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Abstract— This paper presents a local necessary and suffi-
cient condition for the controllability of bilinear discrete-time
systems. Based on an optimization approach of the problem
of controllability, the method assumes a relaxed condition of
inversibility of the state transition function, with respect to
other similar approaches.

I. INTRODUCTION

Controllability of bilinear discrete-time systems has been
the subject of some relevant studies. This is for one part due
to their analytical simplicity and has led to fairly developed
theory. On the other hand, it appears that many important
processes, not only in engineering, but also in biology,
socio-economy, and ecology, can be modeled by bilinear
systems, which accredits such studies.[1]

The homogeneous bilinear discrete-time system consid-
ered here can be classicaly modeled by using two matrices
A andQ, whereA is the matrix involved in the linear part
of the state equation whereasQ is the matrix involved in
the bilinear part.

The controllability of bilinear system, as studied in [4],
raises two conditions for controllability: one for necessity
and one for the sufficiency. Such approach is a local one
and consists in decomposing the bilinear system model into
a linear system and a multiplicative feedback. However, it
requires thatrank(Q) = 1 whereQ must be factorized in
two vectors ; in other terms this technic needs orthogonality
property. The same problem as considered in [3] gives rise
to a global necessary and sufficient condition. In addition to
decomposing the system as in [4], the approach involves for-
ward and backward composition of the transition function.
It still ensues a condition of orthogonality on the matrix Q,
more an inversibility condition on the matrix A. On a more
general point of view, bilinear systems can be studied by
specific tools used in nonlinear discrete-time system, like
differential geometry. This is the case in[6] where local
controllability of bilinear discrete-time system is investi-
gated. The approach, which requires the inversibility of
(A+u(k)Q), whereu(k) denotes the discrete control vector
at timek, issues in the determination of a feasible domain
of control. This assumption is due to the definition of vector
fields that are used to characterize the local controllability
of the system.

The present paper rediscovers the same necessary and
sufficient condition for local controllability condition of
bilinear discrete-time system as in differential geometry.
However due to a relaxed assumption on the system model
property, it adresses to a larger feasible control domain.

The plan is organized as follows. Section II gives some
preliminaries and definitions. Section III is aimed to the
presentation of a local necessary and sufficient controlla-
bility condition for bilinear discrete-time systems. Section
IV shows with some details an example of controllability
analysis which do not fit the condition required by differ-
ential geometry approach, but which satisfies the relaxed
condition for application proposed here.

II. PRELIMINARIES

This paper is devoted to the study of controllability of
homogeneous discrete-time bilinear system, described by
the following state equation in discrete-time :

x(k + 1) = Ax(k) +
m∑
i=1

ui(k)Qix(k) (1)

where x(k) is the n-dimensioned state vector at timek,
u(k) = (ui(k)) is the m-dimensioned control vector at time
k; A andQ1, · · · , Qm are square matrices of order n.

A. Controllability

We recall from [5] the definition of the controllability
for discrete-time systems. A dynamic discrete-time system,
described in state form, is said to be controllable on the
interval [k0, k1], if for any statex0 andx1, there exist an
input u(k) that drives the system to statex(k1) = x1 at
time k = k1, starting from the statex(k0) = x0 at time
k = k0.

B. A Necessary Controllability Condition

Let us consider first the more general nonlinear discrete-
time system model:

x(k + 1) = f(x(k), u(k)) (2)

wherex(k) ∈ <n, u(k) ∈ <m andf(.) is a continous vector
function.



Provided that
(
∂f
∂x + ∂f

∂u
∂u
∂x

)
has full rank, a necessary

condition of controllability of this system, proposed in [2],
is given by :

rank[P ] = n

whereP is then×Nm matrix defined as :

P =
[

∂f
∂u(N−1)

∂f
∂x(N−1)

∂f
∂u(N−2)

· · · ∂f
∂x(N−1) · · ·

∂f
∂x(1)

∂f
∂u(0)

]
III. A NECESSARY AND SUFFICIENT
CONDITION OF CONTROLLABILITY

It results in what follows a necessary and sufficient
condition for local controllability of bilinear discrete-time
system. A proof is also given.

A. Proposition

The bilinear discrete-time system described by equation
(1) is controllable on the interval[0, N ] if and only if :

rank[C] = n

where

C = [Q1A
N−1x(0) AQ1A

N−2x(0) · · ·AN−1Q1x(0)
Q2A

N−1x(0) AQ2A
N−2x(0) · · ·AN−1Q2x(0)

· · · QmA
N−1x(0) AQmA

N−2x(0) · · ·
AN−1Qmx(0)] (3)

with sequence of controls satisfying that matrix(
A+ u1Q1 + · · ·+ umQm +Q1x

∂u1
∂x + · · ·+Qmx

∂um
∂x

)
has full rank.

Proof For sake of simplicity, we will limit first to the
single input case.

By expressing as follows the solutionx(N) of state
equation (2) after function composition, one gets:

x(N) = fu(N−1) ◦ · · · ◦ fu(1) ◦ fu(0)(x(0))

with f(x(k), u(k)) = fu(k)(x(k))

which will be also denoted by

x(N) = ΓN−1(x(0), u)

whereu means the control sequence{u(0), · · · , u(N−1)}.

Using Taylor’s development to expand the right-hand side
of the previous equation yields:

x(N) = fu(N−1) ◦ · · · ◦ fu(1) ◦ fu(0)(x(0))|u=0

+
[
∂ΓN−1(x(0),u)
∂u(N−1)

∂ΓN−1(x(0),u)
∂u(N−2) · · · ∂ΓN−1(x(0),u)

∂u(0)

]
u=0

u

+O(u2)

with u = [u(N − 1) · · · u(1) u(0)]T , which can be
rewritten as:

x(N) = ANx(0) + P |u=0u+O(u2)

Necessity

Necessary condition appears as obvious, since it merely
consists in applying the necessary controllability condition,
as depicted in section II, to the particular case of bilinear
discrete-time system, namely:

x(k + 1) = f(x(k), u(k))
= Ax(k) + u(k)Qx(k) (4)

This gives :

∂f(x(k), u(k))
∂x(k)

= A+u(k)Q,
∂f(x(k), u(k))

∂u(k)
= Qx(k)

Then, it comes that
(
∂f
∂x + ∂f

∂u
∂u
∂x

)
= (A+ u(k)Q+Qx∂u∂x

and

P = [Qx(N − 1) (A+ u(N − 1)Q)Qx(N − 2)
· · · (A+ u(N − 1)Q) · · · (A+ u(1)Q)Qx(0)]

Then, matrixC, as previously defined, results from the
computation ofP after function composition, when controls
are assumed to be equal to zero.

In other words, it can also be noted that the solution
of state equation (4) when neglecting higher order control
terms write as:

x(N) = ANx(0) +
N−1∑
k=0

AN−1−kQAkx(0)u(k) +O(u2)

(5)
which corresponds to:

x(N) = ANx(0) + Cu (6)

It turns out that such a determination of the matrixC does
confer to the controllability analysis, a local character, valid
for small inputs.

Sufficiency

Let us suppose thatC has full rank. We will proof in
what follows, that one can find a sequence of controls
tansferring any initial statex(0) to any final statex(N). So,
by considering state equation solution (6), it results that one
can determine a sequence of controls which tranfers initial
statex(0) to final statex(N), in other words, that there exist
a solution for the equation (6). Moreover, it can be easily
shown that the sequence of controlsu that minimizes the
particular cost function :∑N−1

k=0 r(x(k), u(k))

with r(x(k), u(k)) = u2(k)

corresponds to the generalized right-inverse of the control-
lability matrix, namely :

u = CT [CCT ]−1[x(N)−ANx(0)]



Note that for single input system, this matrix takes the
following simplified form :[

QAN−1x(0) AQAN−2x(0) · · · AN−1Qx(0)
]

Remark

Generalization of the proof to multi-input system do not
raise any particular difficulty.

Let’s consider for this purpose the following multivari-
able system:

x(k + 1) = Ax(k) +
∑m
i=1 ui(k)Qix(k)

= f(x(k), u(k))

It results that:

∂f(x(k),u(k))
∂x(k) = A+

∑m
i=1 ui(k)Qi

∂f(x(k),u(k))
∂ui(k) = Qix(k)

and by substitutingx(k) = Akx(0) and by assuming the
controls to be equal to zero in the calculation of matrixP ,
we obtain matrix C as presented in (3).

The calculation of the terminal statex(N) by using the
composition function, gives:

x(N) = ANx(0)+
N−1∑
k=0

m∑
i=1

AN−1−kQiA
kx(0)ui(k)+O(u2)

and by neglecting higher order control termsO(u2), we
get the same form as in (6).

IV. AN EXAMPLE

Let us consider the following bilinear discrete-time sys-
tem.

x1(k + 1) = x2(k)
x2(k + 1) = x2(k) + u(k)x2(k)

where

A =
[

0 1
0 1

]
and Q =

[
0 0
0 1

]
It can be shown that a linear state feedback control law

of the form :

u(k) = αTx(k)

assures the controllability of the system in two steps,
wheneverx(2) ∈ <2 andx(0) ∈ {<2/(0, 0)}.

The domain of control admissibility, defined in [6] as the
set of control sequences that makes that(A + u(k)Q) has

full rank, can be determined from the analysis of the rank
of the following matrix :

A+ αTxQ =
[

0 1
0 1 + α1x1(k) + α2x2(k)

]
It is obvious that(A + αTxQ) has not full rank, so we

cannot settle that the control lawαTx belongs to the domain
of admissibility. It results that one can’t conclude about the
controllability of this system.

Now, considering the relaxed condition proposed in this
paper leads to analyze the matrix :

A+αTxQ+QxαT =
[

0 1
α1x2(k) 1 + α1x2(k) + 2α2x2(k)

]
which appears to have full rank, provided thatα1 doesn’t

equal to zero. Controllability matrix is then defined as:

C = [AQx(0) QAx(0)] =
[
x2(0) 0
x2(0) x2(0)

]
which shows that the system is controllable, for anyx2(0)

different from zero.

V. CONCLUSION

We presented a necessary and sufficient condition for
local controllability of bilinear discrete-time systems, valid
for small inputs. It is mentioned that the same criterion has
been obtained yet by using differential geometry. However,
the approach was based on a condition of local inversibility
of the state tansition matrix which is relaxed into a less
restrictive condition in the present analysis issued from opti-
mization theory. A numerical example application satisfying
only the latter condition is shown.
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