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Stability Boundaries Analysis of Non-Autonomous Systems
with Resonant Solutions
Based on Subharmonic Melnikov Functions

Yoshihiko Susuki and Takashi Hikihara

Abstract— This paper addresses stability boundaries in non- associated basin structures were phenomenologically dis-
autonomous systems. An analytical criterion for stability cussed in [12], [13], [14], [15], [16] and so forth, any

boundaries in one degree of freedom (time-periodic) perturbed - gn\ytical and effective approach to the basin boundaries
Hamiltonian systems was recently proposed. The criterion fth t soluti h tb ted
evaluates basin boundaries of non-resonant solutions. This OF 1€ resonant solutions has not been reported.

paper discusses the stability boundaries with respect to the ~ 1he present paper discusses basin boundaries of the res-
resonant solutions based on the above result and subharmonic onant solutions based on subharmonic Melnikov functions
Melnikov functions. At first one degree of freedom perturbed  and related theory [9], [10], [11], [17], [18], thereby obtain-
(time-independent) Hamiltonian systems for the resonant solu- ing an approximate expression for the basin boundaries. At
tions is derived using coordinates transformations and second first ODF (time-ind dent turbed Hamiltoni t
order averaging. Then an approximate expression for the basin irst (time-in epen. ent) per ur_e aml onian SYS em
boundaries of the resonant solutions is obtained based on for the resonant solutions is derived using coordinates
the above analytical criterion. This paper also exhibits the transformations and second order averaging. Applying our
effectiveness of the approximate expression through a simple proposed criterion to the perturbed Hamiltonian system, we
example. obtain an approximate expression for the basin boundaries
. INTRODUCTION of the resonant solutions. The approximate expression can
be derived with the original Hamiltonian system and enables

In many engineering fields it is much important to eval- to clarify the stability boundari ith tt
uate stability boundaries of dynamical systems precisel r us 1o clarify 1€ stabllity boundaries with respect 1o
he resonant solutions analytically. Utilizing the expression

The stability boundaries are basin boundaries of stable I luate the stability boundari fth
equilibrium points or periodic solutions which correspond’ve can also evaluate the stability boundaries of the non-

to stable operating conditions of practical systems. Th%utonomous systems with both non-resonant and resonant

stability boundaries of autonomous dynamical systems a§g|utlons.

discussed based on several analytical methods: Lyapunov's Il. SYSTEM MODEL AND PRELIMINARIES

direct methods [1], [2], dynamical systems theory [3], [4], This paper deals with ODF (time-periodic) perturbed
passivity-based approach [5], [6] and so forth. Howevegjamiltonian system as follows:

for non-autonomous systems, any analytical criterion for

d
the stability boundaries was not proposed; thus the evalua- d—;l = JDH(q) +¢9(q,t), (1)
tion depended on numerical simulation such as cell-to-cellh I denotes the Hamiltonian funci ad> 0) th
mapping [7]. It was hence strongly required to derive arf/nere enotes the Aaml onian function aed> 0) the

analytical criterion for the stability boundaries of the nonSmall parameter, and = (z,9)" (z,y € R),
autonomous systems. A 0 1

In [8] we proposed an analytical criterion for stability J = < -1 0 ) J
boundaries in one degree of freedom (abbreviated as ODF)

T
(time-periodic) perturbed Hamiltonian systems based on DH(q) 2 <8—H(([;7y)7a—H(x7y)> , @
a Melnikov’s perturbation method [9], [10], [11]. Our Oz Iy
proposed criterion has some advantages in its easy and g(q,t) = (gl(x,y,t)7gg($,y,lf))T.

quick evaluation and is applicable to various engineering
systems. The criterion addresses the basin boundaries ?q ) has the periodicity of (= 2r/2) for t. The right-

non-resonant solutions, and is not therefore effective and side of the system (1) is assumed to be tractable in

rueiogsr?]eosulz sfstf;(;n%:hgsluﬁ'?ﬁg rgzggz:ts slgluzgisngn- region we are interested in. Additionally the system (1)
Y ' 9 undere = 0 holds the following assumptions [10], [11],
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Sports, Sciences and Technology in Japan, The 21st Century COE ng?ﬁbwn in Fig 1
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Fig. 1. Assumed phase structure of non-autonomous system (1) undég. 2. Schematic phase structure of discrete dynamical syﬁ(g)nfor
e=0. sufficiently smalle.

Assumption 2 The interior of I'° N {p,} is filled with non-resonant solution ~3(¢) in the system (1) is a periodic
a continuous family of periodic orbitg*(¢),« € (—1,0) solution with the peri dfl hich i ted _

. . . A period’, which is represented ag;(t)
with period T,,. Letting d(z, I'’) = qiéllﬁo |z — ql. we  p 4 O(e), having the same stability as,. For sufficiently
smalle the non-resonant solutieyf (¢) uniquely exists, and
X ¢ associated invariant manifolds af€-close to those of the
addition the system (1) under= 0 possesses a centar , unperturbed periodic orbib, x S [10], [11], [17], [18];
surrounded by the continuous family of the periodic orbitsygre ~§(t) is transformed into a fixed poinp§ of Pj,.
Assumption 3 T, s & differentiable function of the Eyrthermore we make the following assumption pertinent
Hamiltonian valueh, = H(q*(t)) and d7,/dh, > 0 to the basin boundary:
inside ' N {p, }.

have lim supd(q®(t),’®) = 0 and lim T,, = 4oc. In
a—04cR a—0

_ . o Assumption 4 A non-resonant fixed poinp,, associ-
A discrete dynam|Cal SyStem is introduced for the tranSated Withp,l, of P¢Eo unique]y exists and is asymptotica”y

formed system as follows: stable.
9 _ oy
a IDH(q) + eg(q,9), 3) Assumption 4 is necessary for the evaluation of the basin
do 0 boundary of the non-resonant solutigf ;. On the other
at ’ hand aresonant solution in the system (1) is a periodic

solution, which associated fixed or periodic point Bf,

L . 1
where ¢ has the periodicity oPr, that is,¢ € S*. If we does not coincide with botps andp* ..

take a global sectioity, = {(g,0) e R?* x St |p= ¢ €
S11, for some fixed phase, the autonomous system (3) o . o
is transformed into a discrete dynamical system: B. Derivation of An Analytical Criterion

Pf Sy — S (4) Based on the above discussion Fig. 2 shows the schematic
o o _ . _ Pphase structure of the discrete dynamical systéfm for
A periodic orbit with the periodl’ in the system (1) is sufficiently smalle. In the figureq®(—t,) denotes a point
transformed into a fixed point of the same type stability ithn the homoclinic orbitI™ as a parametet, € R and
Pj . P is often called Poincérmap. DH(q"(—t,)) the normal vector at the poing®(—t).

1. AN ANALYTICAL CRITERION EOR BASIN In addition, g: represents the intersection point of the

BOUNDARIES OF NON-RESONANT SOLUTIONS normal vectoD H (q°(—t,)) and the stable manifold, which
BASED ON MELNIKOV'S METHOD possibly coincides with the basin boundaryyst,, of the

_ ) ) i _ o saddle pointp§.
This section briefly introduces an analytical criterion for \yia now derive an analytical criterion for the basin

the basin boundary of the non-resonant solution in thﬁoundary o<, in P, using the distance betwegfi(—t,)
. . £ H 7 - 0
discrete dynamical systen?; based on the Melnikov's [ = 10 44 q® on the stable manifold. The distance

method.. The detail derivation and numerical examples a;fs(qo(_to)7¢0’6) is defined as follows:
shown in [8].

A. Non-Resonant and Resonant Solutions d* (¢°(~to), do,e) = gAi (4°(=to), ¢o) +O(e2)
o IDH(g%(~t0)) |

d; (q°(—to), o) + O(?) (5)
1744

Before starting the discussion let us confirm non-resonant
and resonant solutions in the non-autonomous system (1). A

1>



WhereAi (qo(*tO)ad)O) is given by ‘,“""".,

—+o0 *
*
&5 (a°(~to) o) =~ [ DH(g"(0)
_too 0” “
-9 (¢°(t), 2(t +to) + o) dt. (6) b <. — L
* e ]
4 Ll
It is then expected that for sufficiently smalthe following R ”o, 9
modified pointq” (—ty, ¢o) is close to the stable manifold: ’ /.,.
.'.. o
A —_ "swmas*
q” (—to, ¢0) = q°(—to) H (X1y)_ HC
S0
+ di(q°(~to), ¢o) DH(qO(—to)). ) Fig. 3. Conceptual diagram of action angle coordinates transformation.

IDH(q°(~to))|

We hence propose the modified homoclinic orbig as an
analytical criterion for the basin boundary pf , in P;: A Action Angle Coordinates Transformation

At first, in the interior of I'° N {p,} the system (1)
{@”(—to.¢0) |to € R andpy € S'}. (8) can be transformed into another system via an action
angle coordinates transformation [9], [11]. Fig. 3 shows the
Remark 1 Our proposed criterion has the following ad-conceptual diagram of the action angle transformation in the
vantages: system (1) undee = 0. The transformation can be found
s follows:

0r é
r,, =

o The criterion can be calculated with the informatio

about the system (1) under= 0, that is, the integrable A1
system. I = Ti(zy) = o . ydz,
« Since the criterion is based on the stable manifold A on (y)=H 9)
which possibly coincides with the true stability bound- 0 = To(v,y) = ms(:&y),
C

ary, the criterion is not conservative such as the Lya-
punov’s direct methods for the autonomous systemsyhere T'(H,) denotes the period of the periodic orbit
On the other hand we can indicate the disadvantages of c&ftisfying H(z,y) = H.(= const). s(z,y) represents the
proposed criterion as follows: time taken for the solution starting at a prefixed point on the
eriodic orbitH (z,y) = H, to reachq. The transformation
EQ) is one of canonical transformations, and its differentiable
hverse existsr = T,,(I,6) andy = T,(I,6). As a result

« The criterion does not provides us with any sufficien
condition for the basin boundary of the non-resonan

solution. the system (1) is represented as follows:
« The criterion cannot necessarily grasp various stability Y P '
boundaries which possibly appear in the system (1): ar Ty Ty
for examples, (i) genesis of resonant solutions and FT € oz N + 8—ng )
associated basin boundaries, (ii) fractal growth in the A F(LO
basin boundary of the non-resonant solution. W - c (8% 1), o (10)
In Section IV, to get rid of the disadvantage (i), we show an T - fZ(I) + € (8—991 + 8—992) )
analytical approach to the basin boundaries of the resonant N v y
solutions. = L) + eG(1,6,1),

Remark 2 If more than one saddle point with associated . -
homoclinic orbit and family of periodic orbits exist in the where{2(I) stands for the angular frequency of the periodic

system (1), our proposed criterion can be applied to ea&libit safisfying H(I) = H.(= co_nst_)._ The functions
homoclinic orbit. F and G apparently have the periodicity df for t. A

discrete dynamical systetﬁgO can also be defined by the

transformed system as follows:
IV. AN ANALYTICAL APPROACH TO BASIN

BOUNDARIES OF RESONANT SOLUTIONS ar F(I,6,0)
BASED ON SUBHARMONIC MELNIKOV dt e
do -
FUNCTIONS T = 2+ Gube). A
This section discusses the basin boundaries of the res- d¢ 0
onant solutions based on the subharmonic Melnikov func- a7

tions and related theory [9], [10], [11], [17], [18].
1745



B. One Degree of Freedom Perturbed Hamiltonian Systems M}/ (7/£2(1™/™)) is well-known as a subharmonic Mel-

for Resonant Solutions nikov function [10], [11], [17], [18]. The averaged system
We consider small perturbation in the neighborhood of15) is ODF (time-independent) perturbed Hamiltonian sys-
the following resonance relation: tem with the Hamiltoniank (7, h):
~ 2 dqg
mQI™") = nR = n% (12) d_‘tl = IDK(q) +<3(@), 17)

wherem andn are relatively prime integers anb*/” an
action value satisfying the above relation; A region near
I=1I""in PEO at o = 0 (abbreviated a§0€) is called a K(q)

whereg 2 (7,7)" and

resonance band. The small perturbation is now introducefl o0 i 72 o/ 5 dz
as follows: =p —{Im™")— — [ My -
ol 2 Q(Im/ny ) 2mn
— m/n _ m/n o
The perturbation is regarded as a kind of van der Pal A /0K _ 0K _\"
transformations [10], [11], [19]. A variational system is then| — 8_6((1)’ ﬁ(q) )
obtained as follows: o
ah 9(q) .
— = VEF(I™™0,t 2 7
ar ‘gF( ) 2 G_%Ig (1R G(E),g—};(a)h)
m/n 3/2
t ep7 (NI ,0,t)h +O(e77), (18)
do \[ag(lm/n)h Remark 3 The  subharmonic  Melnikov  function
a - Vear MM™(@/Q2(I™/™)) provides us with existence and
10202 stability conditions of the resonant fixed or periodic
m/nyp2 m/n -
toe 2912 (I™)R” + GI™™, 0 t)} points in the discrete dynamical systefy. In [11]
+ O3, MM/ Q2(I™/™)) is discussed in terms of; and its

(14) first derivation, and is derived as the existence condition for
We are in a position to derive ODF perturbed Hamiltonianm resonant periodic points aff. Roughly speaking, the
system for the resonant solutions by applying the secor@@ndition of P is identical to the existence condition for
order averaging [10], [11], [19], [20] to the variational €quilibrium points in the averaged system (17) under 0,
system (14). A second order averaged system is obtainttat is, Mm/”( /2(I"™/™)) = 0 andh = 0. In addition,

as follows: if M" "(G/Q(Im/”)) possesses some zero points, then
dh 1 /m el we have2m zero points; Associateth equilibrium points
b M%Ml (W) have the saddle_—type stgbility. This property directly Iead_s
9F to the assumptions which the averaged system (17) will
+ 55(5)11, hold in the next subsection.
P 8 5 (15) Remark 4 The averaged system (17) possibly has the
— = (]m/”)h sufficient property to clarify the phase structure of the
dt or discrete dynamical systerffy qualitatively. As discussed
n {15’ “Q(Im/n)h +§(5)} in [10], [11], [17], [18], provided thatd(I™/™)/dI is
2 0I? ’ bounded and sufficiently smadl, the second order aver-

A aging is generally relevant to determine the stability for all
wherep = (/e is treated as a dependent parameter, and equilibrium points of the averaged system (17). In addition,
—m/n T through the phase structure of the averaged system (17), we
M; <m> can grasp the phase structure in the resonance band (12) of
( Py qualitatively.

mT

2 Q™™ " F(I™™ Q™™ +7,7)dr, Remark 5 The phase structure of the averaged system
. 0 (17) can be analytically examined based on the original
8_(_) system (1) undet = 0. In addition we can understand the
a1 ¢ . phase structure of the averaged system (17) uader0
2 LT / 381; (" /n L0 Im/")r 45, 7)dr, analytically because of its integrable property.

m
G(o) C. Main Result: An Approximate Expression for Basin

Boundaries of Resonant Solutions

1 mT _
— m/n m/n F . . . . . .
mT/o G(I™", QL™ + 7, 7)dr. This subsection states the main result obtained in this

(16) paper: an approximate expression for the basin boundaries
1746



of the resonant solutions based on the averaged syst&mamark 6 The expression can be directly derived with
(17) and our proposed criterion in Section Ill. In order tahe original Hamiltonian system (1) which is the integrable
apply our proposed criterion to the averaged system (1&ystem.

we introduce the following assumptions which are identic

to Assumptions 1 and 2: aI!Remark 7 To describe the expressioU T?Z) in the

j=1
original x — y plane, it is necessary that each point on

Assumption 5 For e = 0 the averaged system (17) ™ _,,
possesses a homoclinic orl:i’t@ A {q(i)( )|t € R} to UF @ N o — h plane is transformed into a point in
each saddle poir,;, for i =1,--- ,m. ol y plane. The transformation is performed based on the

Assumption 6 Each interior of T?i) N {Py)} is following formula:

filled with a continuous family of periodic orbits _ m/n — o

q(;y(t), a € (=1,0) with period To(iy- We assume =1 +veh, 0=7, (1)
lin%)supd@?i)(t),f?i)) = 0 and liII}JTa(,;) = +4o0. In and
a— tER a— — I

addition the averaged system (17) undet 0 possesses a =L(1.0), y=T1T,10). (22)

centerp_, ;) surrounded by each continuous family of theremark 8 The expression approximately represents the
periodic orbits. basin boundaries of the resonant solutions. We obtained

As mentioned in Section lll, for sufficiently smal] each U F ) through the averaged system (17) which is derived

non-resonant equilibrium poirg§ ) related o) in the by truncating the variational system (14) urd(z) terms.
averaged system (17) uniquely exists and becomes a sad ﬂ%/fhough the phase structure of the averaged system (17)
point. In addition we make the following assumption: is identical to that Ofpoa in the resonance band (12)
qualitatively, it should be noted that the expression provides
Assumption 7 Each non-resonant equilibrium point ys with second order information about the basin boundaries

p°,(; associated withp_,;) for i = 1,---,m in the  of the resonant solutions.
averaged system (17) uniquely exists and is asymptotically
stable. D. Example

o Our present approach is applied to the following concrete
Thus, for sufficiently smalk, the averaged system (17) non-autonomous system [10], [18]:

has the same phase structure as Fig. 2 qualitatively.
We now derive an approximate expression for the basin — = y{N - (2> +yH}

boundaries of the resonant solutions as same as the process b e{6x — a(a® + y?) + v cost),

in Section III. Frggr) the above discussion each modified d (23)
homoclinic orbit I';) for i = 1,---,m is obtained as Y _ —z{2 — (2* + %)}
follows: d¢ 5 2 2
Y A - + {0y —y(@® +y9)}
P = {ﬁ?{)(*to) | to € R}, (19)  Fore =0the system (23) is ODF Hamiltonian system with
- ) -0 the HamiltonianH (z, y):
wheret, parameterizes each point dry,, and
A Hwy) — o5t (249 2 (24)
@iy (—to) = q(;(~to) o= 2 2 '
dy sy (@ (—t0)) DR (a0 (7 The system (23) under = 0 does not have any hyperbolic
T IDK(E(&-)(*%))I (@) (o)), saddle point and associated homoclinic orbit. However,

(20) in the interior of the circle{(z,y)|z? + y* = 2} the
Hamiltonian system possesses a center at the origin and
too a family of periodic solutions satisfying Assumption 3; We
. (/ DK(q?i) (t)) ~§(q?,;)(t))dt.) . can therefore analyze the system (23). In additione fgr0,
T ~v=0and0 < § < £, the system (23) has a non-resonant
As shown in Section Il each modified homoclinic orbitunstabl_e focus at the origin and a stable limit cycle with
T, is close to the stable manifold, which coincides witfhe period2r/(f2 —0). _ _
the basin boundary Q¥ ;). of the saddle poirp; . We We now consider 1/2—harmonic entrainment and asso-
ciated basin boundary in system (23). The entrainment is
hence proposeU F(l as an approximate expression formathematically represented by the resonance relation (12)
atm = 2 andn = 1. Using the following transformations:

x=+V2Isinf, y=+2Icosb, (25)
1747
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the basin boundarles of the resonant solutions.



1.0 ,

the effectiveness of the approximate expression although it
can not clarify the detail of the basin boundariesSgf
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Fig. 4. Basin structure and approximate expression for discrete dynamica[lsl
systemP;° associated with non-autonomous system (23). The fixed point
Ul is completely unstable, that is, source, &(@r D)? (i = 1,2) stand

for the completely stable (or directly unstable) 2-periodic points.

(6]

and [7]
o=lio 1=Y4 e (26)
2 2 ’ [8]
wherew £ 0 — 1/2, and averagin@(¢) terms we obtain
the second order averaged system as follows: -
do
T = M=2h) [10]
+ 6% sin 20,
dh ( ~ (27)
— = uwi(d—-—w-— —cos?a)
dt 4 7 [12]
+ 5{2((5—2w) - 5(30820} h, 13

where i 2 /e and all single bars are dropped. FoE 0
the averaged system (27) is ODF Hamiltonian system witf4]
the HamiltonianK (o, h):

K(o,h)=p [—hz —w {(5 —w)o — %sin 20}} . (28) 1ol
By calculating the approximate expression for the averaged
system (27) we can discuss the basin boundary in the none
autonomous system (23).

Figure 4 shows the basin structure and the approximal¥]
expression in the discrete dynamical syst&jh associated
with the system (23) af? = 1.0, ¢ = 0.05, § = 0.7 and
~ = 1.1. In the figure theblack point, plotted at the origin, [18]
denotes the sourde! and QP the quasi-periodic solution.
The white and dark-gray regions in Fig. 4 represent the 19
basins of 2-periodic point§? (i 1,2) and thelight-
gray region the basin oQP. The approximate expression [20]
is described with twdlack solid lines, and precisely grasps
a part of the basin boundaries 8f. This example shows

his research group, Future University—Hakodate.
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