorithm is robust with respect to the 
modeling mismatch term oδ  in (41) and the components of 

b
~

 stay in a convex set to which the true widths b  belong, 
for implementing the fuzzy output backlash inverse )(⋅BI . 

System tuning algorithm ensure that the widths b  and the 
error,  are bounded.  So are  and 

ˆ
yyd − dz z . These 

properties are sufficient to ensure that all closed loop signals 
are bounded in the presence of the unknown output backlash 

. )(⋅B

IV. SIMULATION RESULTS  
In this section, we illustrate the effectiveness of an NN 
friction and FL output backlash compensator by computer 
simulations. One considers a system with friction and output 
backlash nonlinearity as  
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The system response without friction and output backlash 
nonlinearity by a PI controller is shown in Fig. 5. The 
parameters of the PI controller are chosen as  and  

 The system response with friction and backlash 
nonlinearity is included in Fig. 6. The performance is 
degraded by the nonlinearity. Therefore, we use the NN 
friciton and FL output backlash compensator in order to 
compensate for friction and output backlash effects. The 
input vector 

3=pK

.4=IK

x  can be taken as )]()),(sgn(),([ kzkzkex d= . 
The sigum  is needed for Coulomb friction terms. The 
NN parameter , , and 

)sgn(⋅
31 =N 42 =N 221 == ηη .  The 

system response with the friction and output backlash 
compensator is shown in Fig. 7. The proposed method 
exhibits an improvement in its response compared with the 
only PI controller. 

V. CONCLUSION 
An NN friction and FL output backlash compensator has 
been proposed for systems. The classification property of FL 
system and the function approximation ability of the NN 
makes them a natural candidate for offsetting this sort of  
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Fig. 5. System response without friction and backlash 
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Fig. 6. System response (a) with only friction (b) with only 
backlash (c) with friction and backlash. 
 
actuator nonlinearity having a strong dependence on the 
region in which the arguments occurs. It was shown how to 
tune the FL parameters and the NN weights so that the 
unknown friction and backlash parameters are learned on 
line, resulting an adaptive friction and output backlash 
compensator.  Simulation results show that significantly 
improved system performance can be achieved by our 
adaptive NN and FL control schemes.  

APPENDIX 
Proof of theorem 1 

Define a Lyapunov function candidate for the error 
dynamics (33) as  
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Differentiating and substituting now from the error system 
(A1) yields 
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Thus  is negative as long as the term in brace is positive. L&
Defining  and completing the square 
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which is guaranteed positive as long as either  
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where . kCZC M /13 +=
  According to the Lyapunov theorem extension, tracking 
error decreases as long as the error is bigger than the right 
hand sides of Eq. (A6). This implies Eq. (A6) gives a 
practical bound on the tracking error   
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compensation 
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